JPH0335307B2 - - Google Patents

Info

Publication number
JPH0335307B2
JPH0335307B2 JP58197559A JP19755983A JPH0335307B2 JP H0335307 B2 JPH0335307 B2 JP H0335307B2 JP 58197559 A JP58197559 A JP 58197559A JP 19755983 A JP19755983 A JP 19755983A JP H0335307 B2 JPH0335307 B2 JP H0335307B2
Authority
JP
Japan
Prior art keywords
reaction
parts
oxidation
nda
dipn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58197559A
Other languages
Japanese (ja)
Other versions
JPS6089446A (en
Inventor
Tamiro Amatami
Atsuji Sakai
Isao Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58197559A priority Critical patent/JPS6089446A/en
Priority to DE8484112596T priority patent/DE3464595D1/en
Priority to EP84112596A priority patent/EP0142719B1/en
Publication of JPS6089446A publication Critical patent/JPS6089446A/en
Priority to US06/883,479 priority patent/US4709088A/en
Publication of JPH0335307B2 publication Critical patent/JPH0335307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は、2,6−ジイソプロピルナフタレン
又はその酸化中間体を分子状酸素により酸化して
2,6−ナフタレンジカルボン酸を製造する方法
に関するものである。更に詳しくは該酸化を脂肪
族モノカルボン酸含有溶媒中重金属及び臭素を含
む触媒の存在下に行つて目的とする2,6−ナフ
タレンジカルボン酸を極めて高い収率で得る方法
に関するものである。 (b) 従来技術 2,6−ナフタレンジカルボン酸(以下これを
“NDA”と略称することがある)或いはそのエス
テル、酸クロライドの如き誘導体は、種々のポリ
エステル、ポリアミドなどの二塩基酸成分として
価値ある化合物であり、殊にNDAとエチレング
リコールとから形成されるポリエチレンナフタレ
ートは、ポリエチレンテレフタレートと較べて耐
熱性、機械的特性がより優れており、フイルムや
繊維製品を与える重合体として有用である。 従来、NDAの製造法としては、2,6−ジメ
チルナフタレンの酸化反応、例えば2,6−ジメ
チルナフタレンを酢酸溶媒中コバルト、マンガン
及び臭素よりなる触媒の存在下に分子状酸素と接
触酸化せしめる方法が知られている。この方法
は、2,6−ジメチルナフタレンからNDAへの
酸化自体は比較的容易であり、目的とするNDA
を比較的高純度且つ高収率で得ることができる。 しかしこの方法における原料である2,6−ジ
メチルナフタレンはその製造法が煩雑であり、大
量且つ安価に得ることは困難である。すなわち、
ナフタレンのメチル化、ジメチルナフタレンの異
性化、モノメチルナフタレンの不均化、その他ト
ランス・アルキル化法などが2,6−ジメチルナ
フタレンの合成法として知られているが、これら
の方法はいずれも2,6−ジメチルナフタレン以
外の他の異性体、殊に2,7−ジメチルナフタレ
ンの生成を避けることができず、混合ジメチルナ
フタレンからの2,6体の単離は、2,7−体と
融点、沸点溶解特性が極めて近似乃至類似してい
るため極めて困難であつた。 一方これに比べて、ジイソプロピルナフタレン
は、ナフタレンとプロピレンとから容易に合成す
ることが出来、混合ジイソプロピルナフタレンか
ら2,6一体の分離、その他アルキル化,不均
化,異性化,トランス・アルキル化も比較的容易
である。 しかし乍ら、本発明者らの研究によれば、2,
6−ジイソプロピルナフタレン(以下これを
“DIPN”と略称することがある)の酸化反応は、
上記公知に従つて酸化すると、p−キシレンや
2,6−ジメチルナフタレンを酸化するに適した
反応条件下では、NDAの収率は極めて低くまた、
多量の副生成物が生成するために得られるNDA
の純度も低く、従つて上記公知方法によつて工業
的にDIPNからNDAを得ることは到底不可能で
あつた。 前述したコバルト,マンガンの如き重金属と臭
素よりなる触媒を使用し、脂肪族モノカルボン酸
溶媒中で酸化する方法において、種種のアルキル
置換芳香族炭化水素、殊にジメチルナフタレンに
代表されるアルキル置換ナフタレン類を酸化する
場合に、目的生成物が低収率で得られなかつたり
或いはその純度が低い場合には、従来その改善策
として次の如き2つの方法が採用されている。 その一つは、この酸化反応を多段階に分割し、
低温の初期反応から段階的又は連続的に順次反応
温度を高くして反応を完結せしめるいわゆる多段
階昇温反応法である。 例えば、特開昭52−17453号公報には、2,6
−ジメチルナフタレンを100℃および190℃の二段
階の温度で酸化し、収率91%でNDAが得られる
例(190℃一段階の酸化では74%)が記載されて
いる。 しかし、このような多段階昇温反応法をDIPN
の酸化の場合に応用しても生成TNA収率は高々
50%程度にしかならず工業的とは言い難い(後述
する比較例2参照)。 改善策のもう一つは、この酸化反応を反応系中
の原料の対溶媒濃度を低く保持して反応させるい
わゆる原料低濃度酸化法である。 例えば、特公昭56−3337号公報、特開昭50−
142544号公報、特開昭52−7945号公報等には夫々
ジメチルナフタレン類およびアセナフテンの酸化
において原料低濃度酸化法を用いて比較的高収率
にNDAまたは対応するナフトエ酸が得られる事
が記載されている。 しかし、このような原料低濃度酸化法をDIPN
の酸化反応の場合に応用しても、生成NDA収率
はなお工業的に満足とは言い難い(後述する比較
例3,4,5,6参照)。 このようにDIPNの酸化によるNDAの製造は、
アルキル芳香族炭化水素の酸化において、従来最
も強力な酸化法と言われる重金属と臭素を用いる
酸化反応の知られた条件を用いても、同法に対す
る従来の知見の応用のみではなお充分とは言え
ず、従つてこれまでこのような方法によるDIPN
からのNDA製造は工業的に全く顧みられる事が
なかつた。 このように前記DIPNの酸化が満足すべき結果
が得られなかつた理由は、明確には判らないが、
本発明者らは多くの実験から、DIPNの酸化にお
いてはその他のアルキル置換芳香族炭化水素の酸
化の場合と異なり反応初期における酸化中間体の
生成が異常に速やかであり、それに伴つて酸化反
応混合物中の触媒が一時的に実質上活性を失い、
そのために目的とする酸化が充分に進行せず、む
しろ副反応が促進されるためであろうと推察して
いる。かくして本発明者らは、DIPNの酸化にお
いて、前記副反応によるNDAの収率低下を抑制
することを目的として研究を進めた結果、DIPN
又はその酸化中間体を酸化して2,6−ナフタレ
ンジカルボン酸(NDA)を酸化する場合、酸化
反応混合物中に存在する溶媒当りの重金属を従来
知られている量よりも遥かに多く使用すると、意
外にもNDAの収率が飛躍的増大することを見出
し本発明に到達した。 すなわち本発明はDIPN又はその酸化中間体を
炭素数3以下の脂肪族モノカルボン酸を少くとも
50重量%含有する溶媒中で分子状酸素により酸化
し2,6−ナフタレンジカルボン酸を製造する方
法において、該酸化を、 (i) コバルト及び/又はマンガンよりなる重金属
及び (ii) 臭素 よりなる触媒の存在下且つ酸化反応混合物中にお
ける2,6−ジイソプロピルナフタレン該重金属
を、該溶媒当り少くとも1重量%存在せしめて行
うことを特徴とする方法である。 本発明において、出発原料は2,6−ジイソプ
ロピルナフタレン(DIPN)又はその酸化中間体
であり、それらは高純度のものが好ましいが必ず
しも純粋である必要はなく、酸化反応に対する影
響或いは生成するNDAの純度、着色に許容され
る範囲で他の成分を含んでいてもよい。DIPNの
酸化中間体とは、DIPNの酸化によつて生成し、
また反応系内において酸化されることによつて最
終的に目的とするNDAを与えるものである。そ
こで本発明の出発原料を、具体的に示すと下記一
般式()の如くである。 〔但し式中R1
(a) Industrial Application Field The present invention relates to a method for producing 2,6-naphthalene dicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene or its oxidized intermediate with molecular oxygen. More specifically, the present invention relates to a method for obtaining the desired 2,6-naphthalene dicarboxylic acid in an extremely high yield by carrying out the oxidation in a solvent containing an aliphatic monocarboxylic acid in the presence of a catalyst containing heavy metals and bromine. (b) Prior art 2,6-naphthalene dicarboxylic acid (hereinafter sometimes abbreviated as "NDA") or its derivatives such as esters and acid chlorides are valuable as dibasic acid components of various polyesters, polyamides, etc. Certain compounds, particularly polyethylene naphthalate formed from NDA and ethylene glycol, have better heat resistance and mechanical properties than polyethylene terephthalate, and are useful as polymers for producing films and textile products. . Conventionally, methods for producing NDA include an oxidation reaction of 2,6-dimethylnaphthalene, such as a method in which 2,6-dimethylnaphthalene is catalytically oxidized with molecular oxygen in an acetic acid solvent in the presence of a catalyst consisting of cobalt, manganese, and bromine. It has been known. In this method, the oxidation itself of 2,6-dimethylnaphthalene to NDA is relatively easy, and the desired NDA is
can be obtained with relatively high purity and high yield. However, the manufacturing method for 2,6-dimethylnaphthalene, which is a raw material in this method, is complicated, and it is difficult to obtain it in large quantities at low cost. That is,
Methylation of naphthalene, isomerization of dimethylnaphthalene, disproportionation of monomethylnaphthalene, and other trans-alkylation methods are known as methods for synthesizing 2,6-dimethylnaphthalene. The production of other isomers other than 6-dimethylnaphthalene, especially 2,7-dimethylnaphthalene, cannot be avoided, and isolation of the 2,6-isomer from mixed dimethylnaphthalene is difficult since the 2,7-isomer and the melting point, This was extremely difficult because the boiling point and solubility characteristics were very similar. On the other hand, diisopropylnaphthalene can be easily synthesized from naphthalene and propylene, and can be easily synthesized from mixed diisopropylnaphthalene by separation of 2,6 monomers and other alkylation, disproportionation, isomerization, and trans-alkylation. It's relatively easy. However, according to the research of the present inventors, 2.
The oxidation reaction of 6-diisopropylnaphthalene (hereinafter sometimes abbreviated as "DIPN") is
When oxidized according to the above-mentioned known method, the yield of NDA is extremely low under reaction conditions suitable for oxidizing p-xylene and 2,6-dimethylnaphthalene.
NDA obtained due to the formation of large amounts of by-products
The purity of DIPN was also low, and therefore it was completely impossible to industrially obtain NDA from DIPN by the above-mentioned known method. In the above-mentioned method of oxidizing in an aliphatic monocarboxylic acid solvent using a catalyst consisting of heavy metals such as cobalt and manganese and bromine, various alkyl-substituted aromatic hydrocarbons, especially alkyl-substituted naphthalenes such as dimethylnaphthalene, are oxidized. When the desired product is not obtained in low yield or its purity is low when oxidizing the same, the following two methods have conventionally been adopted as remedies. One way is to divide this oxidation reaction into multiple steps,
This is a so-called multi-step heating reaction method in which the reaction temperature is raised stepwise or continuously from an initial reaction at a low temperature to complete the reaction. For example, in Japanese Patent Application Laid-open No. 52-17453, there are 2,6
-An example is described in which dimethylnaphthalene is oxidized in two steps at temperatures of 100°C and 190°C to obtain NDA in a yield of 91% (74% in a single step of oxidation at 190°C). However, DIPN
Even when applied to the oxidation of
It is only about 50% and cannot be called industrial (see Comparative Example 2 described later). Another improvement measure is the so-called low-concentration raw material oxidation method, in which the oxidation reaction is carried out while keeping the concentration of the raw material to the solvent in the reaction system low. For example, Japanese Patent Publication No. 56-3337, Japanese Patent Application Publication No. 1983-
Publication No. 142544 and Japanese Patent Application Laid-open No. 1979-7945, etc., describe that NDA or the corresponding naphthoic acid can be obtained in relatively high yields by using a low concentration oxidation method of raw materials in the oxidation of dimethylnaphthalenes and acenaphthenes, respectively. has been done. However, such low concentration raw material oxidation method is
Even when applied to the case of the oxidation reaction, the yield of produced NDA is still far from being industrially satisfactory (see Comparative Examples 3, 4, 5, and 6 described later). In this way, the production of NDA by oxidation of DIPN is
In the oxidation of alkyl aromatic hydrocarbons, even if the known conditions of the oxidation reaction using heavy metals and bromine, which is said to be the most powerful oxidation method, are used, the application of conventional knowledge to the method is still insufficient. Therefore, until now, DIPN using this method
The production of NDA from 100% has never been considered industrially. Although it is not clear why the oxidation of DIPN did not yield satisfactory results,
The present inventors have found through many experiments that unlike the oxidation of other alkyl-substituted aromatic hydrocarbons, the production of oxidized intermediates is abnormally rapid in the early stage of the reaction, and that the oxidation reaction mixture The catalyst inside temporarily loses its activity,
It is surmised that this is because the desired oxidation does not proceed sufficiently, and rather side reactions are promoted. As a result of our research aimed at suppressing the decrease in the yield of NDA due to the side reaction in the oxidation of DIPN, the present inventors found that DIPN
When oxidizing 2,6-naphthalene dicarboxylic acid (NDA) by oxidizing or its oxidized intermediate, the use of much higher amounts of heavy metal per solvent present in the oxidation reaction mixture than previously known; Unexpectedly, we have found that the yield of NDA is dramatically increased and have arrived at the present invention. That is, the present invention uses DIPN or its oxidized intermediate as an aliphatic monocarboxylic acid having 3 or less carbon atoms.
In a method for producing 2,6-naphthalene dicarboxylic acid by oxidation with molecular oxygen in a solvent containing 50% by weight, the oxidation is carried out using a heavy metal consisting of (i) cobalt and/or manganese and (ii) a catalyst consisting of bromine. 2,6-diisopropylnaphthalene in the presence of 2,6-diisopropylnaphthalene and in the presence of at least 1% by weight of the heavy metal based on the solvent. In the present invention, the starting material is 2,6-diisopropylnaphthalene (DIPN) or its oxidized intermediate, and although it is preferable that they have high purity, they do not necessarily have to be pure, and may affect the oxidation reaction or the NDA produced. Other components may be included within acceptable ranges for purity and coloring. DIPN oxidation intermediate is produced by oxidation of DIPN,
Moreover, it ultimately gives the desired NDA by being oxidized in the reaction system. Therefore, the starting materials of the present invention are specifically shown in the following general formula (). [However, R 1 in the formula is

【式】【formula】

【式】【formula】

【式】及び[Formula] and

【式】よりなる群から選 ばれた基、R2は前記R1で示された基及び−
COOHと−CHOよりなる群から選ばれた基であ
つてR1と同一であつても或いは異なつていても
よい。〕 出発原料としては、前記式()におけるR1
とR2が、同一もしくは異なり、
A group selected from the group consisting of [Formula], R 2 is a group represented by R 1 above and -
A group selected from the group consisting of COOH and -CHO, which may be the same as or different from R 1 . ] As a starting material, R 1 in the above formula ()
and R 2 are the same or different,

【式】及び[Formula] and

【式】から選ばれるものが好ましい。 本発明において、酸化触媒としては、前述した
通り (i) コバルト及び/マンガンよりなる重金属(A
成分)及び (ii) 臭素(B成分) が使用される。 A成分及びB成分は共に本発明の酸化反応系中
で溶解しうる形態であれば金属,元素,化合物の
いずれであつてもよい。 A成分を形成するコバルト及びマンガンとして
は、例えば酸化物、水酸化物、炭酸塩,ハロゲン
化物特に臭化物等の無機塩の他、蟻酸,酢酸,プ
ロピオン酸,ナフテン酸または芳香族カルボン酸
特にNDA等の有機酸塩が挙げられるが、これら
のうち好ましいのは臭化物および脂肪酸塩特に酢
酸塩である。 またB成分を形成する臭素としては、酸化反応
系に溶解しBrイオンを発生するものであれば、
有機化合物又は無機化合物のいずれであつてもよ
い。具体的には、例えば分子状臭素(Br2),臭
化水素,臭化水素酸塩等の無機臭素化合物又は臭
化メチル,臭化エチル,ブロモホルム,臭化エチ
レン,その他の臭化アルキル若しくはブロモ酢
酸,多ブロモ酢酸等の臭素化脂肪酸等の有機臭素
化合物が挙げられるが、これらのうち好ましいの
は分子状臭素、臭化水素,臭化ナトリウム、臭化
カリウム,臭化リチウム,臭化アンモニウムおよ
び臭化エチル,ブロモ酢酸,または臭化コバル
ト,臭化マンガン等である。 これらの酸化触媒は一般にその単塩又は錯塩の
イオンとして反応に関与するものと考えられ、従
つて反応中このようなイオンを形成し難い状態で
の金属単体又は不溶性の金属化合物あるいは反応
温度で分解して臭素イオンを脱離し難いような有
機臭素化合物,例えば核臭素化芳香族化合物等は
触媒として使用してもその効果は小さく得策でな
い。 本発明の酸化触媒中のA成分としては、コバル
ト,マンガンのいずれか又は両者の混合物が使用
されるが、コバルトよりもマンガンの方がより優
れた活性を示すので好ましい。就中コバルトとマ
ンガンとを混合して使用すると、いずれか単独で
使用する場合に比べて極めて高い活性を示すので
本発明の触媒として最も優れている。 触媒のA成分として、コバルト及びマンガンを
混合して使用する場合、その混合割合は、例えば
反応温度,時間,触媒使用量,溶媒使用量などに
よりその好ましい範囲が左右される。しかし、通
常Co:Mnの原子比で表わして1:99〜99:1、
特に10:90〜95:5の範囲が好ましい。 本発明方法において使用する溶媒は少くともそ
の50%以上が炭素数3以下の低級脂肪族カルボン
酸であればよく、その他は特に規制されない。 低級脂肪族カルボン酸としては、蟻酸,酢酸,
プロピオン酸,蓚酸,ブロモ酢酸等が挙げられる
が、酢酸が最も適している。 これらは必要に応じて適宜、水,その他の媒体
と混合して使用される。水が含まれる場合、その
割合は30重量%以下、殊に20重量%以下が望まし
い。 溶媒は本質的には原料および触媒の少くとも一
部を溶解し、これらと分子状酸素との接触を助け
るために使用されるが、その他にも熱の分散,除
熱や生成物の流動性,生成物の結晶成長等を促
進・助長し本発明方法の工業的実施を容易にする
等の目的を有している。 従つて、その使用量は、これらの目的に応じて
定められるべきであり、本質的に本発明方法に使
用される溶媒量は規制されないが、実用上、系中
の原料および目的NDAの合計重量に対して2〜
20倍、好ましくは3〜15倍、特に好ましくは3〜
10倍程度の使用が実施に便利である。 溶媒の使用量が過度に少いと本発明の目的が充
分に達成されず、反応の円滑な進行が妨げられる
が、逆に上記の使用量以上に過度に溶媒を多量に
使用しても反応自体がそれにより促進される事は
なく、かえつて溶媒の酸化燃焼による損失のみが
多くなり得策ではない。 本発明方法は、前述したように酸化反応混合物
中における前記溶媒に対して極めて高い濃度の重
金属を存在させて酸化を行なう点に特徴があり、
そうすることによつて目的とするNDAを従来よ
りも遥かに高い収率で得ることが出来る。すなわ
ち、A成分の重金属を金属として溶媒に対し少く
とも1重量%、好ましくは1.2〜25重量%、より
好ましくは2〜20重量%存在させる。A成分の重
金属の割合が溶媒に対し1重量%よりも少ない場
合は、NDAを高い収率で得にくゝなる。 本発明方法を実施するに当つては、前記の如く
溶媒に対して重金属を高濃度で使用すると共に、
被酸化物であるDIPN又はその酸化中間体に対し
て重金属を多量に使用することにより一層有利に
NDAを得ることが出来る。この場合、原料の
DIPN又はその酸化中間体1モルを酸化するため
に、A成分の重金属を少くとも0.2モル使用する
のが望ましい。 本発明者らの観測によれば、反応収率面からみ
る限り原料に対するA成分の使用割合は高ければ
高い程よく、その上限は事実上規定し難い。しか
し、工業的に過度の割合は生産性の低下を招来す
るので、実用上の出発原料1モル当りのA成分の
化学量論比はモルで0.20〜10.0、好ましくは0.3〜
5.0、更に好ましくは0.5〜3.0の範囲が適当であ
る。 一方、酸化触媒のうちのB成分である臭素は反
応中、その微小部分が揮発性化合物となつて逸散
したり、あるいは反応条件下では分解し難い核臭
化物となつて失われるが、その大部分は反応中、
反応系内に留つて失活する事なく繰返し触媒効果
を発揮する。 従つて、臭素はA成分のように出発原料に対し
て化学量論的に多量使用する必要はなく、また本
質的に反応系中のA成分の量に比例して用いる必
要もなく、少い割合でも充分効果を奏する。 本発明者らの研究によれば、反応に使用する臭
素の最適濃度は使用するA成分濃度のみでなく、
反応温度,原料濃度,溶媒量等の他の反応条件に
も依存する。 従つて本発明方法における臭素濃度を一義的に
規制するのは困難であるが、一般には使用するA
成分に対し原子比で0.01〜2、好ましくは0.05〜
0.5程度が好ましい。 本発明方法において、反応中のDIPNの濃度は
前記急速な反応進行を防ぐために、あまり高くな
いように保つ事が望まれる。 反応中、反応系内のDIPN濃度は系中に存在す
る触媒中A成分に対し、モル比0.2を越えない事
が好ましくは、特に0.1以下、とりわけ0.05以下
が適当である。 反応系中DIPNの対A成分のモル比が高いと、
前記の触媒A成分のDIPNに対する化学量論比が
如何に好適に保たれても反応の急速な進行による
副反応の生起を抑える事が困難となり、目的生成
物NDAの収率が低下する傾向が認められる。 しかし、一般には連続反応、または少くともセ
ミバツチ反応の場合、反応温度と酸素濃度(酸素
分圧)とも好適条件範囲内に保持する限り、原料
の反応による消失は速かであり反応中の原料濃度
を上記規制値以下に保つ事は比較的容易である。 本発明方法において分子状酸素としては純酸素
の他、これを他の不活性ガスで稀釈した混合ガス
が使用されるが、実用上空気が最も入手し易い分
子状融素含有ガスであり、これをそのまゝあるい
は必要に応じて適宜酸素あるいは他の不活性ガス
で濃縮あるいは稀釈して使用する事が出来る。 本発明方法の酸化反応は常圧でも可能である
が、加圧下でより一層速やかに進行する。 反応は一般には系中の酸素分圧が高ければ高い
ほど速やかに進行するが、実用上の見地からは酸
素分圧0.1Kg/cm2−abs以上、好ましくは0.2Kg/
cm2−abs以上8Kg/cm2−abs以下程度で充分であ
り、これを不活性ガスとの混合状態で使用した場
合の全圧でも30Kg/cm2・G以下で反応は速やかに
進行し高収率でNDAを得る事が出来る。従つて、
酸素分圧を8Kg/cm2−abs以上にする事による工
業的利点は少い。 反応は60℃でも進行するが、このとき反応速度
は遅く必らずしも経済的ではない。また反応温度
が220℃を越えると副生成物の生成比率が増加し
NDAの収率は低下する。 また高温下では酢酸等の溶媒の燃焼損失も無視
出来なくなる。一般には好ましい反応温度は80〜
220℃、より好ましくは140〜210℃、特に好まし
くは160〜200℃の範囲が有利である。 本発明方法の酸化反応を実施するに当つては、
触媒および溶媒と原料とを同時又は別々に反応容
器に装入して(必要に応じて加温後)これに分子
状酸素含有ガスを吹込み所定の圧力,温度を保持
しながらNDAが得られるまでの充分な時間反応
を行なう。 反応の進行に伴い分子状酸素が吸収されると共
に多量の反応熱を発生するので、通常酸化反応中
は外部からの加温,加熱は不要であるばかりでな
く、むしろ除熱して所定反応温度を維持すること
が必要である。 この際、除熱は酢酸,水等の反応系媒体の蒸発
や吹込みガスの放出による熱の随伴等の内部除熱
かあるいは外部から水,水蒸気等冷媒を用いて冷
却するか、若しくはこれら双方を併用するか等の
公知の方法により容易に可能である。 反応系中の原料が消失し反応の終了が近付くと
分子状酸素の吸収が見掛け上殆ど停止するが、こ
の時点で反応系内にはまだ完全にNDAに転化し
ていない反応中間体の存在が認められる場合があ
る。 このような場合には必要に応じてこれを更に分
子状酸素と接触させるいわゆるポスト・オキシデ
ーシヨンにより反応を完結させるとNDAの収率
が向上すると共に同時に不要な副生成物がその中
間体を酸化分解して生成NDAの純度をも向上せ
しめる事が出来る。 このようなポスト・オキシデーシヨンは主酸化
反応に引続き酸化反応容器内でそのまゝかまたは
主酸化反応後、一旦別容器に移してこれを所要時
間分子状酸素と接触させる事により行われる。 この際、ポスト・オキシデーシヨンの反応圧
力・温度は主反応の場合と同じである必要はな
く、これより高くても低くてもよい。 前記のように本発明の酸化反応では酸化触媒の
A成分が一時的に失活して活性を失うため、実用
上原料に対して化学量論的に多量のA成分(Co,
Mn)を使用する必要がある。 反応終了後、反応生成混合物からのNDAの分
離・回収およびNDAの精製をNDAを除去した反
応母液の後、処理,循環,再使用等は他のNDA
の製造やテレフタル酸の製造において公知の常法
に従つて行う事が出来る。 本発明方法はバツチでも連続でも実施出来る
が、バツチ反応では触媒に対する原料濃度が低く
必らずしも実用的ではない。 可能な限り酸化反応は連続若しくは触媒溶液中
に原料を少量宛回分または連続で添加して反応を
行う、いわゆるセミ・バツチ法の何れかによる事
が好ましい。 以上、本発明方法の実施により、従来DIPN又
はその酸化中間体から低収率でしか得られなかつ
たNDAが容易に高収率且つ高純度で得られるよ
うになり、工業的に従来の何れの方法によるより
も安価で且つ高品質のNDAの供給が可能になつ
た。 以下、実施例およびその比較例を掲げて本発明
方法を詳述する。 なお、以下例示において部とはすべて重量部を
指す。 実施例 1 環流冷却器,ガス吹込管・排出管,および撹拌
機を有するチタン・ライニング・オートクレーブ
に 2,6−ジイソプロピルナフタレン(DIPN)
333部 氷酢酸(AcOH) 15000部 酢酸コバルト・4水塩(Co(OAc)2・4H2O)
433部 酢酸マンガン・4水塩(Mn(OAc)2・4H2O)
853部 (Co+Mn/AcOH=1.96重量%) および臭化アンモニウム(NH4Br) 85部 を同時に仕込み温度160℃,圧力30Kg/cm2Gに保
ちはげしく撹拌しながら、これに圧縮空気を酸素
送入速度として毎分40部の割合で流通し3時間反
応を行つた。 反応後、反応物の分析を行つた結果、原料
DIPNは殆んど消失し純度96.1%のNDA271部が
得られた。これは原料DIPNに対して収率76.7モ
ル%に相当する。 実施例 2 実施例1と同様の反応装置に 2,6−ジイソプロピルナフタレン(DIPN)
333部 氷酢酸(AcOH) 15000部 酢酸コバルト・4水塩 290部 酢酸マンガン・4水塩 569部 (Co+Mn/AcOH=1.31重量%) および臭化アンモニウム 87部 を同時に仕込み実施例1と同様の操作で反応させ
た。 反応後、反応物の分析を行つた結果、純度98.6
%のNDA255部が得られた。これは収率74.2モル
%に相当する。 実施例 3 環流冷却器,ガス吹込管・排出管,原料連続送
入ポンプおよび攪拌機を有するチタン・ライニン
グ・加圧反応器に 氷酢酸(AcOH) 8420部 酢酸コバルト・4水塩 137部 酢酸マンガン・4水塩 269部 (Co+Mn/AcOH=1.10重量%) および臭化リチウム・1水塩(LiBr・H2O)
17部 を装入して温度180℃,圧力30Kg/cm2Gに保ち、
はげしく撹拌しながらこれに 2,6−ジイソプロピルナフタレン(DIDN)
1247部 を毎分20.8部の割合で連続的に1時間フイードす
ると共に酸素送入速度として毎分40部の割合で圧
縮空気を流通した。 フイード開始と同時に反応が始まり酸素の吸収
が観測されたが、1時間後DIPNフイードを終え
ると共に酸素の吸収は殆んど認められなくなつ
た。 さらに、そのまま2時間,180℃,30Kg/cm2
に保つて空気の流通を継続して反応を完結させた
後、反応生成物を取り出し分析を行つた結果、原
料DIPNは殆んど消失し、純度97%のNDA936部
が得られた。これは原料DIPNに対して収率71.5
モル%に相当する。 実施例 4 実施例3と同様の反応装置に 氷酢酸(AcOH) 16958部 酢酸コバルト・4水塩 1096部 酢酸マンガン・4水塩 2156部 (Co+Mn/AcOH=4.38重量%) および臭化アンモニウム・1水塩 140部 を装入して温度180℃,圧力30Kg/cm2Gに保ちは
げしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン(DIPN)
2550部 を毎分42.5部の割合で連続的に1時間フイードす
ると共に、酸素送入速度として毎分80部の割合で
圧縮空気を流通した。 DIPNフイード終了後さらに2時間,180℃,
30Kg/cm2Gを保つて空気の流通を継続して反応を
完結させた後、反応生成物を取り出し分析を行つ
た結果、NDAの収率は85.6モル%となつた。 実施例 5 実施例3と同様の反応装置に 氷酢酸(AcOH) 16902部 酢酸コバルト・4水塩 3816部 酢酸マンガン・4水塩 7510部 (Co+Mn/AcOH=15.31重量%) および臭化ナトリウム(NaBr) 473部 を装入して、温度180℃,圧力20Kg/cm2Gに保ち
はげしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン 2519部 を毎分21.0部の割合で連続的に2時間フイードす
ると共に酸素送入速度として毎分65部の割合で圧
縮空気を流通した。 DIPNフイード終了後、さらに2時間,180℃,
20Kg/cm2Gを保つて空気の流通を継続して反応を
完結させた後、反応生成物を取り出し分析を行つ
た結果、NDAの収率は90.8モル%に達した。 実施例 6 実施例3と同様の反応装置に 氷酢酸 16971部 酢酸コバルト・4水塩 1089部 酢酸マンガン・4水塩 3215部 (Co+Mn/AcOH=5.76重量%) および臭化アンモニウム 128部 を仕込み、温度200℃,圧力20Kg/cm2・Gに保ち
はげしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン 2552部 を毎分21.3部の割合で連続的に2時間フイードす
ると共に、酸素送入速度として毎分80部の割合で
圧縮空気を流通した。 DIPNフイード終了後、さらに2時間,200℃,
20Kg/cm2・Gに保つて空気の流通を継続して反応
を完結させた後、反応生成物を取出し主として
NDAより成る生成固体沈澱を別した。 主として触媒液からなる母液は、次回の酸化反
応に循環し固体沈澱は洗浄後、乾燥して分析した
結果、NDA2248部,原料DIPNに対する理論収
率は86.55モル%であつた。 実施例 7 実施例1と同様の反応装置に 氷酢酸 16772部 酢酸マンガン・4水塩 3235部 (Mn/AcOH=4.56重量%) および臭化ナトリウム 136部 を装入して、温度180℃,圧力30Kg/cm2Gに保ち
はげしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン(DIPN)
2454部 を毎分40.9部の割合で連続的に1時間フイードす
ると共に、酸素送入速度として毎分80部の割合で
圧縮空気を流通した。空気の流通はDIPNフイー
ド終了後もさらに2時間,180℃,30Kg/cm2Gで
継続して反応を完結した。 反応生成物中の2,6−ナフタレンジカルボン
酸は、純度94.1%の固体2005部であつた。これは
原料DIPNに対し収率75.5モル%に相当する。 比較例 1 上記実施例7と同様の反応をMn/AcOH=
0.57重量%(Mn:Br=1:0.1)とする以外同じ
条件で行つた。NDAの収率は51.0モル%であつ
た。 実施例 8 実施例1と同様の反応装置に 氷酢酸 16844部 酢酸コバルト・4水塩 3287部 (Co/AcOH=4.62重量%) および臭化ナトリウム 136部 を装入して、温度160℃,圧力30Kg/cm2Gに保ち
はげしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン(DIPN)
2491部 を毎分41.5部の割合で連続的に1時間フイードす
ると共に、酸素送入速度として毎分80部の割合で
圧縮空気を流通した。空気の流通はDIPNフイー
ド終了後もさらに2時間,160℃,30Kg/cm2Gで
継続して反応を完結した。 反応生成物中の2,6−ナフタレンジカルボン
酸は純度92.2%の固体1783部であつた。これは原
料DIPNに対し収率64.8モル%に相当する。 比較例 2 上記実施例8と同様の反応をCo/AcOH=0.62
重量%(Co:Br=1:0.1)とする以外同じ条件
で行つた。NDAの収率は40.5モル%であつた。 比較例 3 実施例1と同様の反応装置に 2,6−ジイソプロピルナフタレン(DIPN)
2670部 氷酢酸 13350部 酢酸コバルト・4水塩 48部 酢酸マンガン・4水塩 95部 (Co+Mn/AcOH=0.24重量%) および臭化アンモニウム 5.7部 を同時に仕込み、温度180℃,圧力30Kg/cm2Gに
保ちはげしく撹拌しながら、これに圧縮空気を酸
素送入速度として毎分80部の割合で流通し3時間
反応を行つた。 反応後、反応物の分析を行つた結果、原料
DIPN180部が残留し、純度85.6%のNDA1106部
が得られた。これは収率37.3モル%に相当する。 比較例 4 実施例3と同様の反応装置に 氷酢酸(AcOH) 8422部 酢酸コバルト・4水塩 68部 酢酸マンガン・4水塩 135部 (Co+Mn/AcOH=0.55重量%) および臭化リチウム・1水塩 9部 を装入して、温度180℃,圧力30Kg/cm2Gに保ち
はげしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン(DIPN)
1244部 を毎分20.7部の割合で連続的に1時間フイードす
ると共に、酸素送入速度として毎分40部の割合で
圧縮空気を流通した。 DIPNフイード終了後さらに2時間,180℃,
30Kg/cm2Gを保つて空気の流通を継続して反応を
完結させた後、反応生成物を取り出して分析した
結果、原料DIPN49.5部が残留して2,6−ナフ
タレンジカルボン酸の収率は51.1モル%にすぎな
かつた。
Preferably, one selected from the following formula: In the present invention, as the oxidation catalyst, (i) a heavy metal (A
component) and (ii) bromine (component B) are used. Component A and component B may be any metal, element, or compound as long as they can be dissolved in the oxidation reaction system of the present invention. Examples of cobalt and manganese forming component A include inorganic salts such as oxides, hydroxides, carbonates, halides, especially bromides, as well as formic acid, acetic acid, propionic acid, naphthenic acid, or aromatic carboxylic acids, especially NDA. Among these, preferred are bromides and fatty acid salts, especially acetates. In addition, as the bromine that forms the B component, if it dissolves in the oxidation reaction system and generates Br ions,
It may be either an organic compound or an inorganic compound. Specifically, for example, inorganic bromine compounds such as molecular bromine (Br 2 ), hydrogen bromide, hydrobromide, or methyl bromide, ethyl bromide, bromoform, ethylene bromide, and other alkyl bromides or bromo Examples include organic bromine compounds such as brominated fatty acids such as acetic acid and polybromoacetic acid, but preferred among these are molecular bromine, hydrogen bromide, sodium bromide, potassium bromide, lithium bromide, ammonium bromide and These include ethyl bromide, bromoacetic acid, cobalt bromide, manganese bromide, etc. These oxidation catalysts are generally considered to participate in the reaction as ions of their single salts or complex salts, and therefore, they are considered to be simple metals or insoluble metal compounds in a state where it is difficult to form such ions during the reaction, or decompose at the reaction temperature. Organic bromine compounds that are difficult to remove bromide ions from, such as nuclear brominated aromatic compounds, are not advisable because their effectiveness is small even if they are used as catalysts. As component A in the oxidation catalyst of the present invention, either cobalt, manganese, or a mixture of both is used, and manganese is preferred because it exhibits better activity than cobalt. In particular, when cobalt and manganese are used in combination, they exhibit extremely high activity compared to when either of them is used alone, and is therefore the most excellent catalyst for the present invention. When a mixture of cobalt and manganese is used as component A of the catalyst, the preferred range of the mixing ratio depends on, for example, reaction temperature, time, amount of catalyst used, amount of solvent used, etc. However, the atomic ratio of Co:Mn is usually 1:99 to 99:1,
Particularly preferred is a range of 10:90 to 95:5. The solvent used in the method of the present invention may be a lower aliphatic carboxylic acid having at least 50% of carbon atoms, and other solvents are not particularly limited. Examples of lower aliphatic carboxylic acids include formic acid, acetic acid,
Examples include propionic acid, oxalic acid, bromoacetic acid, etc., but acetic acid is most suitable. These are used by mixing with water or other medium as appropriate. When water is included, its proportion is desirably 30% by weight or less, particularly 20% by weight or less. Solvents are used essentially to dissolve at least a portion of the feedstock and catalyst and to facilitate their contact with molecular oxygen, but they also serve to dissipate heat, remove heat, and improve fluidity of the product. The purpose of this invention is to promote and promote the crystal growth of the product and to facilitate the industrial implementation of the method of the present invention. Therefore, the amount used should be determined according to these purposes, and the amount of solvent used in the method of the present invention is essentially not regulated, but in practice, the total weight of the raw materials and target NDA in the system 2~
20 times, preferably 3 to 15 times, particularly preferably 3 to 15 times
Using about 10 times is convenient for implementation. If the amount of solvent used is too small, the purpose of the present invention will not be fully achieved and the smooth progress of the reaction will be hindered.On the other hand, if the amount of solvent used is too large than the above amount, the reaction itself will be hindered. However, this is not a good idea as it will not accelerate the process and will only increase the loss due to oxidative combustion of the solvent. As mentioned above, the method of the present invention is characterized in that the oxidation is carried out in the presence of an extremely high concentration of heavy metals in the solvent in the oxidation reaction mixture,
By doing so, the desired NDA can be obtained in a much higher yield than conventional methods. That is, the heavy metal of component A is present in the solvent in an amount of at least 1% by weight, preferably 1.2 to 25% by weight, and more preferably 2 to 20% by weight. If the proportion of the heavy metal in component A is less than 1% by weight based on the solvent, it becomes difficult to obtain NDA in a high yield. In carrying out the method of the present invention, heavy metals are used at high concentrations in the solvent as described above, and
It is even more advantageous to use a large amount of heavy metals for DIPN, which is the oxidized product, or its oxidized intermediate.
You can get an NDA. In this case, the raw material
It is desirable to use at least 0.2 mol of the heavy metal of component A to oxidize 1 mol of DIPN or its oxidized intermediate. According to the observations of the present inventors, as far as the reaction yield is concerned, the higher the ratio of component A to the raw material, the better, and it is practically difficult to define the upper limit. However, from an industrial perspective, an excessive ratio leads to a decrease in productivity, so in practical terms the stoichiometric ratio of component A per mole of starting material is 0.20 to 10.0, preferably 0.3 to 10.0 in mole.
A range of 5.0, more preferably 0.5 to 3.0 is appropriate. On the other hand, during the reaction, a small portion of bromine, which is the B component of the oxidation catalyst, becomes a volatile compound and escapes, or becomes a nuclear bromide that is difficult to decompose under the reaction conditions and is lost. The part is reacting,
It remains in the reaction system and repeatedly exerts its catalytic effect without becoming deactivated. Therefore, unlike component A, bromine does not need to be used in a stoichiometric amount relative to the starting material, nor does it essentially need to be used in proportion to the amount of component A in the reaction system. Even the ratio is effective enough. According to the research conducted by the present inventors, the optimal concentration of bromine used in the reaction is determined not only by the concentration of component A used;
It also depends on other reaction conditions such as reaction temperature, raw material concentration, and amount of solvent. Therefore, it is difficult to uniquely regulate the bromine concentration in the method of the present invention, but generally the A
Atomic ratio to the component: 0.01 to 2, preferably 0.05 to 2
Approximately 0.5 is preferable. In the method of the present invention, it is desirable to keep the concentration of DIPN during the reaction not too high in order to prevent the rapid reaction progress. During the reaction, the concentration of DIPN in the reaction system preferably does not exceed a molar ratio of 0.2 to the component A in the catalyst present in the system, particularly preferably 0.1 or less, especially 0.05 or less. When the molar ratio of DIPN to component A in the reaction system is high,
No matter how well the stoichiometric ratio of the catalyst A component to DIPN is maintained, it becomes difficult to suppress the occurrence of side reactions due to the rapid progress of the reaction, and the yield of the desired product NDA tends to decrease. Is recognized. However, in general, in the case of a continuous reaction or at least a semi-batch reaction, as long as the reaction temperature and oxygen concentration (oxygen partial pressure) are kept within the appropriate range, the disappearance of the raw materials through the reaction is rapid, and the raw material concentration during the reaction is It is relatively easy to maintain the above regulation value or less. In the method of the present invention, in addition to pure oxygen, a mixed gas obtained by diluting this with other inert gases is used as molecular oxygen, but air is the most easily available molecular fusion-containing gas in practice. It can be used as is or after being concentrated or diluted with oxygen or other inert gas as necessary. Although the oxidation reaction in the method of the present invention can be carried out at normal pressure, it proceeds more rapidly under increased pressure. Generally, the higher the oxygen partial pressure in the system, the faster the reaction will proceed, but from a practical standpoint, the oxygen partial pressure should be 0.1 Kg/cm 2 -abs or higher, preferably 0.2 Kg/cm 2 -abs or higher.
cm 2 -abs or more and 8 Kg/cm 2 -abs or less is sufficient, and even when used in a mixed state with an inert gas, the reaction proceeds quickly at a total pressure of 30 Kg/cm 2 G or less, resulting in a high NDA can be obtained based on the yield. Therefore,
There is little industrial advantage in increasing the oxygen partial pressure to 8 Kg/cm 2 -abs or higher. Although the reaction proceeds at 60°C, the reaction rate is slow and not necessarily economical. Furthermore, when the reaction temperature exceeds 220°C, the proportion of by-products generated increases.
The yield of NDA decreases. Furthermore, at high temperatures, combustion loss of solvents such as acetic acid cannot be ignored. Generally, the preferred reaction temperature is 80~
A range of 220°C, more preferably 140-210°C, particularly preferably 160-200°C is advantageous. In carrying out the oxidation reaction of the method of the present invention,
NDA can be obtained by charging the catalyst, solvent, and raw materials into a reaction vessel simultaneously or separately (after heating if necessary) and blowing molecular oxygen-containing gas into the reactor while maintaining the predetermined pressure and temperature. Allow sufficient time for the reaction to occur. As the reaction progresses, molecular oxygen is absorbed and a large amount of reaction heat is generated, so external heating is usually not necessary during the oxidation reaction, but rather it is necessary to remove the heat to maintain the predetermined reaction temperature. It is necessary to maintain it. At this time, heat removal can be carried out internally by evaporating the reaction medium such as acetic acid or water or entraining heat by releasing blown gas, or by cooling from the outside using a refrigerant such as water or steam, or both. This can be easily achieved by a known method such as using in combination. When the raw materials in the reaction system disappear and the reaction approaches the end, the absorption of molecular oxygen appears to almost stop, but at this point there are reaction intermediates in the reaction system that have not been completely converted to NDA. It may be approved. In such cases, if necessary, completing the reaction by further contacting it with molecular oxygen (so-called post-oxidation) will improve the yield of NDA and at the same time eliminate unnecessary by-products from its intermediates. It is also possible to improve the purity of NDA produced by oxidative decomposition. Such post-oxidation can be carried out in the oxidation reaction vessel following the main oxidation reaction, or by transferring the main oxidation reaction to another vessel and contacting it with molecular oxygen for a required period of time. At this time, the reaction pressure and temperature of the post-oxidation need not be the same as those of the main reaction, and may be higher or lower. As mentioned above, in the oxidation reaction of the present invention, the A component of the oxidation catalyst temporarily deactivates and loses its activity, so in practice, a stoichiometrically large amount of the A component (Co,
Mn) must be used. After the completion of the reaction, the separation and recovery of NDA from the reaction product mixture and the purification of NDA are carried out after the reaction mother liquor from which NDA has been removed is processed, recycled, reused, etc.
It can be carried out according to the conventional method known in the production of terephthalic acid and terephthalic acid. Although the method of the present invention can be carried out either batchwise or continuously, batch reactions are not necessarily practical because the concentration of raw materials relative to the catalyst is low. As much as possible, the oxidation reaction is preferably carried out either continuously or by the so-called semi-batch method, in which the reaction is carried out by adding the raw material to the catalyst solution in small batches or continuously. As described above, by carrying out the method of the present invention, NDA, which could conventionally be obtained only in low yield from DIPN or its oxidized intermediate, can now be easily obtained in high yield and high purity, and industrially it can be obtained from any conventional method. It has become possible to supply NDA at a lower cost and with higher quality than by other methods. The method of the present invention will be described in detail below with reference to Examples and Comparative Examples. In addition, in the following examples, all parts refer to parts by weight. Example 1 2,6-diisopropylnaphthalene (DIPN) in a titanium-lined autoclave with reflux condenser, gas inlet and outlet tubes, and agitator.
333 parts glacial acetic acid (AcOH) 15000 parts cobalt acetate tetrahydrate (Co(OAc) 2.4H 2 O)
433 parts manganese acetate tetrahydrate (Mn(OAc) 2.4H 2 O)
853 parts (Co + Mn/AcOH = 1.96% by weight) and 85 parts of ammonium bromide (NH 4 Br) were simultaneously charged at a temperature of 160°C and a pressure of 30 kg/cm 2 G, and while stirring vigorously, oxygen was introduced with compressed air. The reaction was carried out for 3 hours by flowing at a rate of 40 parts per minute. After the reaction, the analysis of the reactants revealed that the raw materials
DIPN almost disappeared and 271 parts of NDA with a purity of 96.1% was obtained. This corresponds to a yield of 76.7 mol% based on the raw material DIPN. Example 2 2,6-diisopropylnaphthalene (DIPN) was added to the same reactor as in Example 1.
333 parts Glacial acetic acid (AcOH) 15,000 parts Cobalt acetate/tetrahydrate 290 parts Manganese acetate/tetrahydrate 569 parts (Co+Mn/AcOH=1.31% by weight) and 87 parts of ammonium bromide were simultaneously charged and the same procedure as in Example 1 was carried out. I reacted with After the reaction, the reaction product was analyzed and the purity was 98.6.
%NDA255 parts were obtained. This corresponds to a yield of 74.2 mol%. Example 3 8420 parts of glacial acetic acid (AcOH) 137 parts of cobalt acetate tetrahydrate were added to a titanium-lined pressurized reactor equipped with a reflux condenser, a gas blowing pipe/discharge pipe, a continuous feed pump, and a stirrer. 269 parts of tetrahydrate (Co+Mn/AcOH=1.10% by weight) and lithium bromide monohydrate (LiBr・H 2 O)
Charge 17 parts and maintain the temperature at 180℃ and the pressure at 30Kg/cm 2 G.
Add 2,6-diisopropylnaphthalene (DIDN) to this while stirring vigorously.
1247 parts were continuously fed at a rate of 20.8 parts per minute for 1 hour, and compressed air was passed through at a rate of 40 parts per minute as an oxygen supply rate. The reaction started at the same time as the feed was started, and absorption of oxygen was observed, but when the DIPN feed was stopped one hour later, almost no oxygen absorption was observed. Furthermore, for 2 hours, 180℃, 30Kg/cm 2 G
After the reaction was completed by maintaining the temperature and continuing air circulation, the reaction product was taken out and analyzed. As a result, the raw material DIPN had almost disappeared and 936 parts of NDA with a purity of 97% was obtained. This is a yield of 71.5 based on the raw material DIPN.
Corresponds to mol%. Example 4 In a reactor similar to Example 3, 16,958 parts of glacial acetic acid (AcOH), 1,096 parts of cobalt acetate, tetrahydrate, 2,156 parts of manganese acetate, tetrahydrate (Co+Mn/AcOH=4.38% by weight) and ammonium bromide, 1 2,6-diisopropylnaphthalene (DIPN) was added to this while stirring vigorously while maintaining the temperature at 180°C and the pressure at 30Kg/ cm2G .
2550 parts were continuously fed at a rate of 42.5 parts per minute for 1 hour, and compressed air was passed at an oxygen supply rate of 80 parts per minute. 180℃ for another 2 hours after finishing the DIPN feed.
After the reaction was completed by maintaining air flow at 30 Kg/cm 2 G, the reaction product was taken out and analyzed, and the yield of NDA was 85.6 mol%. Example 5 In a reactor similar to Example 3, 16902 parts of glacial acetic acid (AcOH) 3816 parts of cobalt acetate tetrahydrate 7510 parts of manganese acetate tetrahydrate (Co+Mn/AcOH=15.31% by weight) and sodium bromide (NaBr 473 parts of 2,6-diisopropylnaphthalene were charged into the reactor and 2,6-diisopropylnaphthalene was continuously fed at a rate of 21.0 parts per minute for 2 hours while maintaining the temperature at 180°C and the pressure at 20 kg/cm 2 G with vigorous stirring. At the same time, compressed air was introduced at an oxygen feed rate of 65 parts per minute. After finishing the DIPN feed, keep at 180℃ for another 2 hours.
After the reaction was completed by maintaining air flow at 20 Kg/cm 2 G, the reaction product was taken out and analyzed, and as a result, the yield of NDA reached 90.8 mol%. Example 6 Into the same reaction apparatus as in Example 3, 16971 parts of glacial acetic acid, 1089 parts of cobalt acetate tetrahydrate, 3215 parts of manganese acetate tetrahydrate (Co+Mn/AcOH=5.76% by weight) and 128 parts of ammonium bromide were charged. While maintaining the temperature at 200℃ and the pressure at 20Kg/ cm2・G and stirring vigorously, 2,6-diisopropylnaphthalene was continuously fed into this at a rate of 21.3 parts for 2 hours at a rate of 21.3 parts per minute. Compressed air was passed through at a rate of 80 parts per minute. After finishing the DIPN feed, keep at 200℃ for another 2 hours.
After completing the reaction by maintaining air circulation at 20Kg/cm 2・G, the reaction product is taken out and mainly
The resulting solid precipitate consisting of NDA was separated. The mother liquor, which mainly consisted of the catalyst liquid, was recycled to the next oxidation reaction, and the solid precipitate was washed, dried, and analyzed. As a result, the theoretical yield was 2248 parts of NDA and 86.55 mol % based on the raw material DIPN. Example 7 16,772 parts of glacial acetic acid, 3,235 parts of manganese acetate tetrahydrate (Mn/AcOH=4.56% by weight) and 136 parts of sodium bromide were charged into a reaction apparatus similar to that of Example 1, and the temperature was 180°C and the pressure was increased. Add 2,6-diisopropylnaphthalene (DIPN) to this while maintaining the temperature at 30Kg/cm 2 G and stirring vigorously.
2454 parts were continuously fed at a rate of 40.9 parts per minute for 1 hour, and compressed air was passed at an oxygen supply rate of 80 parts per minute. Air circulation was continued for another 2 hours at 180° C. and 30 Kg/cm 2 G after the DIPN feed was completed to complete the reaction. The 2,6-naphthalene dicarboxylic acid in the reaction product was 2005 parts solid with a purity of 94.1%. This corresponds to a yield of 75.5 mol% based on the raw material DIPN. Comparative Example 1 The same reaction as in Example 7 above was carried out with Mn/AcOH=
The same conditions were used except that the concentration was 0.57% by weight (Mn:Br=1:0.1). The yield of NDA was 51.0 mol%. Example 8 16,844 parts of glacial acetic acid, 3,287 parts of cobalt acetate tetrahydrate (Co/AcOH=4.62% by weight) and 136 parts of sodium bromide were charged into a reaction apparatus similar to that of Example 1, and the temperature was 160°C and the pressure was increased. Add 2,6-diisopropylnaphthalene (DIPN) to this while maintaining the temperature at 30Kg/cm 2 G and stirring vigorously.
2491 parts were continuously fed at a rate of 41.5 parts per minute for 1 hour, and compressed air was passed at an oxygen supply rate of 80 parts per minute. Air circulation was continued for another 2 hours at 160° C. and 30 Kg/cm 2 G after the DIPN feed was completed to complete the reaction. The 2,6-naphthalene dicarboxylic acid in the reaction product was 1783 parts solid with a purity of 92.2%. This corresponds to a yield of 64.8 mol% based on the raw material DIPN. Comparative Example 2 The same reaction as in Example 8 above was carried out with Co/AcOH=0.62.
The same conditions were used except that the weight percent (Co:Br=1:0.1) was used. The yield of NDA was 40.5 mol%. Comparative Example 3 2,6-diisopropylnaphthalene (DIPN) was added to the same reactor as in Example 1.
2670 parts glacial acetic acid 13350 parts cobalt acetate tetrahydrate 48 parts manganese acetate tetrahydrate 95 parts (Co+Mn/AcOH=0.24% by weight) and 5.7 parts ammonium bromide were charged at the same time at a temperature of 180℃ and a pressure of 30Kg/cm 2 While maintaining the temperature at G and stirring vigorously, compressed air was passed through the reactor at a rate of 80 parts per minute to carry out the reaction for 3 hours. After the reaction, the analysis of the reactants revealed that the raw materials
180 parts of DIPN remained and 1106 parts of NDA with a purity of 85.6% was obtained. This corresponds to a yield of 37.3 mol%. Comparative Example 4 In the same reaction apparatus as in Example 3, 8422 parts of glacial acetic acid (AcOH), 68 parts of cobalt acetate tetrahydrate, 135 parts of manganese acetate tetrahydrate (Co+Mn/AcOH=0.55% by weight) and 1 lithium bromide were added. 2,6-diisopropylnaphthalene (DIPN) was added to the mixture while stirring vigorously while maintaining the temperature at 180℃ and the pressure at 30Kg/cm 2 G.
1244 parts were continuously fed at a rate of 20.7 parts per minute for 1 hour, and compressed air was passed at an oxygen supply rate of 40 parts per minute. 180℃ for another 2 hours after finishing the DIPN feed.
After completing the reaction by maintaining air flow while maintaining 30Kg/cm 2 G, the reaction product was taken out and analyzed. As a result, 49.5 parts of raw material DIPN remained and 2,6-naphthalene dicarboxylic acid was not recovered. The percentage was only 51.1 mol%.

Claims (1)

【特許請求の範囲】 1 2,6−ジイソプロピルナフタレン又はその
酸化中間体を、炭素数3以下の脂肪族モノカルボ
ン酸を少くとも50重量%含有する溶媒中で分子状
酸素により酸化し、2,6−ナフタレンジカルボ
ン酸を製造する方法において、該酸化を、 (i) コバルト及び/又はマンガンよりなる重金属
及び (ii) 臭素 よりなる触媒の存在下且つ酸化反応混合物中にお
ける該重金属を、該溶媒当り少くとも1重量%存
在せしめて行なうことを特徴とする方法。
[Scope of Claims] 1. Oxidizing 2,6-diisopropylnaphthalene or its oxidized intermediate with molecular oxygen in a solvent containing at least 50% by weight of an aliphatic monocarboxylic acid having 3 or less carbon atoms, 2. In a method for producing 6-naphthalene dicarboxylic acid, the oxidation is carried out in the presence of a catalyst consisting of (i) a heavy metal consisting of cobalt and/or manganese and (ii) bromine, and the heavy metal in the oxidation reaction mixture is A method characterized in that it is carried out in the presence of at least 1% by weight.
JP58197559A 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid Granted JPS6089446A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58197559A JPS6089446A (en) 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid
DE8484112596T DE3464595D1 (en) 1983-10-24 1984-10-18 Process for producing 2,6-naphthalenedicarboxylic acid
EP84112596A EP0142719B1 (en) 1983-10-24 1984-10-18 Process for producing 2,6-naphthalenedicarboxylic acid
US06/883,479 US4709088A (en) 1983-10-24 1986-07-15 Process for producing 2,6-naphthalene-dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197559A JPS6089446A (en) 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS6089446A JPS6089446A (en) 1985-05-20
JPH0335307B2 true JPH0335307B2 (en) 1991-05-27

Family

ID=16376505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197559A Granted JPS6089446A (en) 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS6089446A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212340A (en) * 1986-03-14 1987-09-18 Kureha Chem Ind Co Ltd Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPS63122645A (en) * 1986-11-11 1988-05-26 Kureha Chem Ind Co Ltd Production of biphenyl-4,4'-dicarboxylic acid
JPH02164845A (en) * 1988-12-19 1990-06-25 Nkk Corp Production of 2,6-naphthalenedicarboxylic acid

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827318A (en) * 1971-08-17 1973-04-11
JPS4834153A (en) * 1971-09-03 1973-05-16
JPS4942654A (en) * 1972-08-30 1974-04-22
JPS49132049A (en) * 1973-03-19 1974-12-18
JPS5010586A (en) * 1973-05-25 1975-02-03
JPS5010589A (en) * 1973-05-25 1975-02-03
US3870754A (en) * 1972-08-28 1975-03-11 Teijin Ltd Process for the preparation of 2,6-naphthalenedicarboxylic acid
JPS516953A (en) * 1974-07-02 1976-01-20 Mitsubishi Chem Ind 2*66 nafutarenjikarubonsanno seizoho
JPS5217453A (en) * 1975-07-30 1977-02-09 Mitsui Petrochem Ind Ltd Process for preparation of 2,6- naphthalenedicarboxylic acid
JPS563337A (en) * 1979-06-22 1981-01-14 Yamaha Motor Co Ltd Torsional damper attachment construction for internal combustion engine
JPH0340015A (en) * 1989-07-07 1991-02-20 Canon Inc Electronic equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827318A (en) * 1971-08-17 1973-04-11
JPS4834153A (en) * 1971-09-03 1973-05-16
US3870754A (en) * 1972-08-28 1975-03-11 Teijin Ltd Process for the preparation of 2,6-naphthalenedicarboxylic acid
JPS4942654A (en) * 1972-08-30 1974-04-22
JPS49132049A (en) * 1973-03-19 1974-12-18
JPS5010586A (en) * 1973-05-25 1975-02-03
JPS5010589A (en) * 1973-05-25 1975-02-03
JPS516953A (en) * 1974-07-02 1976-01-20 Mitsubishi Chem Ind 2*66 nafutarenjikarubonsanno seizoho
JPS5217453A (en) * 1975-07-30 1977-02-09 Mitsui Petrochem Ind Ltd Process for preparation of 2,6- naphthalenedicarboxylic acid
JPS563337A (en) * 1979-06-22 1981-01-14 Yamaha Motor Co Ltd Torsional damper attachment construction for internal combustion engine
JPH0340015A (en) * 1989-07-07 1991-02-20 Canon Inc Electronic equipment

Also Published As

Publication number Publication date
JPS6089446A (en) 1985-05-20

Similar Documents

Publication Publication Date Title
EP0111784B1 (en) Process for producing terephthalic acid suitable for use in direct polymerization
US5004830A (en) Process for oxidation of alkyl aromatic compounds
EP0142719B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
US3870754A (en) Process for the preparation of 2,6-naphthalenedicarboxylic acid
EP1062196B1 (en) Improved process for producing pure carboxylic acids
EP0204119B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0340015B2 (en)
JPH0335307B2 (en)
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JPH01121240A (en) Production of 2,6-naphthalenedicarboxylic acid
US4925977A (en) Method for the preparation of naphthalene dicarboxylic acids
JPH0564938B2 (en)
HU177337B (en) Process for producing terephtaloic acid
JPH0571574B2 (en)
JPH0529022B2 (en)
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPH10316615A (en) Production of 2,6-naphthalenedicarboxylic acid
JP2730390B2 (en) Method for producing naphthalenedicarboxylic acid
JPH0564939B2 (en)
JPS61246144A (en) Preparation of 2,6-naphthalenedicarboxilic acid
JPH0645569B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH06279356A (en) Production of 2,6-naphthalenedicarboxylic acid
US5171881A (en) Process for producing trimellitic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid