JPH0564938B2 - - Google Patents
Info
- Publication number
- JPH0564938B2 JPH0564938B2 JP60257800A JP25780085A JPH0564938B2 JP H0564938 B2 JPH0564938 B2 JP H0564938B2 JP 60257800 A JP60257800 A JP 60257800A JP 25780085 A JP25780085 A JP 25780085A JP H0564938 B2 JPH0564938 B2 JP H0564938B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- nda
- component
- oxidation
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007254 oxidation reaction Methods 0.000 claims description 48
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 34
- 239000003054 catalyst Substances 0.000 claims description 32
- 239000002904 solvent Substances 0.000 claims description 25
- 230000003647 oxidation Effects 0.000 claims description 24
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 21
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 21
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 20
- 229910052794 bromium Inorganic materials 0.000 claims description 19
- 229910017052 cobalt Inorganic materials 0.000 claims description 16
- 239000010941 cobalt Substances 0.000 claims description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 16
- 235000019260 propionic acid Nutrition 0.000 claims description 16
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 16
- 229910001882 dioxygen Inorganic materials 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 10
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 9
- 229910001385 heavy metal Inorganic materials 0.000 claims description 8
- GWLLTEXUIOFAFE-UHFFFAOYSA-N 2,6-diisopropylnaphthalene Chemical compound C1=C(C(C)C)C=CC2=CC(C(C)C)=CC=C21 GWLLTEXUIOFAFE-UHFFFAOYSA-N 0.000 claims description 6
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 68
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 51
- 238000000034 method Methods 0.000 description 43
- MNIGYIKCFSPQRJ-UHFFFAOYSA-N N,N-bis(2-hydroxypropyl)nitrosamine Chemical compound CC(O)CN(N=O)CC(C)O MNIGYIKCFSPQRJ-UHFFFAOYSA-N 0.000 description 29
- 239000000047 product Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 17
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000011572 manganese Substances 0.000 description 13
- YGYNBBAUIYTWBF-UHFFFAOYSA-N 2,6-dimethylnaphthalene Chemical compound C1=C(C)C=CC2=CC(C)=CC=C21 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 12
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 12
- 125000004429 atom Chemical group 0.000 description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 150000001340 alkali metals Chemical class 0.000 description 10
- 229910052748 manganese Inorganic materials 0.000 description 9
- -1 polyethylene naphthalate Polymers 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 7
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 6
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 150000001649 bromium compounds Chemical class 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 239000007810 chemical reaction solvent Substances 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 125000001246 bromo group Chemical group Br* 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 3
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- IAUKWGFWINVWKS-UHFFFAOYSA-N 1,2-di(propan-2-yl)naphthalene Chemical compound C1=CC=CC2=C(C(C)C)C(C(C)C)=CC=C21 IAUKWGFWINVWKS-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N alpha-methyl-naphthalene Natural products C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 2
- 150000002432 hydroperoxides Chemical class 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000005526 organic bromine compounds Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 238000010555 transalkylation reaction Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- LRQYSMQNJLZKPS-UHFFFAOYSA-N 2,7-dimethylnaphthalene Chemical compound C1=CC(C)=CC2=CC(C)=CC=C21 LRQYSMQNJLZKPS-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001347 alkyl bromides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- BZRRQSJJPUGBAA-UHFFFAOYSA-L cobalt(ii) bromide Chemical compound Br[Co]Br BZRRQSJJPUGBAA-UHFFFAOYSA-L 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- RJYMRRJVDRJMJW-UHFFFAOYSA-L dibromomanganese Chemical compound Br[Mn]Br RJYMRRJVDRJMJW-UHFFFAOYSA-L 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000012476 oxidizable substance Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
(a) 産業上の利用分野
本発明は、2,6−ジイソプロピルナフタレン
またはその酸化誘導体を分子状酸素により酸化し
て2,6−ナフタレンジカルボン酸を製造する方
法に関するものである。更に詳しくは該酸化をプ
ロピオン酸含有溶媒中重金属、臭素およびアルカ
リ金属を含む触媒の存在下に行つて目的とする
2,6−ナフタレンジカルボン酸を極めて高い収
率で得る方法に関するものである。
(b) 従来技術
2,6−ナフタレンジカルボン酸(以下これ
を”NDA”と略称することがある)或いはその
エステル、酸クロライドの如き誘導体は、種々の
ポリエステル、ポリアミドなどの二塩基酸成分と
して価値ある化合物であり、殊にNDAとエチレ
ングリコールとから形成されるポリエチレンナフ
タレートは、ポリエチレンテレフタレートと較べ
て耐熱性、機械的特性がより優れており、フイル
ムや繊維製品を与える重合体として有用である。
従来、NDAの製造法としては2,6−ジメチ
ルナフタレンの酸化反応、例えば2,6−ジメチ
ルナフタレンを酢酸溶媒中コバルト、マンガン及
び臭素よりなる触媒の存在下に分子状酸素と接触
酸化せしめる方法が知られている。この方法は
2,6−ジメチルナフタレンからNDAへの酸化
自体は比較的容易であり、目的とするNDAを比
較的高純度且つ高収率で得ることができる。
しかしこの方法における原料である2,6−ジ
メチルナフタレンはその製造法が煩雑であり、大
量且つ安価に得ることは困難である。すなわち、
ナフタレンのメチル化、ジメチルナフタレンの異
性化、モノメチルナフタレンの不均化、その他ト
ランス・アルキル化法などが2,6−ジメチルナ
フタレンの合成法として知られているが、これら
の方法はいずれも2,6−ジメチルナフタレン以
外の異性体、殊に2,7−ジメチルナフタレンの
生成を避けることができず、混合ジメチルナフタ
レンからの2,6体の単離は2,7−体と融点、
沸点、溶解特性が極めて近似乃至類似しているた
め極めて困難であつた。
一方これに比べて、ジイソプロピルナフタレン
は、ナフタレンとプロピレンとから容易に合成す
ることが出来、混合ジイソプロピルナフタレンか
ら2,6−体の分離、その他アルキル化、不均
化、異性化、トランス・アルキル化も比較的容易
である。
しかし乍ら、本発明者らの研究によれば、2,
6−ジイソプロピルナフタレン(以下これを
“DIPN”と略称することがある)の酸化反応は、
上記公知方法に従つて酸化すると、p−キシレン
や2,6−ジメチルナフタレンを酸化するに適し
た反応条件下では、NDAの収率は50%以下と極
めて低くまた、多量の副生成物が生成するために
得られるNDAの純度も低く、従つて上記公知方
法によつて工業的にDIPNからNDAを得ること
は到底不可能であり、従つてこれまでこのような
方法によるDIPNからのNDA製造は工業的に全
く顧みられる事がなかつた。
このように前記DIPNの酸化が満足すべき結果
が得られなかつた理由は、明確には判らないが本
発明者らは多くの実験から、この酸化反応におい
ては目的生成物NDAの生成収率が低い場合には
ナフタレン核開裂副生成物、トリメリツト酸(以
下これを“TMA”と略称することがある)の相
対収率が高く、特に甚だしい場合には構造不明の
タール状または樹脂状、重縮合生成物が多量に生
成することを見出し、p−キシレンまたはジメチ
ルナフタレン等の他のアルキル置換芳香族炭化水
素の酸化の場合と異なり、活性が高く対酸化安定
性の低いイソプロピル基とナフタレン核とを有す
るDIPNの酸化においては反応初期のイソプロピ
ル基の水素引抜きに伴うラジカルおよびヒドロペ
ルオキシドの生成が極めて容易かつ速やかな一
方、これらのラジカルおよびヒドロペルオキシド
の対雰囲気安定性が低く、その分解により酸化妨
害性且つ縮合性の高いフエノール(ナフトール)
性化合物の生成やその分解による核開裂副生成物
の生成等が急速に順次進行してそのために目的と
する酸化が充分に進行せずむしろ副反応が促進さ
れるためであろうと推察している。
先に本発明者らはDIPN又はその酸化誘導体の
酸化において被酸化物に対して従来知られている
量よりも!?かに多量のコバルト、および/または
マンガンを使用することにより前記副反応を抑制
し、高収率でNDAを得る方法を見出し先に提案
した(特開昭60−89445号および同60−89446号公
報、特願昭59−261765号明細書参照)。
これらの方法では、従来知られている如何なる
方法によるよりも高収率でかつ高純度のNDAが
得られるため工業的に極めて有用である反面高価
且つ環境に有害な触媒金属を多量に使用するため
これらの反応中の取扱操作や回収、循環、公害防
止等に多大の考慮を要するという欠点があつた。
このため、本発明者等はさらに工業的に有利な
DIPN又はその酸化誘導体の酸化法の研究を継続
した結果、酢酸溶媒中触媒として使用する臭素に
対しアルカリ金属を存在せしめることにより極め
て優れた効果が得られることを見出し先に提案し
た(特願昭60−86563号明細書参照)。
この方法では単に触媒臭素に対して特定量のア
ルカリ金属を存在せしめることにより、それ以前
の提案にくらべて、はるかに少量の触媒金属の使
用であつても同等の効果が得られると言う利点が
あつた。しかしこの方法における好適条件下で、
80%以上の高収率で目的NDAを得るためには、
溶媒酢酸に対して1重量パーセント以上、好まし
くは2重量パーセント程度以上、あるいは酸化原
料DIPNまたはその酸化誘導体100モルに対して
10グラム原子以上、好ましくは20グラム原子以上
の触媒金属を必要としていた。
(c) 発明の構成
このため、本発明者は、より工業的に有利な
DIPNまたはその酸化誘導体の酸化法の研究を継
続した結果、意外にも、この酸化において、この
ように多量のコバルトおよび/またはマンガンを
使用しなければ、高収率でNDAを得ることので
きない要因の一つとして、反応溶媒として使用す
る酢酸自身の酸性が反応の進行に関与しているこ
とがわかつた。更に、これを避けるため、溶媒と
して酢酸の代りにプロピオン酸を用いるときは、
多量の触媒を使用しなくても容易に高収率で
NDAを得ることが可能であることを見出し本発
明に到達した。
すなわち、本発明は2,6−ジイソプロピルナ
フタレンまたはその酸化誘導体を
(i) コバルトおよび/またはマンガンよりなる重
金属
(ii) 臭素および
(iii) アルカリ金属の水酸化物、炭酸塩、酢酸塩、
プロピオン酸塩及び臭化物よりなる群から選ば
れる少くとも一種
を含有する触媒の存在下、プロピオン酸を少くと
も50重量%含有する溶媒中で、分子状酸素により
酸化することを特徴とする2,6−ナフタレンジ
カルボン酸の製造法である。
従来、一般にアルキル置換芳香族炭化水素、特
にp−キシレンを、コバルト・マンガンの如き重
金属と臭素よりなる触媒を使用し、樹脂族モノカ
ルボン酸中で分子状酸素により酸化する方法にお
いて、その反応を酢酸以外の媒体中で行う方法は
公知であり、その目的のために安息香酸・プロピ
オン酸・水等が使用出来るとされていた。
しかし、従来知られている限りでは、このよう
な酢酸以外の媒体は、酢酸に代えて使用し得るこ
とが知られているに過ぎず、この代替により、そ
の反応が酢酸使用時にくらべて実質的に促進され
たり若しくは実用上の利得があるとする記述は見
当らず、また工業的にこのような酸化反応の触媒
として酢酸以外の媒体、特に本発明で使用するプ
ロピオン酸が用いられている例は見当らない。
殊に、本発明の方法におけるが如きアルアリ金
属とプロピオン酸との併用による効果は、アルキ
ル置換芳香族炭化水素の酸化法において、従来全
く知られていなかつた事実である。
本発明のDIPNまたはその酸化誘導体の酸化に
おいては、後述する多くの実施例の結果が示して
いるようにその反応におけるアルカリ金属および
プロピオン酸併用の効果は顕著であり、これはp
−キシレンやジメチルナフタレンのような従来公
知の酸化反応とは異り、DIPNの酸化反応にのみ
特有な効果であると考えられる。
本発明の方法による第1の効果はNDAの収率
向上である。すなわちDIPNおよびその酸化誘導
体をコバルト、マンガンおよび臭素よりなる触媒
の存在下に分子状酸素で酸化してNDAを得る方
法においてその触媒に特定量のアルカリ金属を添
加し、さらに反応溶媒として従来公知の酢酸の代
りにプロピオン酸を用いるときは溶媒が酢酸から
成る場合にくらべ、同一触媒濃度におけるNDA
収率は著るしく向上しまた、同等NDA収率を得
るために使用すべき触媒濃度は著るしく低下せし
めることができる。
従つて従来p−キシレンやジメチルナフタレン
等の公知の酸化法にくらべ、多量の触媒を用いな
ければ高収率で目的生成物を得られなかつた
DIPN酸化において本発明方法によりその欠点が
解消されたということができる。
さらに本発明の方法に従つて、反応溶媒を公知
の酢酸の代りにプロピオン酸を用いた場合副次的
な効果として意外にも生成したNDAの着色度が
著るしく低下するという利点も見出された。すな
わち、p−キシレンやジメチルナフタレンにくら
べ酸化安定性の低いDIPNを酸化する場合、主生
成物であるNDAの黄褐色の着色はこれまで殆ど
避けられない宿命であつたが、本発明のプロピオ
ン酸溶媒中の酸化では主生成物であるNDAは、
容易に高純度且つ僅かに帯黄した白色結晶として
得られ、この結晶中への触媒の夾雑も殆どないた
め、後処理精製操作が容易になるという実施前に
全く予測し得ない利点も明らかになつた。
本発明において出発原料は2,6−ジイソプロ
ピルナフタレン(DIPN)又はその酸化誘導体で
あり、それらは高純度のものが好ましいが必ずし
も純粋である必要はなく、酸化反応に対する影響
或いは生成するNDAの純度、着色に許容される
範囲で他の成分を含んでいてもよい。DIPNの酸
化誘導体とは、DIPNの酸化によつて生成し、ま
た反応系内において酸化されることによつて最終
的に目的とするNDAを与えるものである。そこ
で本発明の出発原料を、具体的に示すと下記一般
式()
〔但し式中R1は
(a) Industrial Application Field The present invention relates to a method for producing 2,6-naphthalene dicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene or its oxidized derivative with molecular oxygen. More specifically, it relates to a method for obtaining the desired 2,6-naphthalene dicarboxylic acid in an extremely high yield by carrying out the oxidation in a propionic acid-containing solvent in the presence of a catalyst containing heavy metals, bromine, and alkali metals. (b) Prior art 2,6-naphthalene dicarboxylic acid (hereinafter sometimes abbreviated as "NDA") or its derivatives such as esters and acid chlorides are valuable as dibasic acid components of various polyesters, polyamides, etc. Certain compounds, particularly polyethylene naphthalate formed from NDA and ethylene glycol, have better heat resistance and mechanical properties than polyethylene terephthalate, and are useful as polymers for producing films and textile products. . Conventionally, NDA has been produced by an oxidation reaction of 2,6-dimethylnaphthalene, for example, a method in which 2,6-dimethylnaphthalene is catalytically oxidized with molecular oxygen in an acetic acid solvent in the presence of a catalyst consisting of cobalt, manganese, and bromine. Are known. In this method, the oxidation itself of 2,6-dimethylnaphthalene to NDA is relatively easy, and the desired NDA can be obtained with relatively high purity and high yield. However, the manufacturing method for 2,6-dimethylnaphthalene, which is a raw material in this method, is complicated, and it is difficult to obtain it in large quantities at low cost. That is,
Methylation of naphthalene, isomerization of dimethylnaphthalene, disproportionation of monomethylnaphthalene, and other trans-alkylation methods are known as methods for synthesizing 2,6-dimethylnaphthalene. The production of isomers other than 6-dimethylnaphthalene, especially 2,7-dimethylnaphthalene, cannot be avoided, and the isolation of 2,6-isomer from mixed dimethylnaphthalene has a melting point of 2,7-isomer and
This was extremely difficult because the boiling points and solubility characteristics are extremely similar. On the other hand, diisopropylnaphthalene can be easily synthesized from naphthalene and propylene, and can be easily synthesized from mixed diisopropylnaphthalene by separation of the 2,6-isomer, alkylation, disproportionation, isomerization, and trans-alkylation. is also relatively easy. However, according to the research of the present inventors, 2.
The oxidation reaction of 6-diisopropylnaphthalene (hereinafter sometimes abbreviated as "DIPN") is
When oxidized according to the above known method, the yield of NDA is extremely low at less than 50% under reaction conditions suitable for oxidizing p-xylene and 2,6-dimethylnaphthalene, and a large amount of by-products are produced. The purity of NDA obtained from DIPN is also low, and therefore it is completely impossible to obtain NDA from DIPN industrially by the above-mentioned known method. There was no industrial consideration at all. Although the reason why the oxidation of DIPN did not yield satisfactory results is not clear, the present inventors have found from numerous experiments that the production yield of the target product NDA is low in this oxidation reaction. If it is low, the relative yield of trimellitic acid (hereinafter sometimes abbreviated as "TMA"), a byproduct of naphthalene cleavage, is high, and in particularly severe cases, it may be a tar-like or resin-like product of unknown structure, or a polycondensation product. It was discovered that a large amount of the product is produced, and unlike in the case of oxidation of other alkyl-substituted aromatic hydrocarbons such as p-xylene or dimethylnaphthalene, the isopropyl group, which has high activity and low oxidation stability, and the naphthalene nucleus are combined. In the oxidation of DIPN, radicals and hydroperoxides are generated very easily and quickly due to hydrogen abstraction from isopropyl groups at the initial stage of the reaction. However, these radicals and hydroperoxides have low stability in the atmosphere, and their decomposition causes oxidation interference. Phenol (naphthol) with high condensation properties
It is speculated that this is because the production of chemical compounds and the production of nuclear cleavage by-products due to their decomposition proceed rapidly in sequence, which prevents the desired oxidation from proceeding sufficiently and instead accelerates side reactions. . First, the present inventors investigated the above-mentioned side reactions by using a much larger amount of cobalt and/or manganese in the oxidation of DIPN or its oxidized derivatives than previously known amounts for the oxidized material. We have previously proposed a method for suppressing NDA and obtaining NDA in high yield (see Japanese Patent Application Laid-open Nos. 60-89445 and 60-89446, and Japanese Patent Application No. 59-261765). These methods are extremely useful industrially because they yield higher yields and higher purity NDA than any conventionally known method, but on the other hand, they use large amounts of expensive and environmentally harmful catalyst metals. The drawback is that a great deal of consideration is required for handling, recovery, circulation, pollution prevention, etc. during these reactions. Therefore, the present inventors have further developed an industrially advantageous method.
As a result of continuing research on oxidation methods for DIPN or its oxidized derivatives, we proposed that an extremely excellent effect could be obtained by allowing an alkali metal to exist in the bromine used as a catalyst in an acetic acid solvent. 60-86563). This method has the advantage that by simply making a specific amount of alkali metal exist relative to the catalytic bromine, the same effect can be obtained even with a much smaller amount of the catalytic metal compared to previous proposals. It was hot. However, under suitable conditions in this method,
In order to obtain the desired NDA with a high yield of 80% or more,
1% by weight or more, preferably about 2% by weight or more based on the solvent acetic acid, or based on 100 moles of the oxidation raw material DIPN or its oxidized derivative
More than 10 gram atoms, preferably more than 20 gram atoms, of catalyst metal were required. (c) Structure of the invention For this reason, the inventor has developed a more industrially advantageous method.
As a result of continuing research on oxidation methods for DIPN or its oxidized derivatives, we unexpectedly discovered that NDA could not be obtained in high yield without using such a large amount of cobalt and/or manganese in this oxidation. One of the reasons for this was that the acidity of acetic acid itself, used as a reaction solvent, was involved in the progress of the reaction. Furthermore, to avoid this, when using propionic acid instead of acetic acid as a solvent,
Easy and high yield without using large amounts of catalyst
We discovered that it is possible to obtain an NDA and arrived at the present invention. That is, the present invention provides 2,6-diisopropylnaphthalene or its oxidized derivative with (i) a heavy metal consisting of cobalt and/or manganese, (ii) bromine, and (iii) an alkali metal hydroxide, carbonate, or acetate.
2,6 characterized in that the oxidation is carried out with molecular oxygen in a solvent containing at least 50% by weight of propionic acid in the presence of a catalyst containing at least one selected from the group consisting of propionate and bromide. - A method for producing naphthalene dicarboxylic acid. Conventionally, alkyl-substituted aromatic hydrocarbons, especially p-xylene, are oxidized with molecular oxygen in a resinous monocarboxylic acid using a catalyst consisting of heavy metals such as cobalt and manganese and bromine. Methods for performing this in a medium other than acetic acid are known, and it was believed that benzoic acid, propionic acid, water, etc. can be used for that purpose. However, as far as is known so far, it is only known that such media other than acetic acid can be used in place of acetic acid, and this substitution substantially improves the reaction compared to when acetic acid is used. There is no description that the oxidation reaction is promoted or that there is any practical gain, and there are no examples in which a medium other than acetic acid, especially the propionic acid used in the present invention, is used industrially as a catalyst for such an oxidation reaction. I can't find it. In particular, the effect of the combined use of aryl metal and propionic acid as in the method of the present invention is a fact that has not been previously known in the oxidation method of alkyl-substituted aromatic hydrocarbons. In the oxidation of DIPN or its oxidized derivatives of the present invention, as shown by the results of many examples described later, the effect of the combined use of an alkali metal and propionic acid in the reaction is remarkable;
-Unlike conventionally known oxidation reactions such as xylene and dimethylnaphthalene, this effect is thought to be unique only to the oxidation reaction of DIPN. The first effect of the method of the present invention is an improvement in the yield of NDA. That is, in the method of obtaining NDA by oxidizing DIPN and its oxidized derivatives with molecular oxygen in the presence of a catalyst consisting of cobalt, manganese and bromine, a specific amount of alkali metal is added to the catalyst, and a conventionally known reaction solvent is added. When propionic acid is used instead of acetic acid, the NDA at the same catalyst concentration is lower than when the solvent consists of acetic acid.
Yields are significantly improved and the catalyst concentration that must be used to obtain equivalent NDA yields can be significantly reduced. Therefore, compared to conventional oxidation methods such as p-xylene and dimethylnaphthalene, the desired product could not be obtained in high yield unless a large amount of catalyst was used.
It can be said that the disadvantages of DIPN oxidation have been overcome by the method of the present invention. Furthermore, according to the method of the present invention, when propionic acid is used as the reaction solvent instead of the known acetic acid, an unexpected advantage has been found that as a side effect, the degree of coloration of the produced NDA is significantly reduced. It was done. In other words, when oxidizing DIPN, which has lower oxidative stability than p-xylene or dimethylnaphthalene, it has been almost inevitable that the main product, NDA, will be colored yellowish brown, but the propionic acid of the present invention NDA, which is the main product during oxidation in a solvent, is
It is easily obtained as highly pure, slightly yellowish white crystals, and there is almost no catalyst contamination in these crystals, so it has become clear that the post-treatment and purification operations are easy, which was a totally unexpected advantage. Summer. In the present invention, the starting material is 2,6-diisopropylnaphthalene (DIPN) or its oxidized derivative, and although it is preferable that they have high purity, they are not necessarily pure, and the influence on the oxidation reaction or the purity of the NDA produced, Other components may be included within the range permitted for coloring. The oxidized derivative of DIPN is produced by oxidation of DIPN, and is oxidized in the reaction system to ultimately give the desired NDA. Therefore, the starting material of the present invention is specifically shown by the following general formula () [However, R 1 in the formula is
【式】【formula】
【式】
よりなる群から選ばれた基、R2は前記R1で示さ
れた基および[Formula] A group selected from the group consisting of R 2 is a group represented by the above R 1 and
【式】−COOHと−CHOよりなる群か
ら選ばれた基であつてR1と同一であつても或い
は異なつていてもよい。〕
出発原料としては、前記式()におけるR1
とR2が、同一もしくは異なり、[Formula] A group selected from the group consisting of -COOH and -CHO, which may be the same as or different from R 1 . ] As a starting material, R 1 in the above formula ()
and R 2 are the same or different,
【式】及び[Formula] and
【式】から選ばれるもの
が好ましい。
本発明において、酸化触媒としては前述した通
り、下記()〜()が使用される。
() コバルトおよび/またはマンガンよりな
る重金属(A成分)
() 臭素(B成分)および
() アルカリ金属の水酸化物、炭酸塩、酢酸
塩、プロピオン酸塩及び臭化物よりなる群から
選ばれる少くとも1種(C成分)
A成分およびB成分は共に本発明の酸化反応系
中で溶解しうる形態であれば金属、元素、化合物
のいずれであつてもよい。
A成分を形成するコバルトおよびマンガンとし
ては例えば酸化物、水酸化物、炭酸塩、ハロゲン
化物特に臭化物等の無機塩の他、酢酸、プロピオ
ン酸、または芳香族カルボン酸特にNDA等の有
機酸塩が挙げられるが、これらのうち好ましいの
は臭化物および脂肪酸塩特に酢酸塩およびプロピ
オン酸塩である。
またB成分を形成する臭素としては酸化反応系
に溶解しBrイオンを発生するものであれば有機
化合物または無機化合物のいずれであつてもよ
い。具体的には、例えば分子状臭素(Br2)、臭
化水素、臭化水素酸塩等の無機臭素化合物または
臭化メチル、臭化エチル、ブロモホルム、臭化エ
チレン、その他の臭化アルキル若しくはブロモ酢
酸、多ブロモ酢酸等の臭素化脂肪酸等の有機臭素
化合物が挙げられるがこれらのうち好ましいのは
分子状臭素、臭化水素、臭化ナトリウム、臭化カ
リウム、臭化リチウム、または臭化コバルト、臭
化マンガン等である。
これらの酸化触媒は一般にその単塩または錯塩
のイオンとして、A成分に対してB成分が配位乃
至結合若しくはイオン対等を形成して反応に関与
するものと考えられ、従つて反応中このようなイ
オンを形成し難い状態での金属単体または不溶性
の金属化合物あるいは反応温度で分解して臭素イ
オンを脱離し難いような有機臭素化合物、例えば
核臭素化芳香族化合物等は触媒として使用しても
その効果は全く無いかまたはあつても小さく得策
でない。
本発明の反応において酸化反応系に加えられた
臭素はそれがどのような化合物形態で与えられた
ものであれ、その一部は直接または二次的に被酸
化物DIPNまたはその酸化誘導体のイソプロピル
側鎖に付加してこれらの側鎖有機臭素化合物を形
成し易い。
そして、これらは本発明の酸化反応条件下では
多かれ少なかれ分解して臭素イオンを脱離再生す
る。従つてこのような被酸化物の側鎖臭素化合物
もまた本発明方法における触媒B成分源として本
発明の反応に有効である。
本発明方法において使用するC成分を形成する
アルカリ金属としては水酸化物の他炭酸塩、酢酸
塩、プロピオン酸塩および臭化物が好ましく、特
に硫酸塩、硝酸塩、塩化物等の(臭化物以外の)
無機強酸塩は避けるべきである。アルカリ金属と
してはナトリウム、カリウム、リチウムが好まし
い。
C成分としてナトリウム、カリウム、リチウム
の代りにアルモニウムやカルシウム、バリウム等
のアルカリ土類金属を用いてもその効果は小さい
か或いは実用上は殆ど無効と考えてもよい。
しかし、これらは前記アルカリ金属と併用して
も特に害は認められない。
本発明の方法で使用するA成分、B成分、C成
分はこれらを構成するコバルト、マンガン、臭素
およびアルカリ金属の各イオンとして反応を促進
し、これら各イオンを使用する際の化合物を形成
する対イオンは化合物の溶解性、分散性等を保持
する副次的効果は有するが、本質的に本発明の反
応に促進効果を示すものではない。
従つて、使用するA成分、B成分、C成分は出
来るだけこれらを構成するコバルト、マンガン、
臭素およびアルカリ金属の各イオン相互の塩若し
くはこれらと反応に使用する溶媒との塩を使用す
ることが好ましく、その他の塩は(例えば炭酸
塩、水酸化物、又は遊離酸のように使用状態で本
発明の反応副生成物である炭酸ガスや水等の無害
かつ系内に蓄積しない化合物しか生成しない塩を
例外として)反応系に不必要な他のイオンを持込
むので特に易揮発性乃至非蓄積性のもの以外は、
その使用は避けた方が得策である。
本発明者らが前記特開昭60−89445号、同60−
89446号公報および特願昭59−261765号明細書中
に記したようにこの酸化反応においては反応収率
面からみる限り原料に対するA成分の使用割合お
よび溶媒に対するA成分の濃度は何れも高ければ
高い程良くその上限は事実上規定し難い。
しかし工業的に過度の触媒の使用は生産性の低
下を招来するし、また本発明に示した特定量のア
ルカリ金属とプロピオン酸溶媒との使用により上
記特許に記されたよりはるかに少量の触媒の使用
で高反応収率が達成出来るので実用上のA成分の
使用量は、使用する溶媒に対しコバルトおよび/
またはマンガンの金属含有量で0.2〜5.0重量%、
好ましくは0.4〜4.0重量%、より好ましくは0.5〜
3.0重量%の範囲である。
またA成分の使用する原料に対する使用割合
も、原料2,6−ジイソプロピルナフタレンまた
はその酸化誘導体100モルに対してコバルトおよ
び/またはマンガンよりなる重金属1〜30グラム
原子、好ましくは2〜15グラム原子、より好まし
くは3〜10グラム原子で充分である。
本発明方法におけるA成分としては、コバルト
またはマンガンの何れかまたは両者の混合物が使
用される。これらは夫々単独で使用する場合に
は、コバルトよりもマンガンの方がより優れた活
性を示すので好ましいが、就中コバルトとマンガ
ンとを混合して使用すると、いずれかを単独で使
用する場合にくらべて極めて高い活性を示すの
で、本発明の触媒として最も優れている。コバル
トおよびマンガンを混合して使用する場合その混
合割合は、例えば反応温度、時間、触媒使用量、
溶媒使用量などによりその好ましい範囲が左右さ
れる。しかし、通常Co:Mnの原子比で表わして
1:99〜99:1、特に10:90〜95:5の範囲が好
ましい。
本発明方法において反応中のDIPNおよびその
酸化誘導体の濃度は前記の急速な反応進行を防ぐ
ために、あまり高くないように保つ事が望まれ
る。
反応中、反応系内のDIPNおよびその酸化誘導
体濃度は系中に存在する触媒中A成分に対し、モ
ル比2.0を越えない事が好ましく特に1.0以下、と
りわけ0.5以下が適当である。
反応系中のDIPNおよびその酸化誘導体の対A
成分のモル比が高いと前記の触媒濃度が如何に好
適に保たれても、反応の急速な進行による副反応
の生起を抑える事が困難となり、目的生成物
NDAの収率が低下する傾向が認められる。
しかし、一般には連続反応または少くとも半連
続反応の場合、反応温度と酸素濃度(酸素分圧)
とを好適条件範囲内に保持する限り原料の反応に
よる消失は速かであり、反応中の原料濃度を上記
規制値以下に保つ事は比較的容易である。
本発明者の研究によれば、B成分として反応に
使用する臭素の最適濃度は使用するA成分および
C成分濃度のみでなく反応温度、原料濃度、溶媒
量等の他の反応条件にも依存する。従つて本発明
方法における臭素濃度を一義的に規制するのは困
難であるが、B成分臭素はA成分とは異なつてそ
の濃度が高ければ高い程良いわけではなくある濃
度以上では殆どNDA収率はB成分の濃度に比例
して上昇しなくなるばかりでなく後記のB成分と
C成分との比の如何では、B成分の濃度があまり
に高過ぎるとNDAの収率はかえつて低下する傾
向がある。実用上の見地からも無用に多量のB成
分を使用することは好ましくないのでB成分の濃
度は使用する溶媒1000gに対して2.0molを越え
ない範囲で且つ、使用するA成分に対し原子比で
0.1〜20、好ましくは0.3〜10.0、より好ましくは
0.5〜3.0程度が好ましい。
一般的にはA成分濃度が低い場合ほど、この比
は高い方がよい。
本発明方法において使用するC成分の最適濃度
は他の反応条件にも依存し必ずしも一義的には決
められないが、少くとも反応系中に存在する臭素
1g原子当り0.8g原子は必要であり、それ以下
ではNDAの収率は著しく低く実用的でない。し
かし臭素原子に対するC成分の濃度は高ければ高
いほど良いわけではなく、ある程度以上では殆ど
NDA収率はC成分の濃度に比例して上昇しなく
なるばかりでなく、B成分とC成分との比の如何
ではC成分の濃度で高過ぎるとNDAの収率はか
えつて低下する場合がある。
又実用上の見地からも無用に多量のC成分を使
用する事は何ら効用がないのみならず、かえつて
有害の場合の方が多く、この面からもC成分の使
用量は臭素1g原子当り6.0g原子を越えない事
が望ましい。
すなわちC成分の使用量は反応系中に存在する
臭素1g原子当り0.8〜6.0g原子、より好ましく
は1.1〜4.0g原子、更に好ましくは1.5〜3.0g原
子である。
本発明者の研究によれば、C成分/B成分の割
合は約2/1(g原子比)が最も優れている。
但し、この比はB成分(臭素)の濃度が低い場
合ほどその値が大きい方へ偏る傾向があり、従つ
てC成分の最適使用量は上記の範囲が最も実用的
である。
またC成分の濃度は、その対臭素比が上記範囲
内であつても使用するプロピオン酸溶媒に対して
4.0mol/1000gを越えない事が望ましい。
本発明方法において使用する溶媒は少くともそ
の50%以上がプロピオン酸であればよく、その他
は特に規制されない。
必要に応じて、適宜水、その他の媒体と混合し
て使用される。水が含まれる場合、その割合は30
重量%以下、殊に20重量%以下が望ましい。
水は本発明の反応において副生成物として生成
し、従つて反応中、反応溶媒中に水の存在を完全
に避けることは事実上困難であるが、DIPNの酸
化においてはp−キシレンやジメチルナフタレン
等の場合よりも水の存在は反応に悪影響を及ぼす
傾向がある。
溶媒は本質的には原料および触媒の少くとも一
部を溶解し、これらと分子状酸素との接触を助け
るために使用されるがその他にも熱の分散、除熱
や生成物の流動性、生成物の結晶成長等を促進、
助長し、本発明方法の工業的実施を容易にする等
の目的を有している。
従つて、その使用量はこれらの目的に応じて定
められるべきであり本質的に本発明方法に使用さ
れる溶媒量は規制されないが実用上系中の原料お
よび目的NDAの合計重量に対して1〜10倍、好
ましくは2〜5倍程度の使用が実施に便利であ
る。
溶媒の使用量が過度に少いと本発明の目的が充
分に達成されず、反応の円滑な進行が妨げられる
が、逆に上記の使用量以上に過度に溶媒を多量に
使用しても反応自体がそれにより促進される事は
なく、かえつて溶媒の酸化燃焼による損失のみが
多くなり得策ではない。
本発明方法において分子状酸素としては純酸素
の他、これを他の不活性ガスで稀釈した混合ガス
が使用されるが、実用上空気が最も入手し易い分
子状酸素含有ガスであり、これをそのままあるい
は必要に応じて適宜酸素あるいは他の不活性ガス
で濃縮あるいは稀釈して使用することが出来る。
本発明方法の酸化反応は常圧でも可能であるが
加圧下でより一層速やかに進行する。
反応は一般には系中の酸素分圧が高ければ高い
ほど速やかに進行するが実用上の見地からは酸素
分圧0.1Kg/cm2-abs以上、好ましくは0.2Kg/cm2-
abs以上8Kg/cm2-abs以下程度で充分であり、こ
れを不活性ガスとの混合状態で使用した場合の全
圧でも30Kg/cm2-G以下で反応は速やかに進行し
高収率でNDAを得る事が出来る。従つて、酸素
分圧を8Kg/cm2-abs以上にする事による工業的
利点は少い。
反応は60℃でも進行するが、このとき反応速度
は遅く必ずしも経済的ではない。また反応温度が
240℃を越えると副生成物の生成比率が増加し
NDAの収率は低下する。
また高温下では溶媒の燃焼損失も無視出来なく
なる。一般には好ましい反応温度は120〜240℃、
より好ましくは160〜230℃、特に好ましくは180
〜220℃の範囲が有利である。
本発明方法の酸化反応を実施するに当つては触
媒および溶媒と原料とを同時又は別々に反応容器
に装入して(必要に応じて加温後)これに分子状
酸素含有ガスを吹込み所定の圧力、温度を保持し
ながらNDAが得られるまでの充分な時間反応を
行なう。
反応の進行に伴い、分子状酸素が吸収されると
共に多量の反応熱を発生するので、通常酸化反応
中は外部からの加温、加熱は不要であるばかりで
なく、むしろ除熱して所定反応温度を維持するこ
とが必要である。
この際、除熱は反応系媒体の蒸発や吹込みガス
の放出による熱の随伴等の内部除熱かあるいは外
部から水、水蒸気等冷媒を用いて冷却するか若し
くはこれら双方を伴用するか等の公知の方法によ
り容易に可能である。
反応系中の原料が消失し、反応の終了が近付く
と分子状酸素の吸収が見掛け上殆んど停止する
が、この時点で反応系内にはまだ完全にNDAに
転化していない反応中間体の存在が認められる場
合がある。
このような場合には必要に応じてこれを更に分
子状酸素と接触させるいわゆるポスト・オキシデ
ーシヨンにより反応を完結させるとNDAの収率
が向上すると共に同時に不要な副生成物やその中
間体を酸化分解して生成NDAの純度をも向上せ
しめることが出来る。
このようなポスト・オキシデーシヨンは主酸化
反応に引続き酸化反応容器内でそのままかまたは
主酸化反応後、一旦別容器に移してこれを所要時
間分子状酸素と接触させることにより行われる。
この際ポスト・オキシデーシヨンの反応圧力、
温度は主反応の場合と同じである必要はなく、こ
れより高くても低くてもよい。
反応終了後反応生成混合物からのNDAの分
離・回収およびNDAの精製とNDAを除去した反
応母液の後処理、循環、再使用等は他のNDAの
製造やテレフタル酸の製造において公知の常法に
従つて行う事が出来る。
本発明方法はバツチでも連続でも実施出来るが
バツチ反応では前記のように触媒に対する原料濃
度を低くする必要があり、必ずしも実用的ではな
い。
可能な限り酸化反応は連続若しくは触媒溶液中
に原料を少量宛回分または連続で添加して反応を
行ういわゆる半連続法の何れかによることが好ま
しい。
以上、本発明方法の実施により従来DIPNまた
はその酸化中間体から低収率でしか得られなかつ
たNDAが容易に高収率且つ高純度で得られるよ
うになり工業的に従来の何れの方法によるよりも
安価で且つ高品質のNDAの供給が可能になつた。
以下実施例およびその比較例を掲げて本発明方
法を詳述する。
なお、以下例示において部とはすべて重量部を
指す。
実施例 1
環流冷却器を付したガス排出管、ガス吹込管、
原料連続送入ポンプおよび攪拌機を有するチタ
ン・ライニング加圧反応容器に
プロピオン酸 150部
酢酸コバルト四水塩(Co(OAc)2・4H2O)
3.11部
酢酸マンガン四水塩(Mn(OAc)2・4H2O)
3.06部
臭化カリウム(KBr) 11.90部
酢酸カリウム(KOAc) 9.81部
を装入して温度200℃、圧力30Kg/cm2−Gの条件
下で激しく撹拌しながらこれに2,6−ジイソプ
ロピルナフタレン(DIPN)53.08部を連続的に
4hrかけて送入すると共に過剰の圧縮空気を流通
して酸化反応を行つた。
DIPNの送入完了後さらにそのまま200℃、30
Kg/cm2・Gに保つて空気の流通を1hr継続して反
応を完結させた後、反応生成物を取出して主とし
て2,6−ナフタレン・ジカルボン酸(NDA)
より成る生成固体沈澱を分離した。
これを熱酢酸および熱水で洗浄後乾燥し、
NDA純度99.88%の帯黄白色微結晶生成物49.13部
を得た。これは使用した原料DIPNに対する収率
として90.80モル%に相当する。
比較例 1
実施例1と同様の反応装置でプロピオン酸の代
りに酢酸150部を用いた以外は実施例1と同様の
反応を行つた。その結果、得られた生成物は
NDA純度98.41%の黄褐色固体42.53部であつた。
これは使用した原料DIPNに対する収率として
77.44モル%に相当する。
実施例 2
実施例1と同様の反応装置で触媒重金属塩を
酢酸コバルト四水塩(Co(OAc)2・4H2O)
1.56部
酢酸マンガン四水塩(Mn(OAc)2・4H2O)
1.53部
とした以外は実施例1と同様の反応を行つた。
その結果得られた生成物は、NDA純度99.00%
の淡黄土色固体43.57部で、これはDIPNに対する
収率79.82モル%に相当する。
実施例 3
実施例1と同様の反応装置で触媒重金属塩を
酢酸コバルト・四水塩(Co(OAc)2・4H2O)
12.45部
酢酸マンガン・四水塩(Mn(OAc)2・4H2O)
12.25部
とした以外は実施例1と同様の反応を行つた。
その結果、得られた生成物は殆ど純料のNDA
から成る帯黄白色微結晶50.20部でこれは原料
DIPNに対する対率92.88モル%に相当する。Preferably, one selected from the following formula: In the present invention, as the oxidation catalyst, the following () to () are used as described above. () A heavy metal consisting of cobalt and/or manganese (component A), () bromine (component B), and () at least one selected from the group consisting of hydroxides, carbonates, acetates, propionates, and bromides of alkali metals. Type 1 (Component C) Component A and component B may be any metal, element, or compound as long as they are in a form that can be dissolved in the oxidation reaction system of the present invention. Cobalt and manganese forming component A include, for example, inorganic salts such as oxides, hydroxides, carbonates, halides, especially bromides, as well as organic acid salts such as acetic acid, propionic acid, or aromatic carboxylic acids, especially NDA. Preferred among these are bromide and fatty acid salts, especially acetate and propionate. Further, the bromine forming component B may be any organic compound or inorganic compound as long as it dissolves in the oxidation reaction system and generates Br ions. Specifically, for example, inorganic bromine compounds such as molecular bromine (Br 2 ), hydrogen bromide, and hydrobromide, or methyl bromide, ethyl bromide, bromoform, ethylene bromide, and other alkyl bromides or bromo Examples include organic bromine compounds such as brominated fatty acids such as acetic acid and polybromoacetic acid, but preferred among these are molecular bromine, hydrogen bromide, sodium bromide, potassium bromide, lithium bromide, or cobalt bromide. Manganese bromide, etc. These oxidation catalysts are generally thought to participate in the reaction as ions in their single salts or complex salts, with component B forming coordination, bonding, or ion pairs with component A, and therefore, such ions during the reaction. Single metals or insoluble metal compounds in a state where it is difficult to form ions, or organic bromine compounds that are difficult to decompose and release bromide ions at the reaction temperature, such as nuclear brominated aromatic compounds, may be used as catalysts. There is no effect at all, or even if there is, it is so small that it is not a good idea. In the reaction of the present invention, bromine added to the oxidation reaction system, no matter what compound form it is given, is partially absorbed directly or secondarily into the isopropyl side of the oxidized product DIPN or its oxidized derivative. It is easy to add to the chain to form these side chain organobromine compounds. Under the oxidation reaction conditions of the present invention, these are more or less decomposed to desorb and regenerate bromide ions. Therefore, such a side chain bromine compound of the oxidizable substance is also effective in the reaction of the present invention as a source of the catalyst B component in the method of the present invention. As the alkali metal forming the C component used in the method of the present invention, hydroxides, carbonates, acetates, propionates, and bromides are preferable, and in particular sulfates, nitrates, chlorides, etc. (other than bromides) are preferable.
Strong inorganic acid salts should be avoided. Preferred alkali metals are sodium, potassium, and lithium. Even if an alkaline earth metal such as aluminum, calcium, or barium is used as the C component in place of sodium, potassium, or lithium, the effect may be small or practically ineffective. However, no particular harm is observed when these are used in combination with the alkali metals. The A component, B component, and C component used in the method of the present invention promote the reaction as cobalt, manganese, bromine, and alkali metal ions that constitute them, and the components that form compounds when these ions are used. Although ions have a secondary effect of maintaining the solubility and dispersibility of the compound, they do not essentially have a promoting effect on the reaction of the present invention. Therefore, the A component, B component, and C component to be used should contain cobalt, manganese,
It is preferable to use salts of bromine and alkali metal ions with each other or with the solvent used for the reaction; other salts (such as carbonates, hydroxides, or free acids) are preferably used. (With the exception of salts that produce only harmless compounds such as carbon dioxide and water, which are reaction by-products of the present invention, and which do not accumulate in the system), they bring other unnecessary ions into the reaction system, so they are especially easily volatile or non-volatile. Other than those that accumulate,
It is better to avoid its use. The present inventors disclosed the above-mentioned Japanese Unexamined Patent Publication Nos. 60-89445 and 60-89445.
As stated in Publication No. 89446 and Japanese Patent Application No. 59-261765, in this oxidation reaction, as far as the reaction yield is concerned, the ratio of component A to the raw material and the concentration of component A to the solvent are both high. The higher the value, the better, and the upper limit is practically difficult to specify. However, industrially, excessive use of catalyst leads to a decrease in productivity, and the use of the specific amounts of alkali metal and propionic acid solvent shown in the present invention results in a much smaller amount of catalyst than described in the above patent. Since a high reaction yield can be achieved by using the component
or 0.2-5.0% by weight of manganese metal content,
Preferably 0.4 to 4.0% by weight, more preferably 0.5 to 4.0% by weight
It is in the range of 3.0% by weight. In addition, the ratio of component A to the raw material used is 1 to 30 g atoms, preferably 2 to 15 g atoms of the heavy metal consisting of cobalt and/or manganese, per 100 moles of the raw material 2,6-diisopropylnaphthalene or its oxidized derivative. More preferably 3 to 10 gram atoms are sufficient. As component A in the method of the present invention, either cobalt or manganese or a mixture of both is used. When these are used alone, manganese is preferable because it exhibits better activity than cobalt, but especially when cobalt and manganese are used in combination, when either one is used alone, It is the most excellent catalyst for the present invention because it exhibits extremely high activity. When using a mixture of cobalt and manganese, the mixing ratio is determined by, for example, the reaction temperature, time, amount of catalyst used,
The preferred range depends on the amount of solvent used. However, the atomic ratio of Co:Mn is preferably in the range of 1:99 to 99:1, particularly 10:90 to 95:5. In the method of the present invention, the concentration of DIPN and its oxidized derivatives during the reaction is desirably kept not too high in order to prevent the rapid reaction described above. During the reaction, the concentration of DIPN and its oxidized derivatives in the reaction system preferably does not exceed a molar ratio of 2.0 to the component A in the catalyst present in the system, preferably 1.0 or less, especially 0.5 or less. Pair A of DIPN and its oxidized derivative in the reaction system
If the molar ratio of the components is high, no matter how well the catalyst concentration is maintained, it will be difficult to suppress the occurrence of side reactions due to the rapid progress of the reaction, and the desired product will not be produced.
A tendency for the yield of NDA to decrease is observed. However, in general, for continuous or at least semi-continuous reactions, the reaction temperature and oxygen concentration (oxygen partial pressure)
As long as the above conditions are maintained within a suitable range, the raw materials disappear quickly through the reaction, and it is relatively easy to maintain the raw material concentration during the reaction below the above-mentioned regulation value. According to the research of the present inventor, the optimal concentration of bromine used as component B in the reaction depends not only on the concentrations of components A and C used, but also on other reaction conditions such as reaction temperature, raw material concentration, and amount of solvent. . Therefore, it is difficult to unambiguously regulate the bromine concentration in the method of the present invention, but unlike component A, the higher the concentration of bromine in component B, the better it is; above a certain concentration, the NDA yield is almost negligible. Not only does it no longer increase in proportion to the concentration of component B, but also the yield of NDA tends to decrease if the concentration of component B is too high, depending on the ratio of component B and component C described later. . From a practical standpoint, it is not preferable to use an unnecessarily large amount of component B, so the concentration of component B should be within a range that does not exceed 2.0 mol per 1000 g of the solvent used, and in an atomic ratio to component A used.
0.1-20, preferably 0.3-10.0, more preferably
Approximately 0.5 to 3.0 is preferable. Generally, the lower the concentration of component A, the higher this ratio is. The optimum concentration of the C component used in the method of the present invention depends on other reaction conditions and cannot necessarily be determined unambiguously, but it is necessary to have at least 0.8 g atoms per 1 g atom of bromine present in the reaction system, Below that, the yield of NDA is extremely low and is not practical. However, the higher the concentration of C component relative to bromine atoms, the better;
Not only does the NDA yield not increase in proportion to the concentration of the C component, but depending on the ratio of the B component to the C component, if the concentration of the C component is too high, the NDA yield may actually decrease. . Also, from a practical standpoint, using an unnecessarily large amount of C component not only has no effect, but is often harmful, and from this point of view, the amount of C component used is lower than the amount per gram of bromine atom. It is preferable not to exceed 6.0g atoms. That is, the amount of component C used is 0.8 to 6.0 g atoms, more preferably 1.1 to 4.0 g atoms, and even more preferably 1.5 to 3.0 g atoms per 1 g of bromine atoms present in the reaction system. According to the research conducted by the present inventors, the best ratio of C component/B component is approximately 2/1 (g atomic ratio). However, this ratio tends to be larger as the concentration of component B (bromine) is lower, and therefore, the optimum amount of component C to be used is most practically within the above range. In addition, even if the concentration of component C is within the above range, the concentration of component C should be determined relative to the propionic acid solvent used.
It is desirable that it does not exceed 4.0mol/1000g. The solvent used in the method of the present invention may contain at least 50% propionic acid, and other solvents are not particularly limited. If necessary, it is used by appropriately mixing with water or other medium. If water is included, the proportion is 30
It is preferably less than 20% by weight, especially less than 20% by weight. Water is produced as a by-product in the reaction of the present invention, and therefore it is practically difficult to completely avoid the presence of water in the reaction solvent during the reaction. However, in the oxidation of DIPN, p-xylene and dimethylnaphthalene The presence of water tends to have a more negative effect on the reaction than in other cases. Solvents are essentially used to dissolve at least a portion of the raw materials and catalyst and to help bring them into contact with molecular oxygen, but they also serve to dissipate and remove heat, improve the fluidity of the product, etc. Promote crystal growth of products, etc.
The purpose is to facilitate the industrial implementation of the method of the present invention. Therefore, the amount to be used should be determined according to these purposes, and the amount of solvent used in the method of the present invention is essentially not regulated, but in practice it should be 1 to 1% of the total weight of the raw materials and target NDA in the system. It is convenient to use the amount up to 10 times, preferably 2 to 5 times. If the amount of solvent used is too small, the purpose of the present invention will not be fully achieved and the smooth progress of the reaction will be hindered.On the other hand, if the amount of solvent used is too large than the above amount, the reaction itself will be hindered. However, this is not a good idea as it will not accelerate the process and will only increase the loss due to oxidative combustion of the solvent. In the method of the present invention, in addition to pure oxygen, a mixed gas diluted with other inert gases is used as molecular oxygen, but air is the most easily available molecular oxygen-containing gas in practice, and It can be used as it is or after being concentrated or diluted with oxygen or other inert gas as necessary. Although the oxidation reaction in the method of the present invention is possible under normal pressure, it proceeds more rapidly under increased pressure. In general, the reaction proceeds more quickly as the oxygen partial pressure in the system is higher, but from a practical standpoint, the oxygen partial pressure should be 0.1 Kg/cm 2- abs or higher, preferably 0.2 Kg/cm 2-
Abs or more and 8Kg/cm 2- abs or less is sufficient, and when used in a mixed state with an inert gas, the reaction proceeds quickly at a total pressure of 30Kg/cm 2- G or less with high yield. You can get an NDA. Therefore, there is little industrial advantage in increasing the oxygen partial pressure to 8 Kg/cm 2 -abs or higher. Although the reaction proceeds at 60°C, the reaction rate is slow and not necessarily economical. Also, the reaction temperature
When the temperature exceeds 240℃, the production ratio of by-products increases.
The yield of NDA decreases. Furthermore, at high temperatures, combustion loss of the solvent cannot be ignored. Generally, the preferred reaction temperature is 120-240℃,
More preferably 160-230℃, particularly preferably 180℃
A range of ~220°C is advantageous. In carrying out the oxidation reaction of the method of the present invention, the catalyst, solvent, and raw materials are charged into a reaction vessel simultaneously or separately (after heating if necessary), and molecular oxygen-containing gas is blown into the reaction vessel. The reaction is carried out for a sufficient time until NDA is obtained while maintaining the predetermined pressure and temperature. As the reaction progresses, molecular oxygen is absorbed and a large amount of reaction heat is generated, so external heating is usually not necessary during the oxidation reaction, but rather heat is removed to maintain the predetermined reaction temperature. It is necessary to maintain At this time, heat removal is either internal heat removal such as accompanying heat due to evaporation of the reaction medium or release of blown gas, or external cooling using a refrigerant such as water or steam, or both. This is easily possible using the known method. When the raw materials in the reaction system disappear and the reaction approaches the end, the absorption of molecular oxygen appears to almost stop, but at this point there are still reaction intermediates in the reaction system that have not been completely converted to NDA. In some cases, the existence of In such cases, if necessary, the reaction can be completed by so-called post-oxidation, in which the product is further brought into contact with molecular oxygen, to improve the yield of NDA and at the same time eliminate unnecessary by-products and their intermediates. It is also possible to improve the purity of NDA produced by oxidative decomposition. Such post-oxidation is carried out either directly in the oxidation reaction vessel following the main oxidation reaction, or by transferring the main oxidation reaction to a separate vessel and contacting it with molecular oxygen for a required period of time. At this time, the post-oxidation reaction pressure,
The temperature does not need to be the same as for the main reaction, and may be higher or lower. After the completion of the reaction, separation and recovery of NDA from the reaction product mixture, purification of NDA, and post-treatment, circulation, and reuse of the reaction mother liquor from which NDA has been removed are performed using conventional methods known in the production of other NDA and terephthalic acid. You can do it accordingly. The method of the present invention can be carried out either batchwise or continuously; however, batch reactions require a low concentration of raw materials relative to the catalyst as described above, and are not necessarily practical. As much as possible, the oxidation reaction is preferably carried out either continuously or by a so-called semi-continuous method in which the reaction is carried out by adding raw materials to the catalyst solution in small batches or continuously. As described above, by carrying out the method of the present invention, NDA, which could conventionally be obtained only in low yield from DIPN or its oxidized intermediate, can now be easily obtained in high yield and high purity, and can be obtained industrially by any conventional method. It has become possible to supply NDA at a lower price and with higher quality. The method of the present invention will be described in detail below with reference to Examples and Comparative Examples. In addition, in the following examples, all parts refer to parts by weight. Example 1 Gas discharge pipe with reflux cooler, gas blowing pipe,
150 parts propionic acid cobalt acetate tetrahydrate (Co(OAc) 2.4H 2 O) in a titanium-lined pressurized reaction vessel with a continuous feed pump and a stirrer.
3.11 parts manganese acetate tetrahydrate (Mn(OAc) 2.4H 2 O)
3.06 parts potassium bromide (KBr) 11.90 parts potassium acetate (KOAc) 9.81 parts were charged and 2,6 -diisopropylnaphthalene ( DIPN) 53.08 parts continuously
The oxidation reaction was carried out by feeding over 4 hours and passing excess compressed air. After completing the DIPN delivery, continue to heat at 200℃ and 30℃.
After completing the reaction by maintaining the air flow at Kg/cm 2・G for 1 hour, the reaction product was taken out and mainly produced as 2,6-naphthalene dicarboxylic acid (NDA).
The resulting solid precipitate was separated. This was washed with hot acetic acid and hot water and then dried.
49.13 parts of a yellowish white microcrystalline product with an NDA purity of 99.88% was obtained. This corresponds to a yield of 90.80 mol% based on the raw material DIPN used. Comparative Example 1 The same reaction as in Example 1 was carried out in the same reaction apparatus as in Example 1 except that 150 parts of acetic acid was used instead of propionic acid. As a result, the product obtained is
It was 42.53 parts of a tan solid with an NDA purity of 98.41%.
This is the yield based on the raw material DIPN used.
This corresponds to 77.44 mol%. Example 2 A catalyst heavy metal salt was converted to cobalt acetate tetrahydrate (Co(OAc) 2 ·4H 2 O) in the same reactor as in Example 1.
1.56 parts manganese acetate tetrahydrate (Mn(OAc) 2.4H 2 O)
The same reaction as in Example 1 was carried out except that the amount was changed to 1.53 parts. The resulting product has an NDA purity of 99.00%
of 43.57 parts of pale ocher solid, corresponding to a yield of 79.82 mol% based on DIPN. Example 3 A catalyst heavy metal salt was converted to cobalt acetate tetrahydrate (Co(OAc) 2 4H 2 O) in the same reactor as in Example 1.
12.45 parts manganese acetate tetrahydrate (Mn(OAc) 2.4H 2 O)
The same reaction as in Example 1 was carried out except that the amount was changed to 12.25 parts. As a result, the product obtained was almost pure NDA.
50.20 parts of yellowish white microcrystals consisting of raw material
This corresponds to a ratio of 92.88 mol% to DIPN.
Claims (1)
の酸化誘導体を (i) コバルトおよび/またはマンガンよりなる重
金属 (ii) 臭素および (iii) アルカリ金属の水酸化物、炭酸塩、酢酸塩、
プロピオン酸塩及び臭化物よりなる群から選ば
れる少くとも1種 を含有する触媒の存在下、プロピオン酸を少くと
も50重量%含有する溶媒中で、分子状酸素により
酸化することを特徴とする2,6−ナフタレンジ
カルボン酸の製造法。[Scope of Claims] 1. 2,6-diisopropylnaphthalene or its oxidized derivative, (i) a heavy metal consisting of cobalt and/or manganese, (ii) bromine, and (iii) an alkali metal hydroxide, carbonate, acetate,
2, characterized in that the oxidation is carried out with molecular oxygen in a solvent containing at least 50% by weight of propionic acid in the presence of a catalyst containing at least one selected from the group consisting of propionate and bromide; Method for producing 6-naphthalene dicarboxylic acid.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60257800A JPS62120342A (en) | 1985-11-19 | 1985-11-19 | Production of natphthalene-2,6-dicarboxylic acid |
US06/853,693 US4716245A (en) | 1985-04-24 | 1986-04-18 | Process for producing 2,6-naphthalenedicarboxylic acid |
EP86105535A EP0204119B1 (en) | 1985-04-24 | 1986-04-22 | Process for producing 2,6-naphthalenedicarboxylic acid |
DE8686105535T DE3665859D1 (en) | 1985-04-24 | 1986-04-22 | Process for producing 2,6-naphthalenedicarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60257800A JPS62120342A (en) | 1985-11-19 | 1985-11-19 | Production of natphthalene-2,6-dicarboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62120342A JPS62120342A (en) | 1987-06-01 |
JPH0564938B2 true JPH0564938B2 (en) | 1993-09-16 |
Family
ID=17311280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60257800A Granted JPS62120342A (en) | 1985-04-24 | 1985-11-19 | Production of natphthalene-2,6-dicarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62120342A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62212340A (en) * | 1986-03-14 | 1987-09-18 | Kureha Chem Ind Co Ltd | Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid |
JPH0645569B2 (en) * | 1986-10-22 | 1994-06-15 | 帝人株式会社 | Process for producing 2,6-naphthalenedicarboxylic acid |
JPH01121240A (en) * | 1987-11-02 | 1989-05-12 | Teijin Yuka Kk | Production of 2,6-naphthalenedicarboxylic acid |
JPH0662496B2 (en) * | 1988-12-19 | 1994-08-17 | 日本鋼管株式会社 | Method for oxidizing 2,6-diisopropylnaphthalene |
KR100666357B1 (en) * | 2005-09-26 | 2007-01-11 | 세메스 주식회사 | Apparatus and method for treating substrate |
-
1985
- 1985-11-19 JP JP60257800A patent/JPS62120342A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62120342A (en) | 1987-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4605763A (en) | Process for the purification of terephthalic acid | |
EP0142719B1 (en) | Process for producing 2,6-naphthalenedicarboxylic acid | |
US4447646A (en) | Process for the purification of terephthalic acid | |
JP2003520263A (en) | Production of high purity aromatic carboxylic acid by oxidation in benzoic acid / water solvent | |
US4230882A (en) | Process for the production of a high purity terephthalic acid | |
EP0204119B1 (en) | Process for producing 2,6-naphthalenedicarboxylic acid | |
JPH0564938B2 (en) | ||
JPH0340015B2 (en) | ||
JPH01121240A (en) | Production of 2,6-naphthalenedicarboxylic acid | |
US4925977A (en) | Method for the preparation of naphthalene dicarboxylic acids | |
JPH0571574B2 (en) | ||
JPS61140540A (en) | Production of 2,6-naphthalebedicarboxylic acid | |
JPH0564939B2 (en) | ||
JPH0529022B2 (en) | ||
JP2005502694A (en) | Method for producing 2,6-naphthalenedicarboxylic acid | |
US4214100A (en) | Process for preventing blackening of phthalic acid | |
JPH0645569B2 (en) | Process for producing 2,6-naphthalenedicarboxylic acid | |
JPH0335307B2 (en) | ||
JPH0637424B2 (en) | Process for producing 2,6-naphthalenedicarboxylic acid | |
JPS61246144A (en) | Preparation of 2,6-naphthalenedicarboxilic acid | |
JPH06157403A (en) | Production of 2,6-naphthalenedicarboxylic acid | |
JP3187212B2 (en) | Continuous production method of naphthalenedicarboxylic acid | |
JPH082836B2 (en) | Process for producing 2,6-naphthalenedicarboxylic acid | |
KR100508684B1 (en) | The preparation method of aromatic carboxylic acids | |
JPH0529021B2 (en) |