JPH0335544A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0335544A
JPH0335544A JP1171423A JP17142389A JPH0335544A JP H0335544 A JPH0335544 A JP H0335544A JP 1171423 A JP1171423 A JP 1171423A JP 17142389 A JP17142389 A JP 17142389A JP H0335544 A JPH0335544 A JP H0335544A
Authority
JP
Japan
Prior art keywords
film
groove
semiconductor device
trench
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171423A
Other languages
Japanese (ja)
Inventor
Michio Asahina
朝比奈 通雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1171423A priority Critical patent/JPH0335544A/en
Publication of JPH0335544A publication Critical patent/JPH0335544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a semiconductor device having a trench isolation layer without a constriction or a step by forming an insulating film only to a groove sidewall section after etching an isolation groove, and by selectively forming a metallic film in a groove and then oxidizing or nitriding it to form a flat isolation layer. CONSTITUTION:After a P-well 2 and an N-well 3 are formed in an N-substrate 1, a groove is formed, and an SiO2 film is deposited all over and etched back. Thereby, an SiO2 film 4 remains only at a groove sidewall section and a bottom section is removed to expose Si. Then, an Al film is formed by epitaxial growth inside a groove on an Si single crystal. After selective growth of Al, it is oxidized in gas containing oxygen to form an Al2O3 film 6. The SiO2 film is etched; a gate oxide film 7, a gate electrode 8, a low concentration N-type impurity diffusion layer 9, a sidewall film 10, and a high concentration N-type impurity diffusion layer 11 are formed; a contact hole is provided inside a second field film 12; an Al wiring 13 is formed; and Tr is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は、半導体装置に関するものである。[Detailed description of the invention] [Industrial Application Field J The present invention relates to a semiconductor device.

さらに言えば、半導体装置内に形成されたトレン分離構
造に関するものである。
More specifically, it relates to a trench isolation structure formed within a semiconductor device.

【発明の概要] ン 本発明は、半導体装置のトレンチ分離に於て、溝内に、
金属酸化物が埋め込まれていることを特徴とした半導体
装置に関するものである。
[Summary of the Invention] The present invention provides a method for trench isolation of a semiconductor device.
The present invention relates to a semiconductor device characterized by having a metal oxide embedded therein.

[従来の技術] 第4.5図は、従来のトレンチ分離の一実施例を示した
。第4図に於て、溝をエツチングで形成した後、5iz
N、 /S i Oa RiJ!l 18を全面にデポ
し、続イテ、Pa I YS 1llil 9を400
0人デボする0次に6μ以上の溝部にダミー用SiO□
I!!20をフォトエッチにより形成した後全面に、レ
ジスト膜を2〜3μ塗布後、エッチバックすると、すべ
ての溝部に、レジスト21が、残り、このレジストと、
グミ−5i Oz膜をマスクにして、PoIYSi膜を
エッチバックすると溝内にPoIYSiが残留する。こ
れを熱酸化することにより、溝内に5ins膜22が形
成される。その後、S iiN a / S I Oz
膜ヲエッチンクし、洗浄後、ゲート酸化膜25を形成す
る。さらにゲート電極26を形成し、後は1通常工程に
よりプロセスを完成させる。
[Prior Art] Figure 4.5 shows an example of conventional trench isolation. In Figure 4, after forming the groove by etching, 5iz
N, /S i Oa RiJ! Deposit l 18 on the entire surface and continue with Pa I YS 1llil 9 for 400
SiO□ for dummy in the groove of 6μ or more for zero order
I! ! 20 is formed by photo-etching, a resist film of 2 to 3 μm is coated on the entire surface, and then etched back, the resist 21 remains in all the grooves, and this resist and
When the PoIYSi film is etched back using the Gummy-5i Oz film as a mask, PoIYSi remains in the groove. By thermally oxidizing this, a 5-ins film 22 is formed within the trench. After that, S iiN a / S I Oz
After etching and cleaning the film, a gate oxide film 25 is formed. Furthermore, a gate electrode 26 is formed, and the process is then completed by one normal step.

〔発明が解決しようとする課題1 しかし従来方法によるトレンチ素子分離は溝の大小によ
り、ポリシリコンエッチハックの時に、大きな溝部は、
ポリシリコンがなくなる為、グミ−3iO−マスク形成
を行わなくてはならず、工程が非常に長い、又、溝中を
埋める時、ポリシリコン面がスムースでないので、クビ
レ23や513N 4/ S i Oz llIべりに
よる、段差24が、形成されてしまう、この為ポリシリ
コン電極26をエツチングにより形成する時、この段差
やクビレ部にポリシリコンが残留しゲート電極間で、シ
ュートが生じるという欠点があった。
[Problem to be solved by the invention 1 However, trench element isolation using the conventional method depends on the size of the trench, and when polysilicon etch hacks, large trenches
Since there is no polysilicon, a gummy-3iO-mask must be formed, which is a very long process, and the polysilicon surface is not smooth when filling the trench, resulting in cracks and 513N4/S i A step 24 is formed due to the Oz II layering. Therefore, when the polysilicon electrode 26 is formed by etching, polysilicon remains on the step or the crevice, resulting in a shoot between the gate electrodes. Ta.

本発明は、従来方法に見られたこのような欠点を一掃し
1合理的で、クビレや段差のない、トレンチ素子分離層
を持った半導体装置を提供するちのである。
The present invention eliminates these drawbacks seen in the conventional method and provides a semiconductor device having a trench isolation layer that is rational and free from cracks and steps.

〔課題を解決する為の手段) 本発明は1分離用溝をエツチングした後、溝側壁部のみ
に、絶縁膜を形成し、該溝中に、金属膜を選択的に成長
させた後、該金属を酸化、あるいは、窒化させて、分離
層を平坦にしがも、合理的に形成するちのである。
[Means for Solving the Problems] The present invention involves etching a one-separation trench, forming an insulating film only on the trench sidewalls, selectively growing a metal film in the trench, and then etching the trench. The isolation layer can be formed rationally by oxidizing or nitriding the metal to make it flat.

[実 施 例] 1、第1.2.3図は1本発明によるトレンチ分離方法
を示したもので、第1図が完成図である。
[Example] 1. Figures 1.2.3 show the trench isolation method according to the present invention, and Figure 1 is a completed diagram.

N基板(1)中にPWe I212 (2)とNWe 
A 12(3)を形成後、溝をS i Oa膜14をマ
スクにして、RIEで形成する0次にS i Ox B
を、全面にデポ後RIEでエッチバックすることにより
、溝側壁部のみSin、膜4が残り、溝底部は、5if
tが除かれSiが露出する0次に、該Sin、をマスク
として、トリイリブチルアルミニウム(C,H,)、A
Lガスを、出発体とするCVD法により、Si単結晶上
の溝内に、AL膜をエピタキシャル成長させる。トリイ
リブチルアルミニウムは、Arでバブリングしてウェハ
ー面ニ供給シ、100〜250’Cに加熱すると、1μ
/minの成長速度で、溝中に、均質に単結晶エビ層(
16)が得られた。PWell中のPストッパーは、溝
形成後S i Oz膜をデポした後。
PWe I212 (2) and NWe in N substrate (1)
After forming A 12(3), the groove is formed by RIE using the S i Oa film 14 as a mask.
By etching back by RIE after depositing on the entire surface, the Sin film 4 remains only on the groove sidewalls, and the 5if
t is removed and Si is exposed. Using the Si as a mask, tri-butylaluminum (C, H,), A
An AL film is epitaxially grown in a groove on a Si single crystal by a CVD method using L gas as a starting material. When tri-butylaluminum is supplied to the wafer surface by bubbling with Ar and heated to 100 to 250'C, it becomes 1 μm.
At a growth rate of /min, a single crystal shrimp layer (
16) was obtained. The P stopper in the PWell was formed after the groove was formed and the SiOz film was deposited.

1/2で形成した。ALの結晶性をよくする為には、1
050℃以上のランプアニールをすると、改善される。
It was formed by 1/2. In order to improve the crystallinity of AL, 1.
This can be improved by lamp annealing at 050°C or higher.

ALの選択成長後、酸素を含んだガス中で酸化し、AL
、03膜6を形成する。その後、14と4のS iO*
 IIIをエツチングしゲート酸化膜7、ゲート電極8
、低濃度N型不純物拡散層9、サイドウオール膜10、
高濃度N型不純物拡散tallを形成し第2フイールド
11112中にコンタクト孔をもうけ、AL系配[13
を形成し。
After selective growth of AL, it is oxidized in an oxygen-containing gas and the AL
, 03 film 6 is formed. Then 14 and 4 SiO*
III is etched to form a gate oxide film 7 and a gate electrode 8.
, low concentration N-type impurity diffusion layer 9, sidewall film 10,
A high-concentration N-type impurity diffusion tall is formed, a contact hole is formed in the second field 11112, and the AL system [13
form.

Trを完成させる。Complete Tr.

〔発明の効果) 本発明は従来の如く、溝の狭い広いにかかわらず、すべ
ての溝中に均質で平坦性な、選択金属酸化膜が得られる
為、工程が非常にシンプルで、短縮されると同時に、従
来のトレンチ素子分離にみられた、モホロジーの悪さ、
や段差が生じない為、素子分離の信頼性と歩回りを向上
させることができるものである。
[Effect of the invention] The present invention, unlike the conventional method, can obtain a uniform and flat selective metal oxide film in all grooves, regardless of whether the grooves are narrow or wide, so the process is extremely simple and shortened. At the same time, poor morphology observed in conventional trench element isolation,
Since there are no steps or steps, reliability of device isolation and yield can be improved.

又1本実施例では、ALだけについて述べたが、AL中
にSiや、B、P、As等の不純物元素を含むことら可
能で、それらの不純物をSi中に拡散することらできる
。又それにより工程をさらに短縮することも可能である
Further, in this embodiment, only the AL has been described, but it is possible to contain impurity elements such as Si, B, P, and As in the AL, and these impurities can be diffused into the Si. Moreover, it is also possible to further shorten the process.

又、ALの場合、完全に酸化させる1部下方に、金属と
して残すことらできる。さらに、AL以外の金属、W、
MO,Ti、Zr、Co等ち形成でき、酸化物の他、窒
化物においても、同様の効果が得られる6のである。
Further, in the case of AL, it is possible to leave it as a metal under the part to be completely oxidized. Furthermore, metals other than AL, W,
MO, Ti, Zr, Co, etc. can be formed, and in addition to oxides, nitrides can also be used to obtain the same effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明の実施例を示す半導
体装置の断面図、第4図、及び第5図は従来の半導体装
置を示す図。 N基板 P W e 12 (I NWeββ 絶縁膜 Pストッパー 金属酸化膜 7・・・ゲート膜 8・・・ゲート電極 9・・・N型低濃度拡敢層 lO・・・サイドウオール膜 11・・・N型高濃度拡散層 12・・・第2フイールド膜 13・・・配線層 14・・・酸化膜 15・・・Si面 16・・・金属膜 17・・・Si溝 1 B ・・・5isN4/ S i Ox膜19・・
・ポリシリコン 20・ ・ ・ダミーS i Ox膿 21・・・レジスト 22・・・S i Oa M! 23・・・クビレ 24・・・段差 25・ ・ ・ゲート膜 26・・・ゲート電極 27 ・ ・ゲート電極残り 以 上
FIGS. 1, 2, and 3 are cross-sectional views of a semiconductor device showing an embodiment of the present invention, and FIGS. 4 and 5 are views showing a conventional semiconductor device. N substrate P W e 12 (I NWeββ Insulating film P stopper metal oxide film 7...Gate film 8...Gate electrode 9...N-type low concentration expansion layer lO...Side wall film 11... N-type high concentration diffusion layer 12...Second field film 13...Wiring layer 14...Oxide film 15...Si surface 16...Metal film 17...Si groove 1 B...5isN4 / S i Ox film 19...
・Polysilicon 20・・・Dummy S i Ox Pus 21...Resist 22...S i Oa M! 23... Neck 24... Step 25... Gate film 26... Gate electrode 27... More than the rest of the gate electrode

Claims (2)

【特許請求の範囲】[Claims] (1)半導体装置のトレンチ素子分離に於て、該溝中に
埋め込まれる分離層は、少なくとも、金属酸化物層ある
いは金属窒化物層を含んでいることを特徴とする半導体
装置。
(1) A semiconductor device characterized in that, in trench element isolation of a semiconductor device, an isolation layer buried in the trench includes at least a metal oxide layer or a metal nitride layer.
(2)前記金属酸化膜中には、不純物拡散元素を含んで
いることを特徴とした請求項1記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the metal oxide film contains an impurity diffusion element.
JP1171423A 1989-07-03 1989-07-03 Semiconductor device Pending JPH0335544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171423A JPH0335544A (en) 1989-07-03 1989-07-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171423A JPH0335544A (en) 1989-07-03 1989-07-03 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0335544A true JPH0335544A (en) 1991-02-15

Family

ID=15922857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171423A Pending JPH0335544A (en) 1989-07-03 1989-07-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0335544A (en)

Similar Documents

Publication Publication Date Title
US4948456A (en) Confined lateral selective epitaxial growth
KR950004972B1 (en) Method of forming field oxide layer on semiconductor device
US5236862A (en) Method of forming oxide isolation
US5422300A (en) Method for forming electrical isolation in an integrated circuit
JPH0697400A (en) Soi wafer and its manufacture
JPH02222160A (en) Manufacture of semiconductor device
JPH0335544A (en) Semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JPS60193324A (en) Manufacture of semiconductor substrate
JP2786259B2 (en) Method for manufacturing semiconductor device
JPH06224187A (en) Forming method for locos oxide film
JPH03153031A (en) Manufacture of semiconductor device
JPH0258248A (en) Manufacture of semiconductor device
JPH065588A (en) Manufacture of semiconductor device
JPH0258848A (en) Manufacture of semiconductor device
JPH0210851A (en) Manufacture of semiconductor device
KR100199007B1 (en) Isolation method mixing forming field oxide film and forming trench
JPS63240066A (en) Manufacture of semiconductor device
JP2533141B2 (en) Method for manufacturing semiconductor device
JP2546651B2 (en) Method of manufacturing bipolar transistor
JPH05267321A (en) Bipolar transistor and its manufacture
JPS6021539A (en) Manufacture of semiconductor device
JPS6122645A (en) Substrate for semiconductor device and manufacture thereof
JPS6084832A (en) Manufacture of semiconductor device
JPS594164A (en) Manufacture of semiconductor device