JPH0335512A - Manufacture of ce substituted garnet and optomagnetic recording medium - Google Patents

Manufacture of ce substituted garnet and optomagnetic recording medium

Info

Publication number
JPH0335512A
JPH0335512A JP17036389A JP17036389A JPH0335512A JP H0335512 A JPH0335512 A JP H0335512A JP 17036389 A JP17036389 A JP 17036389A JP 17036389 A JP17036389 A JP 17036389A JP H0335512 A JPH0335512 A JP H0335512A
Authority
JP
Japan
Prior art keywords
film
sputtering
oxygen
garnet
substituted garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17036389A
Other languages
Japanese (ja)
Inventor
Aretsukusu Maikeru
アレックス マイケル
Keiji Shono
敬二 庄野
Sumio Kuroda
純夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17036389A priority Critical patent/JPH0335512A/en
Publication of JPH0335512A publication Critical patent/JPH0335512A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/186Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering for applying a magnetic garnet film

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To freely vary magnetic characteristic compensating temperature of coercive force, aspect ratio, etc., by sputtering a film or heat treating after film forming in an inert gas atmosphere containing an oxidative gas or reducing gas in a method of manufacturing a specific Ce-substituted garnet. CONSTITUTION:In a method of manufacturing a Ce-substituted garnet represented by a formula (1), oxygen amount in the film is controlled to alter valance of Fe in the film. Or, the formed film is heat treated under suitable oxygen partial pressure. Since the valence of Fe is very sensitive to oxygen amount, fine oxygen amount control is required in this case. Large aspect ratio, coercive force, compensating temperature necessary as an optomagnetic recording medium are controlled in the garnet, and the characteristic is freely controlled by controlling the oxygen partial pressure at the time of sputtering, and controlling oxygen concentration at the time of heat treating after film forming.

Description

【発明の詳細な説明】 〔概要〕 本発明はCe置換ガーネットの製法、特に光磁気記録媒
体の製造方法に関し、Ce置換ガーネットにおいて光磁
気記録媒体として必要な大きな角形比、保磁力、補償温
度等の磁気特性を制御する方法を提供することを目的と
し、スパッタ法により形成される下記一般式(1)で表
されるCe置換ガーネットの製法において、スパッタ製
膜あるいは製膜後の熱処理を酸化性ガス含有不活性ガス
雰囲気或いは還元性ガス含有不活性ガス雰囲気で行い該
Ce置換ガーネットの磁気特性を制御する製法、又、C
e置換ガーネットを用いる光磁気記録媒体の製法におい
て、該Ce置換ガーネットのスパッタ製膜時あるいは製
膜後の熱処理時酸素含有雰囲気を用い、酸素量を制御す
る光磁気記録媒体の製法により発明を構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for producing a Ce-substituted garnet, particularly a method for producing a magneto-optical recording medium, and relates to a method for producing a Ce-substituted garnet, in particular, a method for producing a magneto-optical recording medium. The purpose of the present invention is to provide a method for controlling the magnetic properties of Ce-substituted garnet, which is formed by sputtering and is expressed by the following general formula (1). A manufacturing method in which the magnetic properties of the Ce-substituted garnet are controlled in an inert gas atmosphere containing a gas or an inert gas atmosphere containing a reducing gas;
The invention consists of a method for manufacturing a magneto-optical recording medium using e-substituted garnet, in which an oxygen-containing atmosphere is used during sputtering film formation of the Ce-substituted garnet or during heat treatment after film formation to control the amount of oxygen. do.

Cex R3−XMVF e5−.012 HHH(1
)(0<x<3.o<y<s) 〔RはYあるいはCe以外の希土類元素(ScLa、P
r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho
、Er、Tm、Yb、Lu)MはFeと置換しうるLi
、Mg、Zn、AlGa、Sc、In、Ti、Zr、H
f、St。
Cex R3-XMVF e5-. 012 HHH(1
) (0<x<3.o<y<s) [R is Y or a rare earth element other than Ce (ScLa, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho
, Er, Tm, Yb, Lu) M is Li which can be replaced with Fe.
, Mg, Zn, AlGa, Sc, In, Ti, Zr, H
f, St.

Ge、  Sn、  V、  Nb、  P、  Cr
、  Mn、  Co。
Ge, Sn, V, Nb, P, Cr
, Mn, Co.

Niから選択される元素をさす。〕 〔産業上の利用分野〕 本発明は光磁気記録媒体等に用いるスパッタガーネット
膜に関する。
Refers to an element selected from Ni. [Field of Industrial Application] The present invention relates to a sputtered garnet film used in magneto-optical recording media and the like.

〔従来の技術〕[Conventional technology]

光磁気記録用のスパッタガーネット膜には従来Bi置換
が行われてきた。Bi置換を行うと、ファラデー回転が
増大し読出しの信号強度が大きくなる。しかしBi置換
ガーネット膜のファラデー回転は波長に依存し、可視光
領域では非常に大きいが近赤外での値は十分ではない。
Bi substitution has conventionally been performed on sputtered garnet films for magneto-optical recording. When Bi substitution is performed, the Faraday rotation increases and the reading signal strength increases. However, the Faraday rotation of the Bi-substituted garnet film depends on the wavelength, and although it is very large in the visible light region, the value in the near-infrared region is not sufficient.

通常、光ディスクの光源としてはコンパクトであるため
近赤外で発振波長をもつ半導体レーザが用いられる。こ
の観点からすると、Bi置換ガーネットは半導体レーザ
波長では有効ではない。
Usually, a semiconductor laser having an oscillation wavelength in the near infrared is used as a light source for an optical disk because it is compact. From this point of view, Bi-substituted garnet is not effective at semiconductor laser wavelengths.

最近、CeN換ガーネットが近赤外で大きなファラデー
回転を有することが見出された(例えば、M、Cyom
i、に、5atoh  and  M。
Recently, CeN-modified garnets were found to have a large Faraday rotation in the near-infrared (e.g., M, Cyom
i, to, 5atoh and M.

Abe:Jap、  Appl 、 Phys、  2
7.  L1536 (1988)、あるいは第12回
日本応用磁気学会学術講演概要集2aA−4,2aA−
5,2aA−6(1988))。
Abe: Jap, Appl, Phys, 2
7. L1536 (1988), or the 12th Japanese Society of Applied Magnetics Academic Lecture Abstracts 2aA-4, 2aA-
5, 2aA-6 (1988)).

これらの報告ではスパッタ法によりGGGなどの単結晶
非磁性ガーネット基板あるいはSi基板上にそれぞれエ
ピタキシャル膜、多結晶膜が作製されている0組成とし
ては Y3−XCe xF e so +z (0−≦−X−
≦−1,7)Y3−XCexF e5−yA ly C
)+z(x−0,0,5,0,7,1,0,y=o、0
.8゜1.2)が示されている。またCeは通常4価(
Ce”)が安定であり、3価のCe (Ce”°)を得
るためにスパッタガスには不活性ガスのArが用いられ
ている。
In these reports, epitaxial films and polycrystalline films are fabricated on single-crystal non-magnetic garnet substrates such as GGG or Si substrates, respectively, by sputtering. −
≦-1,7)Y3-XCexF e5-yA ly C
)+z(x-0,0,5,0,7,1,0,y=o,0
.. 8°1.2) is shown. In addition, Ce is usually tetravalent (
Ce'') is stable, and in order to obtain trivalent Ce (Ce''°), an inert gas Ar is used as the sputtering gas.

上記の組成の膜では角形比、保磁力は非常に小さく光磁
気記録媒体として用いることはできない。
A film with the above composition has a very small squareness ratio and coercive force and cannot be used as a magneto-optical recording medium.

〔本発明が解決しようとする課題〕[Problems to be solved by the present invention]

CalCalネガ−ネット、光磁気記録に適する磁気特
性をもたせることを目的とする。即ち、十分に大きな角
形比、保磁力をもたせると共に記録過程で問題となるキ
ュリー点、補償温度、飽和磁化を製膜条件や熱処理条件
により制御する。
The purpose is to provide CalCal negative net with magnetic properties suitable for magneto-optical recording. That is, a sufficiently large squareness ratio and coercive force are provided, and the Curie point, compensation temperature, and saturation magnetization, which are problems in the recording process, are controlled by film forming conditions and heat treatment conditions.

Ce置換を行うとファラデー回転が大きくなるがその原
因は明らかではない、しかしCeが3価であることがキ
ーポイントと思われる。このため酸化物を形成するにも
かかわらず、製膜中の雰囲気は還元性にしなければなら
ない。
Faraday rotation increases when Ce is substituted, but the reason for this is not clear, but the fact that Ce is trivalent seems to be the key point. Therefore, despite the formation of oxides, the atmosphere during film formation must be reducing.

通常ガーネットのFeは3価であるが、還元性の雰囲気
で作製したり熱処理すると膜中に酸素欠損が生しこれを
電荷補償するために2価のFeが生じる。3価のFeと
2価のFeでは磁気モーメントが異なるためキュリー温
度や飽和磁化は異なってくる。また補償温度を持つよう
なガーネット組成では、Feの価数によって補償温度も
異なってくる。補償温度がどこに存在するかによって飽
和磁化や保磁力の温度依存性は大きく変わるので、特に
記録過程やビットの安定性において補償温度の位置は重
要である。
Normally, Fe in garnet is trivalent, but when produced in a reducing atmosphere or heat treated, oxygen vacancies occur in the film, and divalent Fe is generated to compensate for the charge. Since trivalent Fe and divalent Fe have different magnetic moments, their Curie temperatures and saturation magnetizations differ. Furthermore, in a garnet composition that has a compensation temperature, the compensation temperature also differs depending on the valence of Fe. Since the temperature dependence of saturation magnetization and coercive force varies greatly depending on where the compensation temperature is located, the position of the compensation temperature is particularly important in the recording process and bit stability.

発明者らはこのような観点から、Ce置換ガーネット膜
を作製する際の酸素量を変化させ補償温度が酸素量に非
常に敏感なことを見出した。
From this viewpoint, the inventors changed the amount of oxygen when producing a Ce-substituted garnet film and found that the compensation temperature was very sensitive to the amount of oxygen.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はスパッタ法により形成される下記一般式(1)
で表されるCe置換ガーネットの製造方法において、ス
パッタ製膜あるいは製膜後の熱処理を酸化性ガス含有不
活性ガス雰囲気或いは還元性ガス含有不活性ガス雰囲気
で行い該Ce置換ガーネットの磁気特性を制御するCe
置換ガーネットの製造方法 Ce X Ri−*MyF e 5−yo 12 ・・
・(1)(0<x<3.Q<y<5) 〔RはYあるいはCe以外の希土類元素(Sc。
The present invention is formed by the following general formula (1) by sputtering method.
In the method for producing a Ce-substituted garnet represented by Ce
Manufacturing method of substituted garnet Ce X Ri-*MyF e 5-yo 12...
・(1) (0<x<3.Q<y<5) [R is Y or a rare earth element other than Ce (Sc).

La、Pr、Nd、Pm、Sm、Eu、Cd、Tb、D
y、Ho、Er、Tm、Yb、Lu)MはFeと置換し
うるLi、Mg、Zn、AlGa、Sc、In、Ti、
Zr,Hf,Si。
La, Pr, Nd, Pm, Sm, Eu, Cd, Tb, D
y, Ho, Er, Tm, Yb, Lu) M can be replaced with Fe, Mg, Zn, AlGa, Sc, In, Ti,
Zr, Hf, Si.

Ge、Sn、V、Nb、P、Cr、Mn、Co。Ge, Sn, V, Nb, P, Cr, Mn, Co.

Niから選択される元素をさす、〕及び、スパッタ法に
より形成される下記一般式(1)で表されるCe置換ガ
ーネットを用いる光磁気記録媒体の製造方法において、
Ce置換ガーネットのスパッタ製膜時あるいは製膜後の
熱処理時酸素含有雰囲気を用い、酸素量を制御する光磁
気記録媒体の製造方法 Ce++ RRx−3I、F e、−yo+z H+ 
+ (1)(0<x<3.O<y<5) (RはYあるいはCe以外の希土類元素(Sc。
refers to an element selected from Ni] and a method for manufacturing a magneto-optical recording medium using Ce-substituted garnet represented by the following general formula (1) formed by a sputtering method,
Method for manufacturing a magneto-optical recording medium that controls the amount of oxygen using an oxygen-containing atmosphere during sputtering film formation of Ce-substituted garnet or during heat treatment after film formation Ce++ RRx-3I, Fe, -yo+z H+
+ (1) (0<x<3.O<y<5) (R is Y or a rare earth element other than Ce (Sc.

La、Pr、Nd、Pm、Sm、Eu、Cd、T−b、
Dy、Ho、Er、Tm、Yb、Lu)MはFeと置換
しうるl、i、 Mg、Zn,Al,Ga、Sc、In
、Ti、Zr、Hf、Si。
La, Pr, Nd, Pm, Sm, Eu, Cd, Tb,
Dy, Ho, Er, Tm, Yb, Lu) M can be replaced with Fe, i, Mg, Zn, Al, Ga, Sc, In
, Ti, Zr, Hf, Si.

Ge、Sn、V、Nb、P、Cr、Mn  C。Ge, Sn, V, Nb, P, Cr, Mn C.

Niから選択される元素をさす。〕にまり〕威される。Refers to an element selected from Ni. [Nimari] Intimidated.

即ち、本発明は膜中のFeの価数を変える目的で製膜中
の酸素量を制御する。あ、るいは形成された膜を適当な
酸素分圧下で熱処理する。Feの価数は酸素量に非常に
敏感なのでこの際微妙な酸素量の制御が必要である。
That is, the present invention controls the amount of oxygen during film formation for the purpose of changing the valence of Fe in the film. Alternatively, the formed film is heat-treated under an appropriate oxygen partial pressure. Since the valence of Fe is very sensitive to the amount of oxygen, delicate control of the amount of oxygen is required at this time.

Ce置換ガーネットにおいて光磁気記録媒体として必要
な大きな角形比、保磁力、補償温度を制御し、上記特性
を自在に変化させることをユバフタ時の酸素分圧のコン
トロールや製膜後の熱処理時の酸素濃度のコントロール
で可能とするものである。
In Ce-substituted garnet, we can control the large squareness ratio, coercive force, and compensation temperature necessary for magneto-optical recording media, and freely change the above characteristics by controlling the oxygen partial pressure during evaporation and by controlling the oxygen during heat treatment after film formation. This is possible by controlling the concentration.

〔作用〕[Effect]

膜の磁気特性を目的に応じて制御できる。特に組成を変
えることなく補償温度を大幅に変えることができる。
The magnetic properties of the film can be controlled according to the purpose. In particular, the compensation temperature can be changed significantly without changing the composition.

現在、光磁気記録媒体として主に用いられている非晶質
希土類遷移金属合金では、希土類元素と遷移金属元素の
比を変化させることにより、補償温度を室温以下にも室
温以上にも制御することができる。特に室温以上に補償
温度を有する媒体では消去用の磁場なしにレーザビーム
のみによる消去が可能であり、これはダイレクトオーバ
ーライドにつながる。従来の光磁気記録用のガーネット
膜では補償温度は室温以下にある。
In amorphous rare earth transition metal alloys, which are currently mainly used as magneto-optical recording media, it is possible to control the compensation temperature below or above room temperature by changing the ratio of rare earth elements to transition metal elements. I can do it. Particularly in the case of a medium having a compensation temperature higher than room temperature, it is possible to erase only with a laser beam without an erasing magnetic field, which leads to direct override. In conventional garnet films for magneto-optical recording, the compensation temperature is below room temperature.

本発明によるとガーネット媒体でも補償温度を室温以上
にすることができるので、ダイレクトオーバーライドの
可能性が生まれる。
According to the present invention, even with a garnet medium, the compensation temperature can be made higher than room temperature, creating the possibility of direct override.

〔実施例〕〔Example〕

以下に述べる実施例1.実施例2−において、Ce1l
I!換ガーネツトは次のような条件で製膜する。
Example 1 described below. In Example 2-, Ce1l
I! The converted garnet is formed into a film under the following conditions.

RF2極スバンタによりCeおよびGa置換DyIG膜
をGOO(Gd2Gaso1z)およびNGG (Nd
zGa50+z)単結晶基板(111)上に製膜中に結
晶化した。製膜中結晶化膜を得るために基板の温度は6
75°Cとした。ターゲットには形式的にCe D y
zG ao、3F 64.2012の組成を有する粉末
ターゲットを用いた。粉末ターゲットハ原料酸化物(C
e20x+ D yzOz+ Ga20 x +  F
 e 203)の混合物を大気中1000℃、2〜3h
焼成し、粉砕する工程を2回繰り返しプレス成形(16
t) L、て75ΦX10mmtの粉末ターゲットを作
製した。
Ce and Ga-substituted DyIG films were prepared by RF2-pole Svanter as GOO (Gd2Gaso1z) and NGG (Nd
zGa50+z) was crystallized on a single crystal substrate (111) during film formation. During film formation, the temperature of the substrate is 6 to obtain a crystallized film.
The temperature was 75°C. The target is formally Ce D y
A powder target having a composition of zG ao, 3F 64.2012 was used. Powder target raw material oxide (C
e20x+ D yzOz+ Ga20 x + F
e 203) mixture in the atmosphere at 1000℃ for 2 to 3 hours.
The process of firing and pulverizing is repeated twice for press forming (16
t) A powder target of 75Φ×10 mm was prepared.

〔実施例1〕 ArHz(1%)をスパッタガ、スとして用い2Paで
製膜した結果、ターゲットの使用回数(1回のスパッタ
時間はプレスパツタを含めて1時間程度)により膜の磁
気特性は大幅に変化した。
[Example 1] As a result of forming a film at 2 Pa using ArHz (1%) as a sputtering gas, the magnetic properties of the film significantly changed depending on the number of times the target was used (one sputtering time was about 1 hour including press sputtering). changed.

スパッタ条件は表1の通りである。The sputtering conditions are shown in Table 1.

表1 スパッタリング条件 ターゲット   CeDy2Cyao、i  Fe4.
zO+zガス     ArHz(1%) ガス圧    2Pa 基(反            N  G  G  (
N  d  3G  a  son 2)基 キ反 温
 度        6 7 5  ’CRFパワー密
度5 X 10−”W/ c m”堆積速度   10
nm/min 堆積膜厚   約0.3μm 第1図及び第3図はターゲットを取り替えることなくそ
れぞれ2回目、5回目に作製した膜のファラデーヒステ
リシスループである。(基板NGO測定光波長830n
m、膜厚約0.3μm)、ファラデー回転の符号が異な
ると共に保磁力も大きく異なっている。第2図及び第4
図は、それぞれ同上の試料についてのファラデー回転の
スペクトルである。可視光から近赤外の広い領域で符号
が逆となっている。この原因はターゲットが複数回のス
パッタリング工程の間に還元され表面の酸素量が変化し
たためと考えられる。
Table 1 Sputtering conditions target CeDy2Cyao, iFe4.
zO+z gas ArHz (1%) Gas pressure 2Pa Group (anti-N G G (
N d 3G ason 2) Group temperature 6 7 5 'CRF power density 5 X 10-"W/cm" Deposition rate 10
nm/min Deposited film thickness: approximately 0.3 μm Figures 1 and 3 are Faraday hysteresis loops of films produced for the second and fifth times, respectively, without replacing the target. (Substrate NGO measurement light wavelength 830n
m, film thickness approximately 0.3 μm), the sign of Faraday rotation is different, and the coercive force is also significantly different. Figures 2 and 4
The figures are Faraday rotation spectra for the same samples. The sign is reversed in a wide range from visible light to near-infrared light. The reason for this is thought to be that the target was reduced during multiple sputtering steps and the amount of oxygen on the surface changed.

測定光波長830nmで第1図の場合(膜厚a1on+
+)CeW置換ガーネガ−ネットDyzGao、s  
Fea。
In the case of Fig. 1 with a measurement light wavelength of 830 nm (film thickness a1on+
+) CeW substituted garnet DyzGao,s
Fea.

2012 )の磁場零(Cei置換ガーネガ−ネットが
飽和する磁場より磁場をOに減少させる)でのファラデ
ー回転角は0.465度であり、保磁力(HC)は0.
288キロガウスであった。又、第3図の場合(膜厚3
00nm) Ce置換ガーネット(CeDyzG a 
o、@F e a、zo +z)の磁場零でのファラデ
ー回転角は0.304度であり、保磁力(HC)は1.
778キロガウスであった。
(2012), the Faraday rotation angle at zero magnetic field (reducing the magnetic field to O below which the Cei-substituted garnet is saturated) is 0.465 degrees, and the coercive force (HC) is 0.
It was 288 kilogauss. In addition, in the case of Fig. 3 (film thickness 3
00nm) Ce-substituted garnet (CeDyzG a
o, @F e a, zo +z) at zero magnetic field, the Faraday rotation angle is 0.304 degrees, and the coercive force (HC) is 1.
It was 778 kilogauss.

〔実施例2〕 スパッタガスとして酸素を混入させ2時間以上のプレス
パツタを行った後、Ar  0x(16%)の雰囲気、
2Paのガス圧で製膜した。
[Example 2] After press sputtering was performed for 2 hours or more by mixing oxygen as a sputtering gas, an atmosphere of Ar 0x (16%),
The film was formed at a gas pressure of 2 Pa.

スパッタ条件は表2の通りである。The sputtering conditions are shown in Table 2.

表2 スパッタリング条件 ターゲット   Ce D y2c ao、l  F 
ea、z○ロガス     Ar−0□ (16%)ガ
ス圧    2Pa 基 ヰ反             G  G  G 
 (G  d  3G  a  5012)基Fi層温
度  675 ’C RFパワー密度5 X 10−2W/ c m”堆積速
度   10nm/min 堆積膜厚   約0.3μm 第5図及び第6図はその膜のファラデーヒステリシスル
ープとファラデースペクトルである。ファラデー回転の
符号は第1図の場合と同じであり符号の変化は酸素量の
違いによることが確かめられた。
Table 2 Sputtering conditions target Ce D y2c ao, l F
ea, z○Logas Ar-0□ (16%) Gas pressure 2Pa Base ヰAnti G G G
(G d 3G a 5012) Base Fi layer temperature 675'C RF power density 5 x 10-2 W/cm'' Deposition rate 10 nm/min Deposited film thickness Approximately 0.3 μm Figures 5 and 6 show the Faraday of the film. These are the hysteresis loop and the Faraday spectrum.The sign of the Faraday rotation is the same as in Figure 1, and it was confirmed that the change in sign is due to the difference in the amount of oxygen.

第5図、第6図のCeDyzGaa、a Fea、zO
目スパッタリング膜は表2のスパッタ条件で、ターゲッ
トを取り替えることなく、6回目に堆積されたスパッタ
膜である。複数回のスパッタ後にもかかわらず、ファラ
デーヒステリシスループ、ファラデースペクトルからフ
ァラデー回転の符号は上述の如く第1図の場合と同一で
あり、Ar−82(1%)で生じたようなスパッタリン
グ回数に依存して第3図、第4図に示されるファラデー
回転の符号の逆転は生じていない、即ち、製膜時にスパ
ッタリングガスとして酸素を含むアルゴン〔Area(
16%)〕を用いたことによる効果が明瞭である。
CeDyzGaa, a Fea, zO in Figures 5 and 6
The second sputtered film is a sputtered film deposited for the sixth time under the sputtering conditions shown in Table 2 without replacing the target. Even after multiple sputterings, the Faraday hysteresis loop and sign of Faraday rotation from the Faraday spectrum are the same as in the case of Figure 1 as described above, and depend on the number of sputterings as occurred with Ar-82 (1%). Therefore, the sign reversal of the Faraday rotation shown in FIGS. 3 and 4 does not occur, that is, when argon [Area (
16%)] is clearly effective.

測定光波長830nsで第5図の場合、Ce置換ガーネ
ット(Ce D YzG a(1,I  F e4.s
on2)の磁場零でのファラデー回転角は0.094度
であり、保磁力(HC)は0.384キロガウスであっ
た。
In the case of Fig. 5 with a measurement light wavelength of 830 ns, Ce substituted garnet (Ce D YzG a (1, I F e4.s
on2) had a Faraday rotation angle of 0.094 degrees and a coercive force (HC) of 0.384 kilogauss.

なお上記実施例1.2でスパッタリングガス圧として2
Paを用いる例を上げたが、1〜10Pa程度でも製膜
できた。また製膜中結晶化するか、製膜後熱処理して結
晶化するかで基板温度は異なるものの製膜中結晶化には
およそ670℃程度の温度が必要であった。
In addition, in the above Example 1.2, the sputtering gas pressure was 2
Although the example using Pa was given, film formation was also possible at about 1 to 10 Pa. Further, although the substrate temperature differs depending on whether crystallization is performed during film formation or by heat treatment after film formation, a temperature of approximately 670° C. is required for crystallization during film formation.

〔実施例3〕 第1図と第3図の試料についてファラデーヒステリシス
ループの温度依存性を調べた結果をそれぞれ第7図及び
第8図に示す、第8図では補償温度が室温以下にあるの
に対し、第7図では補償温度は見あたらない、第7図の
場合は、仮想的に補償温度がキュリー点を越えたものと
見ることができる。これより室温におけるファラデー回
転の符号が異なるのは、補償温度が室温以上にあるかあ
るいは室温以下にあるかの違いによることであることと
わかる。通常補償温度(よ希土類元素と鉄元素の比率を
変えることにより変化するが、本発明はこのようなスパ
ッタリング製膜条件の相違による急激な変化を利用して
保磁力、角型比、補償温度等の磁気特性を制御するもの
である。
[Example 3] Figures 7 and 8 show the results of investigating the temperature dependence of the Faraday hysteresis loop for the samples shown in Figures 1 and 3, respectively. In Figure 8, the compensation temperature is below room temperature. On the other hand, no compensation temperature is found in FIG. 7. In the case of FIG. 7, it can be seen that the compensation temperature virtually exceeds the Curie point. From this, it can be seen that the difference in the sign of Faraday rotation at room temperature is due to the difference in whether the compensation temperature is above room temperature or below room temperature. Normally, the compensation temperature (changes by changing the ratio of rare earth elements and iron elements), but the present invention takes advantage of the sudden changes caused by the difference in sputtering film forming conditions to adjust the coercive force, squareness ratio, compensation temperature, etc. It controls the magnetic properties of

第5図に示される、スパッタガスとしてAr−16%0
2を用いスパッタリング回数6団目の実施例2の試料の
ファラデーヒステリシスループの温度依存性も第7図に
示されるものとほぼ同様な結果が得られた。
As shown in Figure 5, Ar-16%0 is used as the sputtering gas.
Regarding the temperature dependence of the Faraday hysteresis loop of the sample of Example 2, which was sputtered at the 6th time using 2, almost the same results as those shown in FIG. 7 were obtained.

〔実施例4〕 上記実施例1,2のNGG基板或いはGGG基板上の製
膜中結晶化膜の透過電子顕微fi(T巳M)観察によれ
ば非常に滑らかな表面を有し結晶粒サイズは約10nm
であり柱状構造をとっていた。
[Example 4] According to transmission electron microscopy FI (T-M) observation of the crystallized film during film formation on the NGG substrate or GGG substrate of Examples 1 and 2 above, it has a very smooth surface and a small crystal grain size. is about 10nm
It had a columnar structure.

ESCA分析により、実施例1で得られた第1図及び第
3図の試料のFe及び0のピークはそれぞれ異なること
が示された。
ESCA analysis showed that the Fe and 0 peaks of the samples in FIGS. 1 and 3 obtained in Example 1 were different.

第9図はESCA分析によるFeのピークを示し点線A
は第1図のスパッタ膜に対応し、実線Bは第3図のスパ
ッタ膜に対応する0点線Aの第1図のスパッタ膜のもの
ではピークが4有るのに対し実LiBの第3図のスパッ
タ膜のものでは2つのピークしか有しない、(矢印で示
すピーク又は肩が点線Aのものでは観察される) 第10図はESCA分析による○のピークを示し点線A
は第1図のスパッタ膜に対応し、実線Bは第3図のスパ
ッタ膜に対応する0点線Aの第1図のスパッタ膜のもの
ではピークの左に矢印で示される肩が有るのに対し、実
線Bの第3図のスパッタ膜のものではピークの左に肩が
無い。
Figure 9 shows the peak of Fe by ESCA analysis, and the dotted line A
The solid line B corresponds to the sputtered film in FIG. 1, and the solid line B corresponds to the sputtered film in FIG. 3. The dotted line A corresponds to the sputtered film in FIG. The sputtered film has only two peaks (the peak or shoulder indicated by the arrow is observed in the dotted line A). Figure 10 shows the peak marked with ○ by ESCA analysis, and the dotted line A
The solid line B corresponds to the sputtered film in Figure 1, and the solid line B corresponds to the sputtered film in Figure 3.The dotted line A corresponds to the sputtered film in Figure 1, whereas the sputtered film in Figure 1 has a shoulder to the left of the peak as shown by the arrow. , the solid line B of the sputtered film in FIG. 3 has no shoulder to the left of the peak.

光磁気記録媒体の構造としてはNGG基板或いはGGG
基板上に前述の様にスパッタ製膜してCeR3−XM、
F e、3−、○+zHを形威し、その上に反射膜とし
て蒸着A11l(約0.1μm)を形成し、半導体レー
ザを用いる光学系で記録再生を行えばよい。
The structure of the magneto-optical recording medium is NGG substrate or GGG.
CeR3-XM was deposited on the substrate by sputtering as described above.
Fe, 3-, ○+zH may be formed, a vapor deposited A11l (approximately 0.1 μm) may be formed thereon as a reflective film, and recording and reproduction may be performed using an optical system using a semiconductor laser.

〔本発明の効果〕 本発明によれば、スパッタガス中の酸素分圧また熱処理
時の酸素濃度を精密に制御することで光磁気記録に必要
な保磁力や角形比などの磁気特性また補償温度を自在に
変化させることが可能である。
[Effects of the present invention] According to the present invention, by precisely controlling the oxygen partial pressure in the sputtering gas and the oxygen concentration during heat treatment, magnetic properties such as coercive force and squareness ratio necessary for magneto-optical recording and compensation temperature can be improved. It is possible to change freely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスパッタガスとしてAr−Hzを用いスパッタ
リング回数2同目に作製した試料のファラデーヒステリ
シスループ(波長830 nm)を示す図、 第2図はスパッタガスとしてAr−Hzを用いスパッタ
リング回数2同目に作製した試料のファラデー回転角の
スペクトルを示す図(磁場+0はCe置換ガーネットの
磁化が飽和するマイナス磁場より磁場を0に減少させた
場合、磁場−〇はCe置換ガーネットの磁化が飽和する
プラス磁場より磁場を0に減少させた場合の磁場零での
ファラデー回転角を示す)、 第3図はスパッタガスとしてAr−Hzを用いスパッタ
リング回数5囲目に作製した試料のファラデーヒステリ
シスループ(波長830 nm)を示す図、 第4図はスパッタガスとしてArHzを用いスパッタリ
ング回数5囲目に作製した試料のファラデー回転角のス
ペクトルを示す図、 第5図はスパッタガスとしてAr−02を用い酸素量を
16%としスパンクリング回数6回目に作製した試料の
ファラデーヒステリシスループ(波長830nm)を示
す図、 第6図はスパッタガスとしてAr−02を用い酸素量を
16%としスパッタリング回数6団目に作製した試料の
ファラデースペクトルを示す図、第7図はスパッタガス
としてArHz(1%)を用いスパッタリング回数2同
目に作製した試料の保磁力の温度依存性を示す図、 第8図はスパッタガスとしてArHz(1%)を用いス
パッタリング回数5囲目に作製した試料の保磁力の温度
依存性を示す図、 第9図はESCA分析によるFeのピークを示す図、 第10図はESCA分析による○のピークを示す図であ
る。 ヤ9I¥] +10図 手 続 補 正 (方式) 事件の表示 平成01年特許願第170363号 2゜ 発明の名称 事件との関係
Figure 1 shows the Faraday hysteresis loop (wavelength 830 nm) of a sample fabricated using Ar-Hz as the sputtering gas and the same number of sputtering cycles. A diagram showing the spectrum of the Faraday rotation angle of the sample prepared in the eye (when the magnetic field is reduced to 0 from the negative magnetic field where the magnetization of the Ce-substituted garnet is saturated when the magnetic field is +0, the magnetization of the Ce-substituted garnet is saturated when the magnetic field is -0) Figure 3 shows the Faraday rotation angle at zero magnetic field when the magnetic field is reduced from a positive magnetic field to 0. Figure 4 is a diagram showing the spectrum of the Faraday rotation angle of a sample prepared after 5 sputtering cycles using ArHz as the sputtering gas. Figure 5 is a diagram showing the spectrum of the Faraday rotation angle of a sample prepared using ArHz as the sputtering gas and an oxygen amount of 16 nm. Figure 6 shows the Faraday hysteresis loop (wavelength 830 nm) of the sample prepared at the 6th sputtering time with % and the oxygen content was 16% using Ar-02 as the sputtering gas. Figure 7 is a diagram showing the temperature dependence of the coercive force of samples fabricated using ArHz (1%) as the sputtering gas and the same number of sputtering cycles. Figure 9 shows the peak of Fe by ESCA analysis. Figure 10 shows the peak of ○ by ESCA analysis. It is a diagram. 9I¥] +10 Figure Procedural Amendment (Method) Display of the Case 1999 Patent Application No. 170363 2゜Name of the Invention Relationship with the Case

Claims (2)

【特許請求の範囲】[Claims] (1)スパッタ法により形成される下記一般式(1)で
表されるCe置換ガーネットの製造方法において、スパ
ッタ製膜あるいは製膜後の熱処理を酸化性ガス含有不活
性ガス雰囲気或いは還元性ガス含有不活性ガス雰囲気で
行い該Ce置換ガーネットの磁気特性を制御することを
特徴とするCe置換ガーネットの製造方法。 Ce_xR_3_−_xM_yFe_5_−_yO_1
_2・・・(1)(0≦x≦3,0≦y<5) RはYあるいはCe以外の希土類元素(Sc,La,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho
,Er,Tm,Yb,Lu)MはFeと置換しうるLi
,Mg,Zn,Al,Ga,Sc,In,Ti,Zr,
Hr,Si,Ge,Sn,V,Nb,P,Cr,Mn,
Co,Niから選択される元素をさす。
(1) In the method for producing Ce-substituted garnet expressed by the following general formula (1) formed by sputtering, sputtering film formation or heat treatment after film formation is carried out in an inert gas atmosphere containing an oxidizing gas or a reducing gas atmosphere. A method for producing a Ce-substituted garnet, the method comprising controlling the magnetic properties of the Ce-substituted garnet in an inert gas atmosphere. Ce_xR_3_-_xM_yFe_5_-_yO_1
_2...(1) (0≦x≦3, 0≦y<5) R is Y or a rare earth element other than Ce (Sc, La, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho
, Er, Tm, Yb, Lu) M is Li which can be replaced with Fe
, Mg, Zn, Al, Ga, Sc, In, Ti, Zr,
Hr, Si, Ge, Sn, V, Nb, P, Cr, Mn,
Refers to an element selected from Co and Ni.
(2)スパッタ法により形成される下記一般式(1)で
表されるCe置換ガーネットを用いる光磁気記録媒体の
製造方法において該Ce置換ガーネットのスパッタ製膜
あるいは製膜後の熱処理の際酸素含有雰囲気を用い、酸
素量を制御することを特徴とする光磁気記録媒体の製造
方法。 Ce_xR_3_−_xM_yFe_5_−_yO_1
_2・・・(1)(0≦x≦3,0≦y<5) RはYあるいはCe以外の希土類元素(Sc,La,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho
,Er,Tm,Yb,Lu)MはFeと置換しうるLi
,Mg,Zn,Al,Ga,Sc,In,Ti,Zr,
Hf,Si,Ge,Sn,V,Nb,P,Cr,Mn,
Co,Niから選択される元素をさす。
(2) In a method for manufacturing a magneto-optical recording medium using a Ce-substituted garnet represented by the following general formula (1) formed by a sputtering method, oxygen is contained during sputter film formation of the Ce-substituted garnet or heat treatment after film formation. A method for manufacturing a magneto-optical recording medium, characterized by controlling the amount of oxygen using an atmosphere. Ce_xR_3_-_xM_yFe_5_-_yO_1
_2...(1) (0≦x≦3, 0≦y<5) R is Y or a rare earth element other than Ce (Sc, La, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho
, Er, Tm, Yb, Lu) M is Li which can be replaced with Fe
, Mg, Zn, Al, Ga, Sc, In, Ti, Zr,
Hf, Si, Ge, Sn, V, Nb, P, Cr, Mn,
Refers to an element selected from Co and Ni.
JP17036389A 1989-06-30 1989-06-30 Manufacture of ce substituted garnet and optomagnetic recording medium Pending JPH0335512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17036389A JPH0335512A (en) 1989-06-30 1989-06-30 Manufacture of ce substituted garnet and optomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17036389A JPH0335512A (en) 1989-06-30 1989-06-30 Manufacture of ce substituted garnet and optomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0335512A true JPH0335512A (en) 1991-02-15

Family

ID=15903549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17036389A Pending JPH0335512A (en) 1989-06-30 1989-06-30 Manufacture of ce substituted garnet and optomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0335512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123303A (en) * 2009-12-10 2011-06-23 Fujitsu Ltd Optical modulation element, optical modulation method, and optical modulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123303A (en) * 2009-12-10 2011-06-23 Fujitsu Ltd Optical modulation element, optical modulation method, and optical modulation device

Similar Documents

Publication Publication Date Title
US5176806A (en) Soft magnetic alloy film
US4608142A (en) Method of manufacturing magneto-optic recording film
US5731049A (en) Composite material for magnetooptic recording its preparation and its use
Gomi et al. RF sputtered films of Bi-substituted garnet for magneto-optical memory
JPH0515778B2 (en)
JPH01309305A (en) Amorphous oxide magnetic substance and magnetic core and magnetic recording medium
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JPH0335512A (en) Manufacture of ce substituted garnet and optomagnetic recording medium
US4975336A (en) Article for data storage of magneto-optical disk
Eppler et al. The effects of the sputtering conditions on bismuth doped gadolinium iron garnet films
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
EP0196332A1 (en) Method of manufacturing photothermomagnetic recording film
JPH03178105A (en) Thin garnet film for magneto-optical recording medium
JPS62204505A (en) Oxide magnetic thin film
JP2595638B2 (en) Magneto-optical recording medium and method of manufacturing the same
JP2771674B2 (en) Soft magnetic alloy film
JPS6243847A (en) Photomagnetic recording medium
JPH0646617B2 (en) Method for manufacturing magneto-optical recording material
JP2876062B2 (en) Magnetic film
JPH06274953A (en) Controlling method for magnetic characteristics of garnet film for magneto-optical recording
JPH0558251B2 (en)
JP2636813B2 (en) Soft magnetic thin film
JPS62267950A (en) Magneto-optical recording medium
JPS59113162A (en) Magnetic alloy
JP2553145B2 (en) Magneto-optical recording medium