JPH0335826B2 - - Google Patents

Info

Publication number
JPH0335826B2
JPH0335826B2 JP56058954A JP5895481A JPH0335826B2 JP H0335826 B2 JPH0335826 B2 JP H0335826B2 JP 56058954 A JP56058954 A JP 56058954A JP 5895481 A JP5895481 A JP 5895481A JP H0335826 B2 JPH0335826 B2 JP H0335826B2
Authority
JP
Japan
Prior art keywords
substrate
impurities
impurity
solid
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56058954A
Other languages
Japanese (ja)
Other versions
JPS57173937A (en
Inventor
Hideki Yakida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5895481A priority Critical patent/JPS57173937A/en
Publication of JPS57173937A publication Critical patent/JPS57173937A/en
Publication of JPH0335826B2 publication Critical patent/JPH0335826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明はレーザによる固体処理方法に関する。[Detailed description of the invention] The present invention relates to a solid state processing method using a laser.

従来よりレーザ光を用いた、熱処理方法、ある
いは加工方法が開発され、特に半導体製造プロセ
スに応用されている。これらレーザ光などを用い
たプロセスにおいては、微細な加工が可能であ
り、局所的に加熱することも可能である。したが
つて、半導体装置の製造プロセスにおいては、イ
オン注入層の熱処理を始めとして、非結晶シリコ
ン層の局部結晶化、電極金属の接触などの分野で
利用されている。
BACKGROUND ART Conventionally, heat treatment methods or processing methods using laser light have been developed and are particularly applied to semiconductor manufacturing processes. In these processes using laser light, etc., fine processing is possible and local heating is also possible. Therefore, in the manufacturing process of semiconductor devices, it is used in fields such as heat treatment of ion-implanted layers, local crystallization of amorphous silicon layers, and contact of electrode metals.

さらに特殊な応用としては、集積回路における
トリミング、もしくは、読出専用記憶回路の書き
込みなどに応用されている。これらの応用に於い
ては、レーザ光の照射における局部的温度上昇の
効果を利用した熱処理か、もしくは、局部に大エ
ネルギーを照射する機械的破壊の効果を利用した
ものに限られている。
More specific applications include trimming in integrated circuits and writing in read-only memory circuits. These applications are limited to heat treatments that utilize the effect of localized temperature rise during laser beam irradiation, or those that utilize the mechanical destruction effect of irradiating large amounts of energy to localized areas.

一方、レーザ光を用いて固体表面に所定の不純
物を拡散させる方法、もしくは固体表面の化学組
成を変える方法も、従来より数多く開発されてい
る。しかしながら、固体表面の限られた表面のみ
において上記の要求にこたえる場合には、熱的に
安定で、化学的にも安定なSi3N4膜などをマスク
材として用いてレーザ照射が行なわれている。
On the other hand, many methods have been developed in the past, such as using laser light to diffuse predetermined impurities onto a solid surface or changing the chemical composition of a solid surface. However, when meeting the above requirements only on a limited solid surface, laser irradiation is performed using a thermally stable and chemically stable Si 3 N 4 film as a mask material. There is.

半導体集積回路の製造を例にとり、レーザによ
る固体処理方法、具体的にはレーザによる不純物
拡散法の従来例を説明する。通常行なわれている
Siの基板表面に選択的に不純物拡散を行う場合に
は、基板表面に安定な誘電体を形成し、不純物拡
散を行う所定の領域のみ、その誘電体を取り除
く。この基板表面に、所定の不純物を含む拡散源
となりうる物質(例えばリンケイ酸ガラス
(PSG))を被着し、そして高温保持によつて拡
散を行い、所定の不純物拡散を行う。また拡散源
として、BN(ボロンナイトライド)などの固体
板を隣接する方法などもある。
Taking the manufacturing of semiconductor integrated circuits as an example, a conventional example of a solid-state processing method using a laser, specifically an impurity diffusion method using a laser, will be explained. usually done
When selectively diffusing impurities onto the surface of a Si substrate, a stable dielectric is formed on the surface of the substrate, and the dielectric is removed only in a predetermined region where the impurity is to be diffused. A substance that can serve as a diffusion source containing predetermined impurities (for example, phosphosilicate glass (PSG)) is deposited on the surface of this substrate, and diffusion is performed by maintaining the substrate at a high temperature to achieve predetermined impurity diffusion. Another method is to use a solid plate such as BN (boron nitride) as a diffusion source.

この様な固体不純物源を使用する以外の不純物
拡散方法、例えばイオン注入による場合にもマス
ク材、および、その後の熱処理などが必要であ
る。
An impurity diffusion method other than using such a solid impurity source, such as ion implantation, also requires a mask material and subsequent heat treatment.

この様な従来例においては製造工程が多く、ま
た熱処理時において、基板全体を高温に保持する
ために、前工程において形成された、不純物濃度
分布などが変化してしまう。これらの不純物拡散
の方法では、工程が複雑で制御性は高くない。
In such a conventional example, there are many manufacturing steps, and since the entire substrate is kept at a high temperature during heat treatment, the impurity concentration distribution formed in the previous process changes. These impurity diffusion methods require complicated steps and do not have high controllability.

本発明は前記従来の欠点を除去するレーザによ
る固体処理方法を提供するものであり、その1例
をあげればレーザ光をSi基板などに局所的に照射
し、所定の領域のSi基板温度を上昇せしめ、Si基
板表面をおおう雰囲気気体より所定量の不純物を
混入する方法で、従来に比べて不純物混入のため
の手数は大幅に減少し、さらに、温度上昇が所定
の領域以外ではほとんど起きず、前工程で形成さ
れた状態を保つことが可能である。
The present invention provides a solid-state processing method using a laser that eliminates the above-mentioned drawbacks of the conventional method.One example of the method is to locally irradiate a Si substrate with laser light to increase the temperature of the Si substrate in a predetermined region. By introducing a predetermined amount of impurities from the atmospheric gas that covers the surface of the Si substrate, the number of steps involved in adding impurities is significantly reduced compared to the conventional method.Furthermore, the temperature rise hardly occurs outside of a predetermined area. It is possible to maintain the state formed in the previous process.

本発明の一実施例におけるレーザによる固体処
理方法を第1図を用いて詳しく説明する。この実
施例においては、Si基板上の所定の領域への不純
物混入する場合を例に説明を行う。
A solid state processing method using a laser according to an embodiment of the present invention will be explained in detail with reference to FIG. In this embodiment, a case where impurities are mixed into a predetermined region on a Si substrate will be explained as an example.

第1図は雰囲気気体1中にSi基板2が配置さ
れ、このSi基板上にレーザ光源3が配置された状
態を示す。レーザ光源3から発せられたレーザ光
4は、Si基板上の所定の表面5に照射され、表面
5の直下の領域6を加熱する。ここでレーザ光4
の強度、および波長によつて領域6は溶融する。
このときレーザ光4の強度は、領域6の溶融基板
Siが飛散しない様に制御する。この制御は雰囲気
気体の圧力によつて行ないうる。
FIG. 1 shows a state in which a Si substrate 2 is placed in an atmospheric gas 1 and a laser light source 3 is placed on this Si substrate. Laser light 4 emitted from laser light source 3 is irradiated onto a predetermined surface 5 on the Si substrate and heats a region 6 directly below surface 5. Here, laser beam 4
The region 6 melts depending on the intensity and wavelength of.
At this time, the intensity of the laser beam 4 is such that the intensity of the laser beam 4 is
Control so that Si does not scatter. This control can be performed by the pressure of the atmospheric gas.

領域6の溶融Siは雰囲気気体1に表面において
接触しているために、雰囲気気体1として、例え
ばアルシンガス、あるいはフオスフインガスを用
いると、これらのガスは溶融Siとの接触面におい
て分解し、溶融Si中に溶け込む。この領域6の溶
融Siは、弱く対流している事が十分に期待できる
し、さらに、溶融Si中の不純物の拡散速度は十分
に大きく、短時間で混入される。混入されたヒ
素、あるいはリンはSi結晶中でドナ−不純物とな
るため、レーザ光4を遮断することによつて、溶
融Siは固相となり、既に一般に知られている様に
単結晶状態にもどる。したがつて混入された不純
物は領域6で活性化し、領域6はn型となる。基
板2にP型のSi基板を用いれば本実施例の不純物
混入方法において領域6に分離されたn型の島領
域が形成できる。
Since the molten Si in the region 6 is in contact with the atmospheric gas 1 at its surface, if, for example, arsine gas or phosphin gas is used as the atmospheric gas 1, these gases will decompose at the contact surface with the molten Si, and the gas will decompose in the molten Si. blend into. It can be fully expected that the molten Si in this region 6 is weakly convected, and furthermore, the diffusion rate of impurities in the molten Si is sufficiently high, so that the impurities are mixed in in a short time. Since the mixed arsenic or phosphorus becomes a donor impurity in the Si crystal, by blocking the laser beam 4, the molten Si becomes a solid phase and returns to the single crystal state as is already generally known. . Therefore, the mixed impurity is activated in region 6, and region 6 becomes n-type. If a P-type Si substrate is used as the substrate 2, an n-type island region separated into regions 6 can be formed in the impurity doping method of this embodiment.

本発明の実施例における不純物混入方法におい
ては、領域6は、レーザ光照射によつて溶融する
が、領域6の溶融深さは、照射に用いられたレー
ザ光の波長と、レーザ光の強度と、照射時間によ
つて決定される。したがつて、これらレーザ光の
波長、強度照射時間を所定条件に決定することに
よつて、所定の深さの不純物層が得られる。また
領域6の不純物濃度は、雰囲気気体1の不純物気
体の分圧で決定されるため、雰囲気気体1として
例えばアルシンガスと、水素ガスの所定の分圧比
を有する混合ガスを使用することによつて、所定
の濃度が得られる。
In the impurity mixing method in the embodiment of the present invention, region 6 is melted by laser beam irradiation, and the melting depth of region 6 depends on the wavelength of the laser beam used for irradiation and the intensity of the laser beam. , determined by the irradiation time. Therefore, by determining the wavelength and intensity irradiation time of these laser beams to predetermined conditions, an impurity layer of a predetermined depth can be obtained. Furthermore, since the impurity concentration in the region 6 is determined by the partial pressure of the impurity gas in the atmosphere gas 1, by using a mixed gas having a predetermined partial pressure ratio of arsine gas and hydrogen gas as the atmosphere gas 1, for example, A predetermined concentration is obtained.

既に報告されている様に、レーザ光などで瞬時
に溶融そして、固相状態にもどる過程においては
固相中の不純物拡散が無視できる。この様な過程
において、不純物の濃度分布は平衡偏折係数を用
いた解析がなされている(例えばChikawa et.al.
J.J.A.P19L159(1980)を参照)これらの解析によ
れば、不純物濃度分布は、液相と固相の界面の移
動速度即ち、再結晶化する速度と、液相中での不
純物の拡散係数と偏析係数によつて決定される。
As already reported, impurity diffusion in the solid phase can be ignored in the process of instantaneous melting using laser light or the like and returning to the solid phase state. In such processes, the concentration distribution of impurities has been analyzed using equilibrium polarization coefficients (for example, Chikawa et.al.
JJAP19L159 (1980)) According to these analyses, the impurity concentration distribution is determined by the rate of movement at the interface between the liquid and solid phases, that is, the rate of recrystallization, and the diffusion coefficient and segregation coefficient of impurities in the liquid phase. determined by.

しかしこれらの解析は、レーザ照射前、固相中
に一様に分布する不純物のレーザ照射およびその
後の再結晶化にともなう不純物の再分布の解析で
あつて、気相中の不純物との間の関係は考慮され
ていない。気相中からの液相中への不純物の溶け
込みを考慮に入れると、本発明による不純物濃度
分布は上記の報告されたものとは異なる。
However, these analyzes are analyzes of the redistribution of impurities due to laser irradiation of impurities that are uniformly distributed in the solid phase before laser irradiation and subsequent recrystallization, and do not involve the redistribution of impurities between them and the impurities in the gas phase. relationships are not considered. Taking into account the dissolution of impurities from the gas phase into the liquid phase, the impurity concentration distribution according to the present invention is different from that reported above.

しかしいずれにしても溶融された領域6の不純
物は固相中への拡散がないために、領域6が固相
化した後の不純物分布は界面で急峻となる。また
領域6の様に溶融された状態での不純物の飽和溶
解度は、固相のそれと比べると十分に大きく、領
域6において、固溶度以上の不純物の活性化が可
能である。この点で従来の熱平衡状態における不
純物濃度の限界がとり除かれ、十分に広い範囲で
の不純物濃度の制御が可能となる。
However, in any case, since the impurities in the melted region 6 do not diffuse into the solid phase, the impurity distribution after the region 6 becomes a solid phase becomes steep at the interface. Further, the saturation solubility of impurities in a molten state as in region 6 is sufficiently greater than that in a solid phase, and in region 6, activation of impurities with a solid solubility or higher is possible. In this respect, the conventional limit on impurity concentration in a thermal equilibrium state is removed, and the impurity concentration can be controlled over a sufficiently wide range.

第2図に本発明のレーザによる固体処理方法を
実施するための具体的な装置を示す。同装置にお
いて例えばSi基板等の基板21は、気密容器22
内に設置される。気密容器22には光などを通す
窓23が設けられ、気密容器22外からレーザ光
24が基板21に照射される。気密容器22には
さらに吸気口25と排気口26が設けられ、排気
口26は所定の排気処理設備などに導かれる。吸
気口25は、所定の気体源27に接続され、圧力
及び流量が制御される。
FIG. 2 shows a specific apparatus for carrying out the method of solid state processing using a laser according to the present invention. In the same device, a substrate 21 such as a Si substrate is placed in an airtight container 22.
installed within. The airtight container 22 is provided with a window 23 through which light passes, and the substrate 21 is irradiated with a laser beam 24 from outside the airtight container 22. The airtight container 22 is further provided with an intake port 25 and an exhaust port 26, and the exhaust port 26 is led to a predetermined exhaust treatment equipment. The intake port 25 is connected to a predetermined gas source 27, and the pressure and flow rate are controlled.

本発明のレーザによる固体処理方法を用いるこ
とによつて、固体全体を高温にすることなく、均
一で、しかも界面で急峻な不純物濃度を有する不
純物混入層を得ることが可能となり、また固溶度
以上の不純物濃度を可能にする。上記はSi基板に
不純物混入する場合を例に上げて説明したが、一
般に固体を酸化性気体中におけば、固体の酸化物
を形成したり、また、固体中に含まれる不純物を
取り除くことも可能である。さらに本発明ではレ
ーザ光を照射した例で説明したが、電子線でも同
様の効果が期待できる。
By using the solid-state processing method using a laser according to the present invention, it is possible to obtain an impurity-containing layer that is uniform and has a steep impurity concentration at the interface without raising the temperature of the entire solid. This allows for higher impurity concentrations. The above explanation was given using an example where impurities are mixed into a Si substrate, but in general, if a solid is placed in an oxidizing gas, it is possible to form a solid oxide or to remove impurities contained in the solid. It is possible. Furthermore, although the present invention has been described using an example in which laser light is irradiated, similar effects can be expected with electron beams.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるレーザによ
る固体処理方法を説明するための図、第2図は本
発明のレーザによる固体処理方法を実施するため
の装置の構成例を示す図である。 1……気体、2……固体(Si基板)、3……レ
ーザ光源、4……レーザ光。
FIG. 1 is a diagram for explaining a solid state processing method using a laser according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example of the configuration of an apparatus for implementing the solid state processing method using a laser according to the present invention. 1... Gas, 2... Solid (Si substrate), 3... Laser light source, 4... Laser light.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物原子もしくは分子を含む気体を少なく
とも含む気体雰囲気中に半導体基板を設置し、レ
ーザ光を前記半導体基板表面上に照射することに
より前記半導体基板表面を選択的に溶融せしめる
と同時に前記不純物を溶融領域に導入し、前記レ
ーザ光の強度と波長によつて前記基板の前記溶融
領域の溶融深さを制御して、前記不純物を導入
し、さらに前記不純物原子もしくは分子を含む気
体の分圧によつて前記溶融領域への不純物導入量
を決定することを特徴とするレーザによる個体処
理方法。
1. A semiconductor substrate is placed in a gas atmosphere containing at least a gas containing impurity atoms or molecules, and a laser beam is irradiated onto the surface of the semiconductor substrate to selectively melt the surface of the semiconductor substrate and at the same time melt the impurities. The impurity is introduced into the melted region of the substrate by controlling the melting depth of the melted region of the substrate by the intensity and wavelength of the laser beam, and further by the partial pressure of the gas containing the impurity atoms or molecules. A method for processing a solid body using a laser, characterized in that the amount of impurities introduced into the molten region is determined.
JP5895481A 1981-04-17 1981-04-17 Treatment for solid by laser Granted JPS57173937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5895481A JPS57173937A (en) 1981-04-17 1981-04-17 Treatment for solid by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5895481A JPS57173937A (en) 1981-04-17 1981-04-17 Treatment for solid by laser

Publications (2)

Publication Number Publication Date
JPS57173937A JPS57173937A (en) 1982-10-26
JPH0335826B2 true JPH0335826B2 (en) 1991-05-29

Family

ID=13099225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5895481A Granted JPS57173937A (en) 1981-04-17 1981-04-17 Treatment for solid by laser

Country Status (1)

Country Link
JP (1) JPS57173937A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823255A (en) * 1981-08-01 1983-02-10 Nippon Denso Co Ltd Control method of idling speed in internal combustion engine
JP2605268B2 (en) * 1987-01-30 1997-04-30 ソニー株式会社 Method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131866A (en) * 1978-04-05 1979-10-13 Nippon Telegr & Teleph Corp <Ntt> Heat treatment device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131866A (en) * 1978-04-05 1979-10-13 Nippon Telegr & Teleph Corp <Ntt> Heat treatment device

Also Published As

Publication number Publication date
JPS57173937A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
US4576652A (en) Incoherent light annealing of gallium arsenide substrate
US3200019A (en) Method for making a semiconductor device
JPS56135969A (en) Manufacture of semiconductor device
US6232207B1 (en) Doping process for producing homojunctions in semiconductor substrates
US3615932A (en) Method of fabricating a semiconductor integrated circuit device
JPS63166219A (en) Manufacture of semiconductor device
Bentini et al. Surface doping of semiconductors by pulsed-laser irradiation in reactive atmosphere
JPH0335826B2 (en)
JPH0480880B2 (en)
JPH11340157A (en) Apparatus and method for optical irradiation heat treatment
JPH0411722A (en) Forming method of semiconductor crystallized film
JPS6116758B2 (en)
US4742022A (en) Method of diffusing zinc into III-V compound semiconductor material
US4257824A (en) Photo-induced temperature gradient zone melting
JPS637624A (en) Method of diffusing material providing conductivity type into compound semiconductor material of group iii-v
US3340445A (en) Semiconductor devices having modifier-containing surface oxide layer
JP2002141298A (en) Method for manufacturing semiconductor device
JPS5940525A (en) Growth of film
JPH0376129A (en) Manufacture of electronic device using boron nitride
JPH0480878B2 (en)
JPS60239030A (en) Annealing method of compound semiconductor
JPS603124A (en) Annealing method of compound semiconductor
US3287188A (en) Method for producing a boron diffused sillicon transistor
JPS6250972B2 (en)
JPH0147004B2 (en)