JPH0529022B2 - - Google Patents

Info

Publication number
JPH0529022B2
JPH0529022B2 JP60086563A JP8656385A JPH0529022B2 JP H0529022 B2 JPH0529022 B2 JP H0529022B2 JP 60086563 A JP60086563 A JP 60086563A JP 8656385 A JP8656385 A JP 8656385A JP H0529022 B2 JPH0529022 B2 JP H0529022B2
Authority
JP
Japan
Prior art keywords
reaction
oxidation
nda
parts
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086563A
Other languages
Japanese (ja)
Other versions
JPS61246143A (en
Inventor
Isao Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8656385A priority Critical patent/JPS61246143A/en
Priority to US06/853,693 priority patent/US4716245A/en
Priority to DE8686105535T priority patent/DE3665859D1/en
Priority to EP86105535A priority patent/EP0204119B1/en
Publication of JPS61246143A publication Critical patent/JPS61246143A/en
Publication of JPH0529022B2 publication Critical patent/JPH0529022B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は、2,6−ジイソプロピルナフタレン
又はその酸化誘導体を分子状酸素により酸化し
て、2,6−ナフタレンジカルボン酸を製造する
方法に関するものである。更に詳しくは該酸化を
酢酸含有溶媒中重金属及び臭素を含む触媒の存在
下に行つて目的とする2,6−ナフタレンジカル
ボン酸を極めて高い収率で得る方法に関するもの
である。 (b) 従来技術 2,6−ナフタレンジカルボン酸(以下これを
“NDA”と略称することがある)或いはそのエス
テル、酸クロライドの如き誘導体は、種々のポリ
エステル、ポリアミドなどの二塩基酸成分として
価値ある化合物であり、殊にNDAとエチレング
リコールとから形成されるポリエチレンナフタレ
ートは、ポリエチレンテレフタレートと較べて耐
熱性、機械的特性がより優れており、フイルムや
繊維製品を与える重合体として有用である。 従来、NDAの製造法としては、2,6−ジメ
チルナフタレンの酸化反応、例えば2,6−ジメ
チルナフタレンを酢酸溶媒中コバルト、マンガン
及び臭素よりなる触媒の存在下に分子状酸素と接
触酸化せしめる方法が知られている。この方法は
2,6−ジメチルナフタレンからNDAへの酸化
自体は比較的容易であり、目的とするNDAを比
較的高純度且つ高収率で得ることができる。 しかしこの方法における原料である2,6−ジ
メチルナフタレンはその製造法が煩雑であり、大
量且つ安価に得ることは困難である。すなわち、
ナフタレンのメチル化、ジメチルナフタレンの異
性化、モノメチルナフタレンの不均化、その他ト
ランス・アルキル化法などが2,6−ジメチルナ
フタレンの合成法として知られているが、これら
の方法はいずれも、2,6−ジメチルナフタレン
以外の他の異性体、殊に2,7−ジメチルナフタ
レンの生成を避けることができず、混合ジメチル
ナフタレンからの2,6体の単離は2,7−体と
融点、沸点、溶解特性が極めて近似乃至類似して
いるため極めて困難であつた。 一方これに比べて、ジイソプロピルナフタレン
は、ナフタレンとプロピレンとから容易に合成す
ることが出来、混合ジイソプロピルナフタレンか
ら、2,6−体の分離、その他アルキル化、不均
化、異性化、トランス・アルキル化も比較的容易
である。 しかし乍ら、本発明者らの研究によれば、2,
6−ジイソプロピルナフタレン(以下これを
“DIPN”と略称することがある)の酸化反応は、
上記公知に従つて酸化すると、p−キシレンや
2,6−ジメチルナフタレンを酸化するに適した
反応条件下では、NDAの収率は50%以下と極め
て低くまた、多量の副生成物が生成するために得
られるNDAの純度も低く、従つて上記公知方法
によつて工業的にDIPNからNDAを得ることは
到底不可能であり、従つてこれまでのこのような
方法によるDIPNからのNDA製造は工業的に全
く顧みられる事がなかつた。 このように前記DIPNの酸化が満足すべき結果
が得られなかつた理由は、明確には判らないが本
発明者らは多くの実験から、その他のアルキル置
換芳香族炭化水素の酸化の場合と異なり、活性が
高く対酸化安定性の低いイソプロピル基とナフタ
レン核とを有するDIPNの酸化においては反応初
期のイソプロピル基の水素引抜きに伴うラジカル
およびヒドロペルオキシドの生成が極めて容易か
つ速やかな一方触媒臭素のイソフロピルラジカル
への付加、それに伴う触媒の活性低下、その結果
によるナフタレン核開裂の促進、さらに触媒の安
定錯体(例えばオルソ−ベンゼンカルボン酸錯体
等)形成による不活性化等が急速に順次進行して
そのために目的とする酸化が充分に進行せずむし
も副反応が促進されるためであろうと推察してい
る。 先に本発明者らはDIPN又はその酸化誘導体の
酸化において被酸化物に対して従来知られている
量よりも遥かに多量のコバルト、および/又はマ
ンガンを使用する事により前記副反応を抑制し、
高収率でNDAを得る方法を見出し先に提案した
(特願昭58−197558、同58−197559及び同59−
261765号明細書参照)。 これらの方法では、従来知られている如何なる
方法によるよりも高収率でかつ高純度のNDAが
得られるため工業的に極めて有用である反面高価
且つ環境に有害な触媒金属を多量に使用するため
これらの反応中の取扱操作や回収、循環、公害防
止等に多大の考慮を要するという欠点があつた。 (c) 発明の構成 このため、本発明者等はさらに工業的に有利な
DIPN又はその酸化誘導体の酸化法の研究を継続
した結果、触媒として使用する臭素に対しアルカ
リ金属を存在せしめる事により極めて優れた効果
が得られることを見出し本発明に到達した。 すなわち、本発明は、2,6−ジイソプロピル
ナフタレン又はその酸化誘導体を、酢酸を少くと
も50重量%含有する溶媒中で、 (i) ゴバルト及び/又はマンガンよりなる重金属
及び (ii) 臭素 よりなる触媒の存在下分子状酸素により酸化し
2,6−ナフタレンジカルボン酸を製造する方法
において、該酸化を、特定のアルカリ金属化合物
の存在下で所定の濃度において行うことを特徴と
する2,6−ナフタレンジカルボン酸の製造法で
ある。 従来、一般にアルキル置換芳香族炭化水素、特
にp−キシレンを、コバルト・マンガンの如き重
金属と臭素よりなる触媒を使用し、脂肪族モノカ
ルボン酸中で分子状酸素により酸化する方法にお
いて、その反応をナトリウム・カリウム等のアル
カリ金属、カルシウム等のアルカリ土類金属やア
ンモニウムの共存下、行う方法は公知であり、そ
の目的のためにNaBr、KBr、CaBr2、NH4Br等
の臭化物やNaOH、KOH等の水酸化物がHBr、
CoBr2、MnBr2と併用して使用されている。 しかし従来知られている限りでは、このような
アルカリ金属等の反応系への添加効果は反応の本
質に対しては極めて小さく例えば特公昭49−
25936号公報実施例10および比較例6〜8中には
触媒として酢酸コバルト、酢酸マンガン、臭化水
素酸を用いてp−キシレンを酸化した場合より臭
化水素酸の代りに臭化ナトリウム、臭化カリウ
ム、臭化アンモニウムを用いた場合の方が得られ
たテレフタル酸の収率は、わずかではあるが低い
(前者が97モル%に対し後者は96〜94モル%)事
が示されている。 また特公昭59−8252号公報には同様にp−キシ
レンの酸化において臭素原子に対して特定量(7/
9以下)のアルカリ金属原子を添加する方法が示
されているが、これによるテレフタル酸の収率の
増減については言及されておらず、生成物の性状
の変化のみが示されている。 特公昭56−3337号公報にはジメチルナフタレン
を酸化する場合アンモニウムを添加した例(実施
例1〜3)および添加しない例(実施例6)が示
されているが、生成ナフタレンジカルボン酸の収
率は殆んど94〜96モル%である。 このように従来公知の文献特許明細書等中に
は、このような酸化反応にアルカリ金属等の添加
されている例は多いが、これにより、特に著しい
収率上の効果の発現が記載されている例は見当ら
ず、むしろかえつて生成物の性状に対して好まし
くないとする記載(例えば特開昭51−127037号公
報および特公昭49−25936号公報等)もあり、こ
れらの記載からみても、この酸化反応に対してア
ルカリ金属の添加が本質的に必須なものとは考え
難い。 事実本発明者の実験においてもp−キシレンや
ジメチルナフタレン等の従来公知の酸化反応にお
いて、アルカリ金属やアンモニウム等の添加効果
は高々5%の収率向上すら認められず、殆んど同
等乃至むしろ低下を示す場合が多かつた。 これに反して、本発明のDIPN又はその酸化誘
導体の酸化においては、後述する多くの実施例の
結果が示しているように、その反応におけるアル
カリ金属の添加効果は顕著であり、従つて本発明
では、アルカリ金属の添加は本質的に不可欠な要
素であることがわかる。 本発明において出発原料は2,6−ジイソプロ
ピルナフタレン(DIPN)又はその酸化誘導体で
あり、それらは高純度のものが好ましいが必ずし
も純粋である必要はなく、酸化反応に対する影響
或いは生成するNDAの純度、着色に許容される
範囲で他の成分を含んでいてもよい。DIPNの酸
化誘導体とは、DIPNの酸化によつて生成し、ま
た反応系内において酸化されることによつて最終
的に目的とするNDAを与えるものである。そこ
で本発明の出発原料を、具体的に示すと下記一般
式()で表わされる。 [但し式中R1
(a) Industrial Application Field The present invention relates to a method for producing 2,6-naphthalene dicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene or its oxidized derivative with molecular oxygen. More specifically, the present invention relates to a method for obtaining the desired 2,6-naphthalene dicarboxylic acid in an extremely high yield by carrying out the oxidation in an acetic acid-containing solvent in the presence of a catalyst containing heavy metals and bromine. (b) Prior art 2,6-naphthalene dicarboxylic acid (hereinafter sometimes abbreviated as "NDA") or its derivatives such as esters and acid chlorides are valuable as dibasic acid components of various polyesters, polyamides, etc. Certain compounds, particularly polyethylene naphthalate formed from NDA and ethylene glycol, have better heat resistance and mechanical properties than polyethylene terephthalate, and are useful as polymers for producing films and textile products. . Conventionally, methods for producing NDA include an oxidation reaction of 2,6-dimethylnaphthalene, such as a method in which 2,6-dimethylnaphthalene is catalytically oxidized with molecular oxygen in an acetic acid solvent in the presence of a catalyst consisting of cobalt, manganese, and bromine. It has been known. In this method, the oxidation itself of 2,6-dimethylnaphthalene to NDA is relatively easy, and the desired NDA can be obtained with relatively high purity and high yield. However, the manufacturing method for 2,6-dimethylnaphthalene, which is a raw material in this method, is complicated, and it is difficult to obtain it in large quantities at low cost. That is,
Methylation of naphthalene, isomerization of dimethylnaphthalene, disproportionation of monomethylnaphthalene, and other trans-alkylation methods are known as methods for synthesizing 2,6-dimethylnaphthalene. , 6-dimethylnaphthalene, especially 2,7-dimethylnaphthalene, isomers other than 2,7-dimethylnaphthalene cannot be avoided. This was extremely difficult because the boiling points and solubility characteristics are extremely similar. On the other hand, diisopropylnaphthalene can be easily synthesized from naphthalene and propylene, and can be easily synthesized from mixed diisopropylnaphthalene by separation of the 2,6-isomer, alkylation, disproportionation, isomerization, trans alkyl naphthalene, etc. It is also relatively easy to convert. However, according to the research of the present inventors, 2.
The oxidation reaction of 6-diisopropylnaphthalene (hereinafter sometimes abbreviated as "DIPN") is
When oxidized according to the above-mentioned known method, the yield of NDA is extremely low at less than 50% under reaction conditions suitable for oxidizing p-xylene and 2,6-dimethylnaphthalene, and a large amount of by-products are produced. The purity of NDA obtained from DIPN is also low, and therefore it is completely impossible to obtain NDA from DIPN industrially by the above-mentioned known method. There was no industrial consideration at all. Although the reason why the oxidation of DIPN did not give satisfactory results is not clear, the present inventors have found from many experiments that the oxidation of DIPN is different from the oxidation of other alkyl-substituted aromatic hydrocarbons. In the oxidation of DIPN, which has an isopropyl group and a naphthalene nucleus that have high activity and low oxidation stability, radicals and hydroperoxides are generated very easily and quickly due to hydrogen abstraction from the isopropyl group at the initial stage of the reaction, while the isopropyl group of the catalyst bromine is The addition to the furopyl radical, the accompanying decrease in catalyst activity, the resulting promotion of naphthalene nuclear cleavage, and the formation of stable catalyst complexes (such as ortho-benzenecarboxylic acid complexes) inactivation proceed rapidly in sequence. It is speculated that this is because the desired oxidation does not proceed sufficiently and side reactions are actually promoted. First, the present inventors suppressed the side reactions by using a much larger amount of cobalt and/or manganese than previously known amounts for the oxidized object in the oxidation of DIPN or its oxidized derivative. ,
He proposed a method for obtaining NDA in high yield (Patent Applications 1975-58, 58-197559, and 59-1979).
261765). These methods are extremely useful industrially because they yield higher yields and higher purity NDA than any conventionally known method, but on the other hand, they use large amounts of expensive and environmentally harmful catalyst metals. The drawback is that a great deal of consideration is required for handling, recovery, circulation, pollution prevention, etc. during these reactions. (c) Structure of the invention For this reason, the inventors have further developed an industrially advantageous structure.
As a result of continuing research on oxidation methods for DIPN or its oxidized derivatives, it was discovered that an extremely excellent effect can be obtained by allowing an alkali metal to exist in the presence of bromine used as a catalyst, and the present invention was achieved. That is, the present invention provides 2,6-diisopropylnaphthalene or an oxidized derivative thereof in a solvent containing at least 50% by weight of acetic acid, and (i) a heavy metal consisting of gobalt and/or manganese and (ii) a catalyst consisting of bromine. A method for producing 2,6-naphthalenedicarboxylic acid by oxidizing 2,6-naphthalene with molecular oxygen in the presence of 2,6-naphthalene, characterized in that the oxidation is carried out at a predetermined concentration in the presence of a specific alkali metal compound. This is a method for producing dicarboxylic acid. Conventionally, alkyl-substituted aromatic hydrocarbons, especially p-xylene, are oxidized with molecular oxygen in an aliphatic monocarboxylic acid using a catalyst consisting of heavy metals such as cobalt and manganese and bromine. The method of performing this in the coexistence of alkali metals such as sodium and potassium, alkaline earth metals such as calcium , and ammonium is known. Hydroxides such as HBr,
Used in combination with CoBr 2 and MnBr 2 . However, as far as is known so far, the effect of adding such alkali metals to the reaction system is extremely small with respect to the essence of the reaction, for example,
In Example 10 of Publication No. 25936 and Comparative Examples 6 to 8, when p-xylene was oxidized using cobalt acetate, manganese acetate, and hydrobromic acid as catalysts, sodium bromide and odorant were used instead of hydrobromic acid. It has been shown that the yield of terephthalic acid obtained when potassium chloride or ammonium bromide is used is slightly lower (97 mol% for the former and 96-94 mol% for the latter). . In addition, Japanese Patent Publication No. 59-8252 similarly states that in the oxidation of p-xylene, a specific amount (7/
Although a method of adding alkali metal atoms (9 or less) is shown, there is no mention of an increase or decrease in the yield of terephthalic acid due to this, but only a change in the properties of the product is shown. Japanese Patent Publication No. 56-3337 shows examples in which ammonium is added when dimethylnaphthalene is oxidized (Examples 1 to 3) and examples in which ammonium is not added (Example 6), but the yield of naphthalene dicarboxylic acid produced is is mostly 94-96 mol%. In this way, there are many examples in conventionally known literature, patent specifications, etc. of the addition of alkali metals, etc. to such oxidation reactions, but there is no mention of a particularly significant effect on the yield resulting from this. However, there are some descriptions (for example, JP-A-51-127037 and JP-B-49-25936) that state that it is unfavorable for the properties of the product. , it is difficult to think that the addition of an alkali metal is essentially essential for this oxidation reaction. In fact, in the experiments conducted by the present inventors, in the conventionally known oxidation reactions of p-xylene, dimethylnaphthalene, etc., the effect of adding alkali metals, ammonium, etc. was not observed to improve the yield by at most 5%, and the yield was almost the same or even better. In many cases, it showed a decrease. On the contrary, in the oxidation of DIPN or its oxidized derivative according to the present invention, as shown by the results of many examples described later, the effect of adding an alkali metal in the reaction is remarkable, and therefore the present invention It can be seen that the addition of alkali metal is essentially an essential element. In the present invention, the starting material is 2,6-diisopropylnaphthalene (DIPN) or its oxidized derivative, and although it is preferable that they have high purity, they are not necessarily pure, and the influence on the oxidation reaction or the purity of the NDA produced, Other components may be included within the range permitted for coloring. The oxidized derivative of DIPN is produced by oxidation of DIPN, and is oxidized in the reaction system to ultimately give the desired NDA. Therefore, the starting material of the present invention is specifically represented by the following general formula (). [However, R 1 in the formula is

【式】【formula】

【式】【formula】

【式】よりなる群から選ばれた基、R2は前 記R1で示された基及び[Formula] A group selected from the group consisting of R 2 is the group represented by R 1 above and

【式】−COOHと −CHOよりなる群から選ばれた基であつてR1
同一であつても或いは異なつていてもよい。] 出発原料としては、前記式()におけるR1
とR2が、同一もしくは異なり、
[Formula] A group selected from the group consisting of -COOH and -CHO, which may be the same as or different from R 1 . ] As a starting material, R 1 in the above formula ()
and R 2 are the same or different,

【式】及び[Formula] and

【式】から選ばれるもの が好ましい。 本発明において、酸化触媒としては前述した通
り、下記()〜()が使用される。 () コバルト及び/又はマンガンよりなる重金
属(A成分) () 臭素(B成分)及び () アルカリ金属(C成分) A成分及びB成分は共に本発明の酸化反応系中
で溶解しうる形態であれば金属、元素、化合物の
いずれであつてもよい。 A成分を形成するコバルト及びマンガンとして
は例えば酸化物、水酸化物、炭酸塩、ハロゲン化
物特に臭化物等の無機塩の他、酢酸その他の脂肪
族モノカルボン酸または芳香族カルボン酸特に
NDA等の有機酸塩が挙げられるが、これらのう
ち好ましいのは臭化物および脂肪酸塩特に酢酸塩
である。 またB成分を形成する臭素としては酸化反応系
に溶解しBrイオンを発生するものであれば有機
化合物又は無機化合物のいずれであつてもよい。
具体的には、例えば分子状臭素(Br2)、臭化水
素、臭化水素酸塩等の無機臭素化合物又は臭化メ
チル、臭化エチル、ブロモホルム、臭化エチレン
その他の臭化アルキル若しくはブロモ酢酸、多ブ
ロモ酢酸等の臭素化脂肪酸等の有機臭素化合物が
挙げられるがこれらのうち好ましいのは分子状臭
素、臭化水素、臭化ナトリウム、臭化カリウム、
臭化リチウム、または臭化コバルト、臭化マンガ
ン等である。 これらの酸化触媒は一般にその単塩又は錯塩の
イオンとして、A成分に対してB成分が配位乃至
結合若しくはイオン対等を形成して反応に関与す
るものと考えられ、従つて反応中このようなイオ
ンを形成し難い状態での金属単体又は不溶性の金
属化合物あるいは反応温度で分解して臭素イオン
を脱離し難いような有機臭素化合物、例えば核臭
素化芳香族化合物等は触媒として使用してもその
効果は小さく得策でない。 本発明の反応において酸化反応系に加えられた
臭素はそれがどのような化合物形態で与えられた
ものであれ、その一部は直接または二次的に被酸
化物DIPN又はその酸化誘導体のイソプロピル側
鎖に付加してこれらの側鎖有機臭素化合物を形成
し易い。 そして、これらは本発明の酸化反応条件下では
多かれ少なかれ分解して臭素イオンを脱離再生す
る。従つてこのような被酸化物の側鎖臭素化合物
もまた本発明方法における触媒B成分源として有
効である。本発明の重要な構成因子であるC成分
を形成するアルカリ金属としては水酸化物の他炭
酸塩、酢酸塩、および臭化物が好ましく、その他
の塩は反応系に不必要な他のイオンを持込むので
このましくない。 特に硫酸塩、硝酸塩、塩化物等の(臭化物以外
の)無機強酸塩は避けるべきである。アルカリ金
属としてはナトリウム、カリウム、リチウムが好
ましい。 C成分としてナトリウム、カリウム、リチウム
の代りにアンモニウムやカルシウム、バリウム等
のアルカリ土類金属を用いてもその効果は小さい
か或いは実用上は殆ど無効と考えてもよい。 本発明者らが前記特願昭58−197558、58−
197559及び59−261765号明細書中に記したように
この酸化反応においては反応収率面からみる限り
原料に対するA成分の使用割合及び溶媒に対する
A成分の濃度は何れも高ければ高い程良くその上
限は事実上規定し難い。 しかし工業的に過度の触媒の使用は生産性の低
下を招来するし、また本発明に示した特定量のア
ルカリ金属の使用により上記特許に記されたより
はるかに少量の触媒の使用で高反応収率が達成出
来るので実用上のA成分の使用量は、使用する脂
肪族モノカルボン酸溶媒に対しコバルト及び/又
はマンガンの金属含有量で0.2〜6.0重量%、好ま
しくは0.5〜4.0重量%の範囲である。 A成分はコバルト、マンガンの何れか又は両者
の混合物が使われるが、コバルト及びマンガンを
混合して使用する場合その混合割合は、例えば反
応温度、時間、触媒使用量、溶媒使用量などによ
りその好ましい範囲が左右される。しかし、通常
Co:Mnの原子比で表わして1:99〜99:1、特
に10:90〜95:5の範囲が好ましい。 本発明者らの観測によれば、反応に使用する臭
素の最適濃度は使用するA成分濃度のみでなく反
応温度、原料濃度、溶媒量等の他の反応条件にも
依存する。 従つて本発明方法における臭素濃度を一義的に
規制するのは困難であるが一般には使用するA成
分に対し原子比で0.1〜5.0、好ましくは0.2〜2.5
程度が好ましい。 一般的には、A成分濃度が低い程この比は高い
方がよい。 本発明方法において反応中のDIPNおよびその
酸化誘導体の濃度は前記の急速な反応進行を防ぐ
ために、あまり高くないように保つ事が望まれ
る。 反応中、反応系内のDIPNおよびその酸化誘導
体濃度は系中に存在する触媒中A成分に対し、モ
ル比2.0を越えない事が好ましく特に1.0以下、と
りわけ0.5以下が適当である。 反応系中のDIPNおよびその酸化誘導体の対A
成分のモル比が高いと前記の触媒濃度が如何に好
適に保たれても、反応の急速な進行による副反応
の生起を抑える事が困難となり、目的生成物
NDAの収率が低下する傾向が認められる。 しかし、一般には連続反応または少くとも半連
続反応の場合、反応温度と酸素濃度(酸素分圧)
とを好適条件範囲内に保持する限り原料の反応に
よる消失は速かであり、反応中の原料濃度を上記
規制値以下に保つ事は比較的容易である。 本発明方法において使用するC成分の最適濃度
は他の反応条件にも依存し必ずしも一義的には決
められないが、少くとも反応系中に存在する臭素
1g原子当り0.8g原子は必要であり、それ以下
ではNDAの収率は著しく低く実用的でない。し
かし臭素原子に対するC成分の濃度は高ければ高
いほど良いわけではなく、あまり高すぎると
NDAの収率はB成分とC成分との比の如何では
かえつて低下する場合がある。又実用上の見地か
らも無用に多量のC成分を使用する事は何ら効用
がないのみならず、かえつて有害の場合の方が多
く、この面からもC成分の使用量は臭素1g原子
当り15.0g原子を越えない事が望ましい。 すなわちC成分の使用量は反応系中に存在する
臭素1g原子当り0.8〜15.0g原子、より好まし
くは1.1〜8.0g原子、更に好ましくは1.5〜4.0g
原子である。 本発明の反応にC成分を使用する場合、最も重
要な因子はB成分とC成分との比であり、本発明
者の実験によれば C成分/B成分=2/1(g原子比) がNDAの収率に対して最も優れている。 但し、この比はB成分(臭素)の濃度が低い場
合ほどその値が大きい方へ偏る傾向があり、従つ
て、C成分の最適使用量は上記の範囲が最も実用
的である。 またC成分の濃度は、その対臭素比が上記範囲
内であつても使用する酢酸溶媒に対して
4.0mol/1000gを越えない事が望ましい。 本発明方法において使用する溶媒は少くともそ
の50%以上が酢酸であればよく、その他は特に規
制されない。 必要に応じて、適宜水、その他の媒体と混合し
て使用される。水が含まれる場合、その割合は30
重量%以下、殊に20重量%以下が望ましい。 溶媒は本質的には原料および触媒の少くとも一
部を溶解し、これらと分子状酸素との接触を助け
るために使用されるがその他にも熱の分散、除熱
や生成物の流動性、生成物の結晶成長等の促進、
助長し、本発明方法の工業的実施を容易にする等
の目的を有している。 従つて、その使用量はこれらの目的に応じて定
められるべきであり本質的に本発明方法に使用さ
れる溶媒量は規制されないが実用上系中の原料お
よび目的NDAの合計重量に対して1〜10倍、好
ましくは2〜5倍程度の使用が実施に便利であ
る。 溶媒の使用量が過度に少いと本発明の目的が充
分に達成されず、反応の円滑な進行が妨げられる
が、逆に上記の使用量以上に過度に溶媒を多量に
使用しても反応自体がそれにより促進される事は
なく、かえつて溶媒の酸化燃焼による損失のみが
多くなり得策ではない。 本発明方法において分子状酸素としては純酸素
の他、これを他の不活性ガスで稀釈した混合ガス
が使用されるが、実用上空気が最も入手し易い分
子状酸素含有ガスであり、これをそのままあるい
は必要に応じて適宜酸素あるいは他の不活性ガス
で濃縮あるいは稀釈して使用する事が出来る。 本発明方法の酸化反応は常圧でも可能であるが
加圧下でより一層速やかに進行する。 反応は一般には系中の酸素分圧が高ければ高い
ほど速やかに進行するが実用上の見地からは酸素
分圧0.1Kg/cm2−abs以上、好ましくは0.2Kg/cm2
−abs以上8Kg/cm2−abs以下程度で充分であり、
これを不活性ガスとの混合状態で使用した場合の
全圧でも30Kg/cm2−G以下で反応は速やかに進行
し高収率でNDAを得る事が出来る。従つて、酸
素分圧を8Kg/cm2−abs以上にする事による工業
的利点は少い。 反応は60℃でも進行するが、このとき反応速度
は遅く必ずしも経済的ではない。また反応温度が
240℃を越えると副生成物の生成比率が増加し
NDAの収率は低下する。 また高温下では酢酸等の溶媒の燃焼損失も無視
出来なくなる。一般には好ましい反応温度は120
〜240℃、より好ましくは160〜230℃、特に好ま
しくは180〜220℃の範囲が有利である。 本発明方法の酸化反応を実施するに当つては触
媒および溶媒と原料とを同時又は別々に反応容器
に装入して(必要に応じて加温後)これに分子状
酸素含有ガスを吹込み所定の圧力、温度を保持し
ながらNDAが得られるまでの充分な時間反応を
行なう。 反応の進行に伴い、分子状酸素が吸収されると
共に多量の反応熱を発生するので、通常酸化反応
中は外部からの加温、加熱は不要であるばかりで
なく、むしろ除熱して所定反応温度を維持するこ
とが必要である。 この際、除熱は酢酸、水等の反応系媒体の蒸発
や吹込みガスの放出による熱の随伴等の内部除熱
かあるいは外部から水、水蒸気等冷媒を用いて冷
却するか若しくはこれら双方を併用するか等の公
知の方法により容易に可能である。 反応系中の原料が消失し、反応の終了が近付く
と分子状酸素の吸収が見掛け上殆んど停止する
が、この時点で反応系内にはまだ完全にNDAに
転化していない反応中間体の存在が認められる場
合がある。 このような場合には必要に応じてこれを更に分
子状酸素と接触させるいわゆるポスト・オキシデ
ーシヨンにより反応を完結させるとNDAの収率
が向上すると共に同時に不要な副生成物やその中
間体を酸化分解して生成NDAの純度をも向上せ
しめる事が出来る。 このようなポスト・オキシデーシヨンは主酸化
反応に引続き酸化反応容器内でそのままかまたは
主酸化反応後、一旦別容器に移してこれを所要時
間分子状酸素と接触させる事により行われる。 この際ポスト・オキシデーシヨンの反応圧力、
温度は主反応の場合と同じである必要はなく、こ
れより高くても低くてもよい。 反応終了後反応生成混合物からのNDAの分
離・回収およびNDAの精製とNDAを除去した反
応母液の後処理、循環、再使用等は他のNDAの
製造やテレフタル酸の製造において公知の常法に
従つて行う事が出来る。 本発明方法はバツチでも連続でも実施出来るが
バツチ反応では触媒に対する原料濃度が低く必ず
しも実用的ではない。 可能な限り酸化反応は連続若しくは触媒溶液中
に原料を少量宛回分または連続で添加して反応を
行ういわゆる半連続法の何れかによる事が好まし
い。 以上、本発明方法の実施により従来DIPN又は
その酸化中間体から低収縮でしか得られなかつた
NDAが容易に高収率且つ高純度で得られるよう
になり工業的に従来の何れの方法によるよりも安
価で且つ高品質のNDAの供給が可能になつた。 以下実施例およびその比較例を掲げて本発明方
法を詳述する。 なお、以下例示において部とはすべて重量部を
指す。 実施例 1 還流冷却器、ガス吹込管・排出管、原料連続送
入ポンプおよび攪拌機を有するチタン・ライニン
グ加圧・反応容器に 氷酢酸 150部 酢酸コバルト・4水塩(Co(OAc)2・4H2O6.23部 酢酸マンガン・4水塩(Mn(OAc)2・4H2O
6.13部 臭化カリウム(KBr) 2.98部 酢酸カリウム(KOAc) 7.36部 を装入して温度200℃、圧力30Kg/cm2−Gの条件
下ではげしく撹拌しながらこれに、 2,6−ジイソプロピル・ナフタレン(DIPN)
53.08部 を連続的に4時間かけて送入すると共に過剰の圧
縮空気を流通して酸化反応を行つた。 DIPNの送入完了後さらにそのまま200℃、30
Kg/cm2−Gに保つて空気の流通を1時間継続して
反応を完結させた後反応生成物を取出して、主と
して2,6−ナフタレン・ジカルボン酸(NDA)
より成る生成固体沈澱を分離した。 これを洗浄・乾燥して分析した結果NDAの収
量は45.55部であり、これのDIPNに対する収率は
85.08モル%であつた。 実施例 2〜4 実施例1と同様の反応装置に 氷酢酸 150部 酢酸コバルト・4水塩 6.23部 酢酸マンガン・4水塩 6.13部 臭化カリウム 11.90部 および 酢酸カリウム 実施例2では0.98部 実施例3では9.81部 実施例4では29.44部 を装入して温度200℃、圧力30Kg/cm2−Gの条件
下ではげしく攪拌しながらこれに、 2,6−ジイソプロピル・ナフタレン 53.08部 を連続的に4時間かけて送入すると共に過剰の圧
縮空気を流通して酸化反応を行つた。 DIPNの送入完了後さらにそのまま200℃、30
Kg/cm2−Gに保つて空気の流通を1時間継続して
反応を完結させた後、以後の操作を実施例1と同
様に行い、得られた2,6−ナフタレン・ジカル
ボン酸の収率を下記表−1に示した。
Preferably, one selected from the following formula: In the present invention, as the oxidation catalyst, the following () to () are used as described above. () Heavy metal consisting of cobalt and/or manganese (component A) () Bromine (component B) and () Alkali metal (component C) Both components A and B are in a form that can be dissolved in the oxidation reaction system of the present invention. It may be any metal, element, or compound, if any. Examples of cobalt and manganese forming component A include inorganic salts such as oxides, hydroxides, carbonates, halides, especially bromides, as well as acetic acid and other aliphatic monocarboxylic acids or aromatic carboxylic acids, especially
Examples include organic acid salts such as NDA, but preferred among these are bromides and fatty acid salts, especially acetates. Further, the bromine forming component B may be any organic compound or inorganic compound as long as it dissolves in the oxidation reaction system and generates Br ions.
Specifically, for example, molecular bromine (Br 2 ), hydrogen bromide, inorganic bromine compounds such as hydrobromide, methyl bromide, ethyl bromide, bromoform, ethylene bromide, other alkyl bromides, or bromoacetic acid. , organic bromine compounds such as brominated fatty acids such as polybromoacetic acid, but preferred among these are molecular bromine, hydrogen bromide, sodium bromide, potassium bromide,
Lithium bromide, cobalt bromide, manganese bromide, etc. These oxidation catalysts are generally thought to participate in the reaction as ions of their single salts or complex salts, with the B component forming coordination, bonding, or ion pairs with the A component, and therefore, such oxidation catalysts participate in the reaction during the reaction. Single metals or insoluble metal compounds in a state where it is difficult to form ions, or organic bromine compounds that are difficult to decompose and release bromide ions at the reaction temperature, such as nuclear brominated aromatic compounds, may be used as catalysts. The effect is small and it is not a good idea. No matter what compound form the bromine is added to the oxidation reaction system in the reaction of the present invention, a part of it is directly or secondarily added to the isopropyl side of the oxidized product DIPN or its oxidized derivative. It is easy to add to the chain to form these side chain organobromine compounds. Under the oxidation reaction conditions of the present invention, these are more or less decomposed to desorb and regenerate bromide ions. Therefore, such side chain bromine compounds of oxidizable substances are also effective as a source of the catalyst B component in the method of the present invention. The alkali metal forming component C, which is an important component of the present invention, is preferably carbonate, acetate, and bromide in addition to hydroxide; other salts bring other unnecessary ions into the reaction system. So this is not good. In particular, strong inorganic acid salts (other than bromides) such as sulfates, nitrates, and chlorides should be avoided. Preferred alkali metals are sodium, potassium, and lithium. Even if an alkaline earth metal such as ammonium, calcium, or barium is used as the C component in place of sodium, potassium, or lithium, the effect may be small or practically ineffective. The present inventors have filed the said patent application No. 58-197558, 58-
As described in the specifications of No. 197559 and No. 59-261765, in this oxidation reaction, from the viewpoint of reaction yield, the higher the ratio of component A to the raw material and the concentration of component A to the solvent, the better. is practically difficult to define. However, industrially, excessive use of catalyst leads to a decrease in productivity, and the use of the specific amount of alkali metal shown in the present invention allows for high reaction yields even with the use of a much smaller amount of catalyst than described in the above-mentioned patent. Therefore, the practical amount of component A used is in the range of 0.2 to 6.0% by weight, preferably 0.5 to 4.0% by weight of cobalt and/or manganese metal content based on the aliphatic monocarboxylic acid solvent used. It is. As component A, cobalt, manganese, or a mixture of both can be used. When using a mixture of cobalt and manganese, the preferred mixing ratio depends on, for example, reaction temperature, time, amount of catalyst used, amount of solvent used, etc. Range is affected. But usually
The Co:Mn atomic ratio is preferably in the range of 1:99 to 99:1, particularly 10:90 to 95:5. According to the observations of the present inventors, the optimum concentration of bromine used in the reaction depends not only on the concentration of component A used but also on other reaction conditions such as reaction temperature, raw material concentration, and amount of solvent. Therefore, it is difficult to uniquely regulate the bromine concentration in the method of the present invention, but in general, the atomic ratio to the A component used is 0.1 to 5.0, preferably 0.2 to 2.5.
degree is preferred. Generally, the lower the concentration of component A, the better this ratio is higher. In the method of the present invention, it is desirable that the concentration of DIPN and its oxidized derivatives during the reaction be kept not too high in order to prevent the rapid reaction described above. During the reaction, the concentration of DIPN and its oxidized derivatives in the reaction system preferably does not exceed a molar ratio of 2.0 to the component A in the catalyst present in the system, preferably 1.0 or less, especially 0.5 or less. Pair A of DIPN and its oxidized derivative in the reaction system
If the molar ratio of the components is high, no matter how well the catalyst concentration is maintained, it will be difficult to suppress the occurrence of side reactions due to the rapid progress of the reaction, and the desired product will not be produced.
A tendency for the yield of NDA to decrease is observed. However, in general, for continuous or at least semi-continuous reactions, the reaction temperature and oxygen concentration (oxygen partial pressure)
As long as the above conditions are maintained within a suitable range, the raw materials disappear quickly through the reaction, and it is relatively easy to maintain the raw material concentration during the reaction below the above-mentioned regulation value. The optimal concentration of the C component used in the method of the present invention depends on other reaction conditions and cannot necessarily be determined uniquely, but at least 0.8 g atoms per 1 g atom of bromine present in the reaction system is required, Below that, the yield of NDA is extremely low and is not practical. However, the higher the concentration of C component relative to bromine atoms, the better; if it is too high,
The yield of NDA may even decrease depending on the ratio of component B to component C. Also, from a practical standpoint, using an unnecessarily large amount of C component not only has no effect, but is often harmful, and from this point of view, the amount of C component used should be reduced per gram of bromine atom. It is preferable not to exceed 15.0g atoms. That is, the amount of component C used is 0.8 to 15.0 g atoms, more preferably 1.1 to 8.0 g atoms, and even more preferably 1.5 to 4.0 g atoms per 1 g of bromine atoms present in the reaction system.
It is an atom. When using C component in the reaction of the present invention, the most important factor is the ratio of B component to C component, and according to the inventor's experiments, C component/B component = 2/1 (g atomic ratio) is the best in terms of NDA yield. However, this ratio tends to be larger as the concentration of component B (bromine) is lower, and therefore, the optimum amount of component C to be used is most practically within the above range. In addition, even if the concentration of the C component is within the above range, the concentration of the C component should be adjusted to the acetic acid solvent used.
It is desirable that it does not exceed 4.0mol/1000g. The solvent used in the method of the present invention may be at least 50% acetic acid, and other solvents are not particularly limited. If necessary, it is used by appropriately mixing with water or other medium. If water is included, the proportion is 30
It is preferably less than 20% by weight, especially less than 20% by weight. Solvents are essentially used to dissolve at least a portion of the raw materials and catalyst and to help bring them into contact with molecular oxygen, but they also serve to dissipate and remove heat, improve the fluidity of the product, etc. Promotion of product crystal growth, etc.
The purpose is to facilitate the industrial implementation of the method of the present invention. Therefore, the amount to be used should be determined according to these purposes, and the amount of solvent used in the method of the present invention is essentially not regulated, but in practice it should be 1 to 1% of the total weight of the raw materials and target NDA in the system. It is convenient to use the amount up to 10 times, preferably 2 to 5 times. If the amount of solvent used is too small, the purpose of the present invention will not be fully achieved and the smooth progress of the reaction will be hindered.On the other hand, if the amount of solvent used is too large than the above amount, the reaction itself will be hindered. However, this is not a good idea as it will not accelerate the process and will only increase the loss due to oxidative combustion of the solvent. In the method of the present invention, in addition to pure oxygen, a mixed gas diluted with other inert gases is used as molecular oxygen, but air is the most easily available molecular oxygen-containing gas in practice, and It can be used as it is or after being concentrated or diluted with oxygen or other inert gas as necessary. Although the oxidation reaction in the method of the present invention is possible under normal pressure, it proceeds more rapidly under increased pressure. In general, the reaction proceeds more quickly as the oxygen partial pressure in the system is higher, but from a practical standpoint, the oxygen partial pressure should be 0.1 Kg/cm 2 -abs or higher, preferably 0.2 Kg/cm 2
-abs or more 8Kg/cm 2 -abs or less is sufficient,
When this is used in a mixed state with an inert gas, the reaction proceeds rapidly at a total pressure of 30 Kg/cm 2 -G or less, and NDA can be obtained in high yield. Therefore, there is little industrial advantage in increasing the oxygen partial pressure to 8 Kg/cm 2 -abs or higher. Although the reaction proceeds at 60°C, the reaction rate is slow and not necessarily economical. Also, the reaction temperature
When the temperature exceeds 240℃, the production ratio of by-products increases.
The yield of NDA decreases. Furthermore, at high temperatures, combustion loss of solvents such as acetic acid cannot be ignored. Generally the preferred reaction temperature is 120
A range of from 180 to 220°C is advantageous, more preferably from 160 to 230°C, particularly preferably from 180 to 220°C. In carrying out the oxidation reaction of the method of the present invention, the catalyst, solvent, and raw materials are charged into a reaction vessel simultaneously or separately (after heating if necessary), and a molecular oxygen-containing gas is blown into the reaction vessel. The reaction is carried out for a sufficient time until NDA is obtained while maintaining the predetermined pressure and temperature. As the reaction progresses, molecular oxygen is absorbed and a large amount of reaction heat is generated, so external heating is usually not necessary during the oxidation reaction, but rather heat is removed to maintain the predetermined reaction temperature. It is necessary to maintain At this time, heat removal can be carried out internally by evaporating the reaction medium such as acetic acid or water or accompanied by heat by releasing blown gas, or by cooling from the outside using a refrigerant such as water or steam, or both. This can be easily achieved by a known method such as using them in combination. When the raw materials in the reaction system disappear and the reaction approaches its end, the absorption of molecular oxygen appears to almost stop, but at this point there are still reaction intermediates in the reaction system that have not been completely converted to NDA. In some cases, the existence of In such cases, if necessary, the reaction can be completed by so-called post-oxidation, in which the product is further brought into contact with molecular oxygen, to improve the yield of NDA and at the same time eliminate unnecessary by-products and their intermediates. It is also possible to improve the purity of NDA produced by oxidative decomposition. Such post-oxidation can be carried out in the oxidation reaction vessel following the main oxidation reaction, or by transferring the main oxidation reaction to another vessel and contacting it with molecular oxygen for a required period of time. At this time, the post-oxidation reaction pressure,
The temperature does not need to be the same as for the main reaction, and may be higher or lower. After the completion of the reaction, separation and recovery of NDA from the reaction product mixture, purification of NDA, and post-treatment, circulation, and reuse of the reaction mother liquor from which NDA has been removed are performed using conventional methods known in the production of other NDA and terephthalic acid. You can do it accordingly. Although the method of the present invention can be carried out either batchwise or continuously, the batch reaction is not necessarily practical due to the low concentration of raw materials relative to the catalyst. As much as possible, the oxidation reaction is preferably carried out either continuously or by a so-called semi-continuous method in which the reaction is carried out by adding raw materials to the catalyst solution in small batches or continuously. As described above, by carrying out the method of the present invention, DIPN or its oxidized intermediate, which could only be obtained with low shrinkage, can be reduced.
NDA can now be easily obtained in high yield and purity, making it possible to industrially supply NDA at a lower cost and with higher quality than by any conventional method. The method of the present invention will be described in detail below with reference to Examples and Comparative Examples. In addition, in the following examples, all parts refer to parts by weight. Example 1 150 parts of glacial acetic acid and cobalt acetate tetrahydrate (Co(OAc) 2.4H ) were placed in a titanium-lined pressurized reaction vessel equipped with a reflux condenser, gas blowing pipe/discharge pipe, raw material continuous feed pump, and stirrer. 2 O6.23 parts Manganese acetate tetrahydrate (Mn(OAc) 2・4H 2 O
6.13 parts potassium bromide (KBr) 2.98 parts potassium acetate (KOAc) 7.36 parts were charged, and 2,6-diisopropyl. Naphthalene (DIPN)
The oxidation reaction was carried out by continuously feeding 53.08 parts over 4 hours and passing excess compressed air. After completing the feeding of DIPN, continue to heat at 200℃ and 30℃.
After completing the reaction by maintaining the air flow at Kg/cm 2 -G for 1 hour, the reaction product was taken out and mainly produced as 2,6-naphthalene dicarboxylic acid (NDA).
The resulting solid precipitate was separated. After washing, drying and analyzing this, the yield of NDA was 45.55 parts, and the yield of this relative to DIPN was
It was 85.08 mol%. Examples 2 to 4 In a reactor similar to Example 1, 150 parts of glacial acetic acid, 6.23 parts of cobalt acetate/tetrahydrate, 6.13 parts of manganese acetate/tetrahydrate, 11.90 parts of potassium bromide, and 0.98 parts of potassium acetate in Example 2 were added. In Example 3, 9.81 parts and in Example 4, 29.44 parts were charged, and 53.08 parts of 2,6-diisopropyl naphthalene was continuously added thereto under vigorous stirring at a temperature of 200°C and a pressure of 30 kg/cm 2 -G. The oxidation reaction was carried out by feeding the mixture over a period of 4 hours and passing an excess of compressed air. After completing the feeding of DIPN, continue to heat at 200℃ and 30℃.
After completing the reaction by continuing air circulation for 1 hour while maintaining the temperature at Kg/cm 2 -G, the subsequent operations were carried out in the same manner as in Example 1, and the resulting 2,6-naphthalene dicarboxylic acid was recovered. The percentages are shown in Table 1 below.

【表】【table】

【表】 比較例 1 実施例1と同様の反応装置で酢酸コバルト・4
水塩、酢酸マンガン4水塩および臭化カリウムの
代りに 臭化コバルト・6水塩(CoBr2・6H2O) 8.17部 臭化マンガン・4水塩(MnBr2・4H2O) 7.17部 酢酸カリウム 0部 を用いた以外は実施例1と同様の反応を行つた。 その結果を表−1に示した。 比較例 2 実施例1と同様の反応装置で酢酸マンガン・4
水塩の代りに 臭化マンガン・4水塩 7.17部 とし、またさらに 臭化カリウム 5.95部 酢酸カリウム 0部 (酢酸コバルト・4水塩は不変 6.23部) した以外は実施例1と同様の反応を行つた。 その結果を表−1に示した。 実施例 5 実施例2〜4と同様の反応装置で臭化カリウム
および酢酸カリウムの代りに 臭化ナトリウム(NaBr) 10.29部 酢酸ナトリウム(NaOAc) 8.20部 を用いた以外は実施例2〜4と同様の反応を行つ
た。 得られた2,6−ナフタレン・ジカルボン酸の
収量は44.68部、DIPNに対する収率は82.61モル
%であつた。 比較例 3 比較例1に示した反応系にさらに 酢酸カルシウム・1水塩(Ca(OAc)2・H2O8.8部 を加えた以外は比較例1と同様の反応を行つた。 得られた生成固体は濃褐色で多量のタール状生
成物を含み乾燥重量33.62部であつたが分析の結
果、そのNDA含有率は52.14重量%(17.53部に相
当)に過ぎずNDA収率は32.75モル%であつた。 実施例 6 実施例2〜4と同様の反応装置で臭化カリウム
および酢酸カリウムの代りに、 臭化リチウム(LiBr・H2O) 10.49部 酢酸リチウム(LiOAc) 6.60部 を用いた以外は実施例2〜4と同様の反応を行つ
た。 得られた2,6−ナフタレン・ジカルボン酸の
収量は40.63部、DIPNに対する収率は75.18モル
%であつた。 比較例 4 実施例2〜4と同様の反応装置で臭化カリウム
および酢酸カリウムの代りに、 臭化アンモニウム(NH4Br) 9.79部 酢酸アンモニウム(NH4OAc) 7.71部 用いた以外は実施例2〜4と同様の反応を行つ
た。 得られた2,6−ナフタレン・ジカルボン酸は
褐色の固体でその乾燥重量は42.95部であつたが、
分析の結果その純度が低くNDA収率は54.22モル
%に過ぎなかつた。
[Table] Comparative Example 1 Cobalt acetate 4 in the same reactor as Example 1
Cobalt bromide hexahydrate (CoBr 2 6H 2 O) 8.17 parts Manganese bromide tetrahydrate (MnBr 2 4H 2 O) 7.17 parts acetic acid instead of manganese acetate tetrahydrate and potassium bromide The same reaction as in Example 1 was carried out except that 0 parts of potassium was used. The results are shown in Table-1. Comparative Example 2 Manganese acetate 4 was produced in the same reaction apparatus as in Example 1.
The reaction was carried out in the same manner as in Example 1, except that 7.17 parts of manganese bromide/tetrahydrate was used instead of aqueous salt, and 5.95 parts of potassium bromide and 0 parts of potassium acetate were added (6.23 parts of cobalt acetate/tetrahydrate remained unchanged). I went. The results are shown in Table-1. Example 5 Same as Examples 2 to 4 except that 10.29 parts of sodium bromide (NaBr) and 8.20 parts of sodium acetate (NaOAc) were used in place of potassium bromide and potassium acetate in the same reaction apparatus as in Examples 2 to 4. The reaction was carried out. The yield of the obtained 2,6-naphthalene dicarboxylic acid was 44.68 parts, and the yield relative to DIPN was 82.61 mol%. Comparative Example 3 The same reaction as in Comparative Example 1 was carried out except that 8.8 parts of calcium acetate monohydrate (Ca(OAc) 2 H 2 O) was further added to the reaction system shown in Comparative Example 1. The resulting solid was dark brown and contained a large amount of tar-like products, with a dry weight of 33.62 parts, but analysis revealed that its NDA content was only 52.14% by weight (equivalent to 17.53 parts), and the NDA yield was 32.75 mol. Example 6 In the same reaction apparatus as in Examples 2 to 4, 10.49 parts of lithium bromide (LiBr.H 2 O) and 6.60 parts of lithium acetate (LiOAc) were used instead of potassium bromide and potassium acetate. The same reactions as in Examples 2 to 4 were carried out except that the reaction was carried out in the same manner as in Examples 2 to 4. The yield of the obtained 2,6-naphthalene dicarboxylic acid was 40.63 parts, and the yield relative to DIPN was 75.18 mol%. Comparative Example 4 Example Same as Examples 2 to 4 except that 9.79 parts of ammonium bromide (NH 4 Br) and 7.71 parts of ammonium acetate (NH 4 OAc) were used instead of potassium bromide and potassium acetate in the same reaction apparatus as in Examples 2 to 4. The resulting 2,6-naphthalene dicarboxylic acid was a brown solid with a dry weight of 42.95 parts.
Analysis revealed that the purity was low and the NDA yield was only 54.22 mol%.

【特許請求の範囲】[Claims]

1 次式 (式中、Rはアルキレンである)のジエステルの
製造方法において、水性相−有機相の二相反応媒
質中で、次式 (式中、M+はアルカリ金属である)の反応体塩
を、次式 X1−RX2 (式中、Rはアルキレンで、X1及びX2の各々は
ハロである)のジハロアルカン反応体の実質的に
当量と反応させること;上述の水性相−有機相の
二相反応媒質は水、上述の反応体塩及び上述のジ
linear equation (wherein R is alkylene), in a two-phase aqueous-organic reaction medium, the following formula is used: (wherein M + is an alkali metal) is subjected to a dihaloalkane reaction of the following formula: X 1 -RX 2 (wherein R is alkylene and each of X 1 and the aqueous-organic phase biphasic reaction medium containing water, the reactant salts described above, and the dihydrogen salts described above;

Claims (1)

5 酸化を160〜230℃の範囲の温度で行う特許請
求の範囲第1項記載の2,6−ナフタレンジカル
ボン酸の製造法。 6 酸化を0.1〜8.0Kg/cm2の酸素分圧下で行う特
許請求の範囲第1項記載の2,6−ナフタレンジ
カルボン酸の製造法。 7 溶媒を、酸化反応混合物に存在する2,6−
ジイソプロピルナフタレン、その酸化中間体及び
2,6−ナフタレンジカルボン酸の合計重量の1
重量部当り少くとも1重量部使用する特許請求の
範囲第1項記載の2,6−ナフタレンジカルボン
酸の製造法。
5. The method for producing 2,6-naphthalene dicarboxylic acid according to claim 1, wherein the oxidation is carried out at a temperature in the range of 160 to 230°C. 6. The method for producing 2,6-naphthalene dicarboxylic acid according to claim 1, wherein the oxidation is carried out under an oxygen partial pressure of 0.1 to 8.0 Kg/ cm2 . 7 The solvent is added to the 2,6-
1 of the total weight of diisopropylnaphthalene, its oxidized intermediate and 2,6-naphthalene dicarboxylic acid
A method for producing 2,6-naphthalene dicarboxylic acid according to claim 1, wherein at least 1 part by weight is used per part by weight.
JP8656385A 1985-04-24 1985-04-24 Production of 2,6-naphthalenedicarboxylic acid Granted JPS61246143A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8656385A JPS61246143A (en) 1985-04-24 1985-04-24 Production of 2,6-naphthalenedicarboxylic acid
US06/853,693 US4716245A (en) 1985-04-24 1986-04-18 Process for producing 2,6-naphthalenedicarboxylic acid
DE8686105535T DE3665859D1 (en) 1985-04-24 1986-04-22 Process for producing 2,6-naphthalenedicarboxylic acid
EP86105535A EP0204119B1 (en) 1985-04-24 1986-04-22 Process for producing 2,6-naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8656385A JPS61246143A (en) 1985-04-24 1985-04-24 Production of 2,6-naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS61246143A JPS61246143A (en) 1986-11-01
JPH0529022B2 true JPH0529022B2 (en) 1993-04-28

Family

ID=13890479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8656385A Granted JPS61246143A (en) 1985-04-24 1985-04-24 Production of 2,6-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS61246143A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791205B2 (en) * 1986-04-30 1995-10-04 三井石油化学工業株式会社 Oxidation method of diisopropylnaphthalene
JPH082836B2 (en) * 1987-04-07 1996-01-17 呉羽化学工業株式会社 Process for producing 2,6-naphthalenedicarboxylic acid
JPH0662496B2 (en) * 1988-12-19 1994-08-17 日本鋼管株式会社 Method for oxidizing 2,6-diisopropylnaphthalene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959613A (en) * 1957-02-08 1960-11-08 Ici Ltd Oxidation process
JPS4827318A (en) * 1971-08-17 1973-04-11
JPS516953A (en) * 1974-07-02 1976-01-20 Mitsubishi Chem Ind 2*66 nafutarenjikarubonsanno seizoho

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959613A (en) * 1957-02-08 1960-11-08 Ici Ltd Oxidation process
JPS4827318A (en) * 1971-08-17 1973-04-11
JPS516953A (en) * 1974-07-02 1976-01-20 Mitsubishi Chem Ind 2*66 nafutarenjikarubonsanno seizoho

Also Published As

Publication number Publication date
JPS61246143A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US4605763A (en) Process for the purification of terephthalic acid
EP0142719B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JP3875134B2 (en) Process for producing aromatic carboxylic acids by liquid phase oxidation of alkylaromatic compounds
EP0204119B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0529022B2 (en)
JPH0340015B2 (en)
JPH0564938B2 (en)
JPH01121240A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
US4925977A (en) Method for the preparation of naphthalene dicarboxylic acids
JPH0571574B2 (en)
JPH0645569B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JP2005502694A (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPH0335307B2 (en)
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPH0564939B2 (en)
JPH06157403A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS61246144A (en) Preparation of 2,6-naphthalenedicarboxilic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
US3819695A (en) Process for preparation of methylterephthalic acid and 4-methylisophthalic acid
JPH082836B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0529021B2 (en)
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPH0637424B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPS6229549A (en) Production of p-toluic acid