JP3187212B2 - Continuous production method of naphthalenedicarboxylic acid - Google Patents

Continuous production method of naphthalenedicarboxylic acid

Info

Publication number
JP3187212B2
JP3187212B2 JP20062293A JP20062293A JP3187212B2 JP 3187212 B2 JP3187212 B2 JP 3187212B2 JP 20062293 A JP20062293 A JP 20062293A JP 20062293 A JP20062293 A JP 20062293A JP 3187212 B2 JP3187212 B2 JP 3187212B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
cobalt
naphthalenedicarboxylic acid
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20062293A
Other languages
Japanese (ja)
Other versions
JPH0753457A (en
Inventor
三仁 青柳
和広 佐藤
浩二 隅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP20062293A priority Critical patent/JP3187212B2/en
Publication of JPH0753457A publication Critical patent/JPH0753457A/en
Application granted granted Critical
Publication of JP3187212B2 publication Critical patent/JP3187212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ジメチルナフタレン及
び/又はその酸化誘導体を酸化してナフタレンジカルボ
ン酸(以下、NDCAと略称することがある)を連続的
に製造する方法に関するものである。更に詳しくは、酸
化反応触媒を循環再使用した酸化方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing naphthalenedicarboxylic acid (hereinafter sometimes abbreviated to NDCA) by oxidizing dimethylnaphthalene and / or its oxidized derivative. More specifically, the present invention relates to an oxidation method in which an oxidation reaction catalyst is recycled and reused.

【0002】[0002]

【従来の技術】NDCA及びそのエステル(以下、ND
CA等と略称することがある)は、高分子材料、染料中
間体等として有用な物質である。特に2,6―NDCA
等とエチレングリコールとから形成されるポリエチレン
ナフタレートはポリエチレンテレフタレートよりも耐熱
性、破断強度等に優れており、フィルム、食品包装材料
等の素材として注目されている。更に、ポリブチレンナ
フタレート樹脂はポリブチレンテレフタレート樹脂に比
べて、結晶化速度が大きく、高い耐湿熱性を有している
ので、NDCA等は樹脂原料としても有用である。
2. Description of the Related Art NDCA and its esters (hereinafter referred to as NDCA)
Is sometimes useful as a polymer material, a dye intermediate or the like. Especially 2,6-NDCA
Polyethylene naphthalate formed from E. coli and ethylene glycol is superior to polyethylene terephthalate in heat resistance, breaking strength and the like, and is attracting attention as a material for films, food packaging materials and the like. Furthermore, since polybutylene naphthalate resin has a higher crystallization rate and higher moist heat resistance than polybutylene terephthalate resin, NDCA or the like is useful as a resin raw material.

【0003】従来、NDCAの製造方法としては、ジア
ルキルナフタレン及び/又はその酸化誘導体をコバル
ト、マンガン、臭素等を触媒に用いて、低級脂肪族カル
ボン酸溶媒中、分子状酸素により酸化する方法が提案さ
れている。
Heretofore, as a method for producing NDCA, a method has been proposed in which dialkylnaphthalene and / or its oxidized derivative is oxidized with molecular oxygen in a lower aliphatic carboxylic acid solvent using cobalt, manganese, bromine or the like as a catalyst. Have been.

【0004】この方法は、その反応様式によって回分
式、半連続式又は連続式に分類され、また、触媒を回収
・再使用する場合としない場合とに分類される。
[0004] This method is classified into a batch type, a semi-continuous type and a continuous type according to the reaction mode, and is classified into a case where the catalyst is recovered and reused and a case where it is not used.

【0005】NDCAを工業的規模で安価に製造するた
めには、回分式又は半連続式の反応様式では装置効率が
低いため、連続運転方式にして装置効率を高める必要が
ある。また、一般に芳香族炭化水素の液相酸化によるカ
ルボン酸の製造では、比較的高価な触媒を使用するた
め、触媒を循環再使用する、即ち、反応混合物から生成
粗NDCAを回収した残りの反応母液及び/又は生成粗
NDCAの洗浄濾液を循環再使用することが、プロセス
の経済性を高める上で有利である。
In order to produce NDCA at low cost on an industrial scale, the efficiency of the apparatus is low in a batch or semi-continuous reaction mode. In general, in the production of carboxylic acid by liquid phase oxidation of aromatic hydrocarbon, a relatively expensive catalyst is used. Therefore, the catalyst is recycled and used, that is, the remaining reaction mother liquor obtained by recovering the crude NDCA produced from the reaction mixture Recycling the washed filtrate of the crude NDCA and / or produced is advantageous in increasing the economics of the process.

【0006】酸化反応触媒を酸化反応混合物から回収し
循環再使用する方法の一つとして、反応混合物から触媒
のみを回収する方法が提案されている。例えば、2,6
―ジイソプロピルナフタレンの酸化反応において、コバ
ルト、マンガン、セリウム及び臭素を触媒として反応を
行う際、反応母液から触媒を回収するためにアルカリを
使用する方法(特開平2―250850号公報)、硫酸
を使用する方法(特開平2―250851号公報)、硫
酸及びアルカリを使用する方法(特開平2―25261
3号公報)等が提案されている。しかし、いずれの方法
も、装置材質に対する腐食性、あるいは操作性という面
からみて、NDCAを工業的規模で安価に製造しようと
するためには、現実性、経済性ともに十分とはいえな
い。
[0006] As one of the methods of recovering the oxidation reaction catalyst from the oxidation reaction mixture and reusing the same, it has been proposed to recover only the catalyst from the reaction mixture. For example, 2,6
In the oxidation reaction of diisopropylnaphthalene, when using cobalt, manganese, cerium and bromine as catalysts, a method using an alkali to recover the catalyst from the reaction mother liquor (JP-A-2-250850), using sulfuric acid (JP-A-2-250851), a method using sulfuric acid and an alkali (JP-A-2-25261).
No. 3) has been proposed. However, none of these methods is sufficiently realistic and economical to manufacture NDCA at low cost on an industrial scale in terms of corrosiveness to the material of the apparatus or operability.

【0007】一方、酸化反応触媒を酸化反応混合物から
回収し循環再使用する他の一つの方法として、反応濾液
を循環使用する方法が提案されている。例えば、2,6
―ジイソプロピルナフタレンの酸化反応において、コバ
ルト、マンガン、セリウム及び臭素を触媒として反応を
行う際、2段反応を行って、反応濾液を循環使用する方
法(特開平4―330039号公報)が提案されている
が、この方法は、後酸化という工程を有しているため、
プロセスの初期投資が増大し、経済性の面で有利とはい
えない。
On the other hand, as another method of recovering the oxidation reaction catalyst from the oxidation reaction mixture and recycling and using the same, a method of recycling the reaction filtrate has been proposed. For example, 2,6
-In the oxidation reaction of diisopropylnaphthalene, a method has been proposed in which, when performing a reaction using cobalt, manganese, cerium and bromine as catalysts, a two-step reaction is carried out and a reaction filtrate is recycled (JP-A-4-330039). However, this method has a post-oxidation step,
The initial investment in the process increases, which is not economically advantageous.

【0008】更に、2,6―ジイソプロピルナフタレン
又は2,6―ジエチルナフタレンの酸化方法として、反
応母液を再使用する方法が提案されている(特開平4―
266846号公報)。この方式による循環酸化反応は
基本的には可能であるが、2,6―ジイソプロピルナフ
タレンや2,6―ジエチルナフタレンの酸化反応の場
合、反応母液分離後の粗NDCA中には未だ多量のコバ
ルト、マンガンが同伴されていることを考慮すると、粗
NDCAを酢酸、水等で洗浄してこれらの触媒を回収し
て、触媒コストの低減化を図る必要がある。ところで、
ジメチルナフタレンについては当該方式での酸化反応に
ついて何等言及されていない。しかも、本発明者らの検
討によると、ジメチルナフタレンの場合、当該方式で酸
化反応を行うと循環初回で反応が停止してしまうという
重大な問題が発生した。
Further, as a method for oxidizing 2,6-diisopropylnaphthalene or 2,6-diethylnaphthalene, a method of reusing a reaction mother liquor has been proposed (Japanese Patent Application Laid-Open No. Hei 4-1992).
266846). Although the cyclic oxidation reaction by this method is basically possible, in the case of the oxidation reaction of 2,6-diisopropylnaphthalene or 2,6-diethylnaphthalene, a large amount of cobalt is still contained in the crude NDCA after the reaction mother liquor separation. Considering that manganese is entrained, it is necessary to wash the crude NDCA with acetic acid, water or the like to recover these catalysts, thereby reducing the catalyst cost. by the way,
No mention is made of dimethylnaphthalene regarding the oxidation reaction in this mode. In addition, according to the study of the present inventors, in the case of dimethylnaphthalene, a serious problem has occurred that if the oxidation reaction is performed in this manner, the reaction is stopped at the first circulation.

【0009】本発明者らは、この原因について鋭意究明
を行ったところ、2,6―ジイソプロピルナフタレンや
2,6―ジエチルナフタレンの場合と異なって、ジメチ
ルナフタレンの場合では循環初回で反応が停止してしま
う原因は、ナフタレン核開裂副生成物であるトリメリッ
ト酸、フタル酸、メチル置換フタル酸などのオルソ―ベ
ンゼンジカルボン酸類(以下、ODCAと略称すること
がある)が重金属酸化触媒と安定なキレート型錯体を形
成して触媒を不活性化してしまうため、粗NDCAに同
伴された触媒を補充するだけでは有効な触媒量が不足し
てしまうことによるためであることを明らかにできた。
The inventors of the present invention have conducted intensive studies on the cause. Unlike the case of 2,6-diisopropylnaphthalene and 2,6-diethylnaphthalene, the reaction was stopped at the first circulation in the case of dimethylnaphthalene. The cause of this is that naphthalene nucleus cleavage by-products such as trimellitic acid, phthalic acid, and methyl-substituted phthalic acids, such as ortho-benzenedicarboxylic acids (hereinafter abbreviated as ODCA), are stable chelates with heavy metal oxidation catalysts. It has been clarified that the formation of a type complex inactivates the catalyst, and thus merely supplementing the catalyst entrained in the crude NDCA results in a shortage of the effective catalyst amount.

【0010】これらの問題を回避するための方策とし
て、多量の重金属触媒を使用するという手段が考えられ
るが、ジメチルナフタレンの場合(2,6―ジイソプロ
ピルナフタレンや2,6―ジエチルナフタレンの場合と
異なって)、収率上適正な触媒濃度が比較的低く、徒ら
に多量の触媒を使用すると、NDCA収率は逆に低下す
る。加えて過剰に添加された重金属が酸化反応の間に変
質して、生成した酸化物が変質した触媒の作用により濃
灰色に着色してしまい、精製が非常に難しくなること、
更に、溶媒として用いている低級脂肪族カルボン酸の燃
焼ロスが増大するという、非常に不利な結果を招く。
As a measure to avoid these problems, it is conceivable to use a large amount of a heavy metal catalyst. However, in the case of dimethylnaphthalene (as opposed to the case of 2,6-diisopropylnaphthalene or 2,6-diethylnaphthalene), ), The yield of the catalyst is relatively low, and if too much catalyst is used, the yield of NDCA will be reduced. In addition to alteration during the added heavy metal oxidation reaction over-over -, oxides generated ends up colored dark gray by the action of the altered catalyst, the purification is very difficult,
Furthermore, a very disadvantageous result is caused in that the combustion loss of the lower aliphatic carboxylic acid used as a solvent increases.

【0011】[0011]

【発明が解決しようとする課題】本発明は、かような状
況を解消すべく、ジメチルナフタレン及び/又はその酸
化誘導体からNDCAを製造するに際し、コバルトやマ
ンガンと錯体を形成してその酸化活性を不活性化するO
DCAを選択的に除去して、酸化による連続製造法を提
供することにある。
SUMMARY OF THE INVENTION In order to solve such a situation, the present invention provides a method for producing NDCA from dimethylnaphthalene and / or its oxidized derivative, which forms a complex with cobalt or manganese to reduce its oxidizing activity. O to deactivate
An object of the present invention is to provide a continuous production process by oxidation by selectively removing DCA.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記方法
を確立するために鋭意検討を行い、重金属及び臭素を触
媒に用いたジメチルナフタレン及び/又はその酸化誘導
体の液相酸化反応において、重金属酸化触媒としてコバ
ルト、マンガンに加うるにセリウムを添加すれば、セリ
ウムが反応系内に存在するODCAと選択的にキレート
型錯体を形成し、コバルト、マンガンの酸化活性の不活
性化を防ぎ、且つ固体として析出して粗NDCAに同伴
されることにより、ODCAを反応母液から除去できる
ことを見い出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to establish the above-mentioned method. In the liquid-phase oxidation reaction of dimethylnaphthalene and / or its oxidized derivative using heavy metals and bromine as catalysts, If cerium is added to cobalt and manganese as a heavy metal oxidation catalyst, cerium selectively forms a chelate-type complex with ODCA present in the reaction system, preventing the inactivation of the oxidation activity of cobalt and manganese, In addition, the inventors have found that ODCA can be removed from the reaction mother liquor by being precipitated as a solid and accompanying the crude NDCA, thereby completing the present invention.

【0013】即ち、本発明は、低級脂肪族カルボン酸溶
媒中で、重金属酸化触媒及び臭素からなる触媒の存在下
に、分子状酸素含有ガスを用いて、ジメチルナフタレン
及び/又はその酸化誘導体を酸化する方法において、触
媒を循環再使用するに際し、重金属酸化触媒としてコバ
ルト、マンガン及びセリウムを添加することによって、
コバルト、マンガンの活性を維持し、ODCAを選択的
に反応系外に除去して、反応母液及び/又は生成ケーク
の洗浄濾液を全量循環再使用して行うNDCAの連続製
造法である。
That is, the present invention provides a method for oxidizing dimethylnaphthalene and / or its oxidized derivative using a molecular oxygen-containing gas in the presence of a heavy metal oxidation catalyst and a catalyst comprising bromine in a lower aliphatic carboxylic acid solvent. In the method, when the catalyst is recycled, by adding cobalt, manganese and cerium as a heavy metal oxidation catalyst,
This is a continuous method for producing NDCA by maintaining the activity of cobalt and manganese, selectively removing ODCA out of the reaction system, and circulating and recycling all of the reaction mother liquor and / or the washing filtrate of the resulting cake.

【0014】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0015】本発明で酸化原料として用いるジメチルナ
フタレン及び/又はその酸化誘導体は通常どのような方
法で得られたものでもよい。またそれらの混合物でもよ
い。酸化誘導体としては、ホルミルナフトエ酸、メチル
ナフトエ酸等が挙げられるが、これらには何等限定され
ない。そして、これらのうち、特に2,6―体が工業的
に有用である。酸化原料は高純度のものが好ましく、純
度95%以上、好ましくは98%以上であるが、収率に
影響を及ぼさない程度及び酸化反応終了後生成物を各種
方法で精製した際除去できる程度であれば2,6―体以
外の成分、例えば2,7―ジメチルナフタレン等の異性
体を含んでいても差し支えない。
[0015] Dimethylnaphthalene and / or its oxidized derivative used as an oxidation raw material in the present invention may be obtained by any method. Further, a mixture thereof may be used. Examples of the oxidized derivative include formylnaphthoic acid and methylnaphthoic acid, but are not limited thereto. Of these, the 2,6-form is particularly industrially useful. The oxidizing raw material is preferably of high purity, having a purity of 95% or more, preferably 98% or more. If present, components other than the 2,6-form, for example, isomers such as 2,7-dimethylnaphthalene may be contained.

【0016】本発明方法においては、炭素数1乃至5個
の脂肪族モノカルボン酸、即ち、蟻酸、酢酸、プロピオ
ン酸、酪酸、バレリアン酸、ブロモ酢酸等、あるいはこ
れらの混合物が溶媒の低級脂肪族カルボン酸として使用
できるが、これらの中では酢酸、プロピオン酸が好まし
く、特に酢酸が好ましい。
In the method of the present invention, an aliphatic monocarboxylic acid having 1 to 5 carbon atoms, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, bromoacetic acid, or a mixture thereof is used as a lower aliphatic solvent. Among them, acetic acid and propionic acid are preferable, and acetic acid is particularly preferable.

【0017】本発明方法において使用される溶媒は、上
記脂肪族モノカルボン酸に5〜45重量%、好ましくは
7〜35重量%、更に好ましくは10〜30重量%の水
を含んだものである。溶媒中の水分がこれより少ないと
脂肪族モノカルボン酸の燃焼ロスが大きく、反対に、こ
れより多いとNDCAの収率低下、純度低下を招き好ま
しくない。
The solvent used in the method of the present invention contains 5-45% by weight, preferably 7-35% by weight, more preferably 10-30% by weight of water in the above aliphatic monocarboxylic acid. . If the water content in the solvent is less than this, the combustion loss of the aliphatic monocarboxylic acid is large, while if it is more than this, the yield of NDCA and the purity are undesirably reduced.

【0018】なお、原料であるジメチルナフタレン及び
/又はその酸化誘導体に対する溶媒の使用量は通常2〜
15重量倍、好ましくは3〜10重量倍である。
The amount of the solvent used for the starting material dimethylnaphthalene and / or its oxidized derivative is usually 2 to
It is 15 times by weight, preferably 3 to 10 times by weight.

【0019】本発明で使用する酸化触媒は、コバルト、
マンガン、セリウムからなる重金属化合物及び臭素化合
物である。重金属酸化触媒は蟻酸塩、酢酸塩、プロピオ
ン酸塩等の有機酸塩、ハロゲン化物、水酸化物、酸化
物、炭酸塩等の形で用いられ、脂肪酸塩、特に酢酸塩及
び臭化物が好ましい。
The oxidation catalyst used in the present invention is cobalt,
It is a heavy metal compound consisting of manganese and cerium and a bromine compound. The heavy metal oxidation catalyst is used in the form of organic acid salts such as formate, acetate and propionate, halides, hydroxides, oxides, carbonates and the like, and fatty acid salts, particularly acetates and bromides, are preferred.

【0020】本発明方法における重金属酸化触媒の使用
量は、その合計濃度が、溶媒に対して0.2重量%以上
4重量%以下であり、好ましくは0.4重量%以上2.
0重量%以下である。重金属酸化触媒の使用量がこれよ
り少ない、又は多い場合、NDCAの収率低下、純度低
下を招き好ましくない。コバルトに対するマンガンの比
率(グラム原子比)は特に規制されないが、ODCA等
の収率を考慮すると、この比率は好ましくは1.0以下
である。セリウムの添加量は副生するODCAとモル数
で等量か、もしくはそれ以上の範囲であることが望まし
い。
The total amount of the heavy metal oxidation catalyst used in the method of the present invention is from 0.2 to 4% by weight, preferably from 0.4 to 2% by weight, based on the solvent.
0% by weight or less. If the amount of the heavy metal oxidation catalyst used is smaller or larger than this, the yield of NDCA and the purity are undesirably reduced. The ratio of manganese to cobalt (gram atomic ratio) is not particularly limited, but in consideration of the yield of ODCA and the like, this ratio is preferably 1.0 or less. The amount of cerium added is desirably equal to or greater than the molar number of ODCA by-produced or more.

【0021】一方、臭素化合物としては、酸化反応系に
溶解し、臭素イオンを発生するものであれば有機化合物
又は無機化合物のいずれであってもよく、具体的には、
分子状臭素(Br2 )、臭化水素、臭化ナトリウム、臭
化カリウム、臭化アンモニウム等の無機臭化物、又は臭
化アルキル、ブロモ酢酸のごとき臭素化脂肪酸等の有機
臭化物が挙げられる。臭化水素、臭化ナトリウム、臭化
カリウム、臭化コバルト及び臭化マンガン等が特に好ま
しい例である。臭素は、重金属酸化触媒の合計に対して
原子比で0.01〜2の範囲で通常使用できる。
On the other hand, the bromine compound may be either an organic compound or an inorganic compound as long as it is soluble in the oxidation reaction system and generates bromine ions.
Inorganic bromides such as molecular bromine (Br 2 ), hydrogen bromide, sodium bromide, potassium bromide and ammonium bromide, or organic bromides such as brominated fatty acids such as alkyl bromide and bromoacetic acid. Hydrogen bromide, sodium bromide, potassium bromide, cobalt bromide and manganese bromide are particularly preferred examples. Bromine can usually be used in an atomic ratio of 0.01 to 2 with respect to the total amount of the heavy metal oxidation catalyst.

【0022】本発明方法における酸化反応温度は180
〜230℃、好ましくは190〜220℃の範囲であ
る。反応温度が低いと反応速度が低下し、反対に高い場
合は副反応生成物が増加してNDCAの純度が低下す
る。反応圧力は前期反応温度において反応系が液相に保
持される圧力であることが条件で、通常10〜30kg
/cm2 程度が適当である。
The oxidation reaction temperature in the method of the present invention is 180
To 230 ° C, preferably 190 to 220 ° C. When the reaction temperature is low, the reaction rate decreases, while when it is high, the side reaction products increase and the purity of NDCA decreases. The reaction pressure is usually 10 to 30 kg under the condition that the reaction system is maintained at a liquid phase at the above-mentioned reaction temperature.
/ Cm 2 is appropriate.

【0023】本発明方法において使用する分子状酸素含
有ガスとしては、酸素ガス又はそれを窒素などの不活性
ガスで希釈した混合ガスが使用される。工業的には空気
が最も入手しやすく好ましい。
As the molecular oxygen-containing gas used in the method of the present invention, oxygen gas or a mixed gas obtained by diluting it with an inert gas such as nitrogen is used. Industrially, air is most easily available and preferred.

【0024】本発明の方法は回分式酸化法、半連続式酸
化法又は連続式酸化法のいずれに適用しても有効である
が、特に連続式酸化法の場合に効率的である。
The method of the present invention is effective when applied to any of the batch oxidation method, the semi-continuous oxidation method and the continuous oxidation method, but is particularly effective in the case of the continuous oxidation method.

【0025】酸化反応によって生成した粗NDCAは反
応生成物を固液分離することにより固相側に得ることが
できる。固液分離によって得られた粗DNCAは、酢酸
等による洗浄、水洗浄によって付着触媒溶液、酸化反応
中間体及びODCA触媒金属錯体を除去することがで
き、高純度化が可能である。更に必要な場合は、公知の
方法として知られている通常のNDCA精製法を用いれ
ば、極めて高純度のNDCAを得ることができる。
The crude NDCA produced by the oxidation reaction can be obtained on the solid phase side by subjecting the reaction product to solid-liquid separation. The crude DNCA obtained by the solid-liquid separation can remove the attached catalyst solution, the oxidation reaction intermediate and the ODCA catalyst metal complex by washing with acetic acid or the like and washing with water, and can be highly purified. If necessary, NDCA of extremely high purity can be obtained by using a normal NDCA purification method known as a known method.

【0026】[0026]

【発明の効果】本発明の方法によれば、NDCAを工業
的規模で効率よく、かつ連続的に製造することができ
る。
According to the method of the present invention, NDCA can be produced efficiently and continuously on an industrial scale.

【0027】[0027]

【実施例】以下、実施例に基いて、本発明を具体的に説
明する。なお、実施例及び比較例における部及び%はそ
れぞれ重量部及び重量%を示す。また、低級脂肪族カル
ボン酸の分解率は、生成物組成のガスクロマトグラフ分
析値より求めた。
The present invention will be specifically described below with reference to examples. Parts and% in Examples and Comparative Examples indicate parts by weight and% by weight, respectively. The decomposition rate of the lower aliphatic carboxylic acid was determined by gas chromatographic analysis of the product composition.

【0028】[0028]

【実施例1】還流冷却器を付したガス排出管、ガス吹込
管、原料連続送入ポンプ、触媒液連続送入ポンプ、生成
物抜出管及び攪拌機を有するチタン製オートクレーブに 酢酸 160部 酢酸コバルト・4水塩[Co(OOCCH3 2 ・4H2 O] 2.36部 酢酸マンガン・4水塩[Mn(OOCCH3 2 ・4H2 O] 1.26部 酢酸セリウム・1水塩[Ce(OOCCH3 3 ・1H2 O] 3.50部 47%臭化水素水 0.93部 水 17部 を入した。この触媒液中の水分濃度は10%であっ
た。この触媒液を、温度200℃、圧力20kg/cm
2 の条件下で激しく攪拌しながら、これに 2,6―ジメチルナフタレン 42部 を連続的に1時間かけて送入するとともに過剰の圧縮空
気を流通して酸化反応を行った。2,6―ジメチルナフ
タレンの送入開始1時間経過後、2,6―ジメチルナフ
タレンの送入を継続しつつ、上記組成の触媒液の送入を
開始した。その後、オートクレーブ内の反応混合物の量
を一定に維持するために、反応混合物の一部を抜出しつ
つ反応を継続し、計15時間反応を行った。
Example 1 A titanium autoclave having a gas discharge pipe, a gas injection pipe, a continuous feed pump for raw materials, a continuous feed pump for catalyst liquid, a product discharge pipe and a stirrer equipped with a reflux condenser, 160 parts of acetic acid and cobalt acetate tetrahydrate [Co (OOCCH 3) 2 · 4H 2 O] 2.36 parts of manganese acetate tetrahydrate [Mn (OOCCH 3) 2 · 4H 2 O] 1.26 parts cerium acetate monohydrate [Ce (OOCCH 3) 3 · 1H 2 O] 0.93 parts water 17 parts 3.50 parts of 47% aqueous hydrogen bromide was charged. The water concentration in this catalyst solution was 10%. This catalyst solution was heated at a temperature of 200 ° C. and a pressure of 20 kg / cm.
Under vigorous stirring under the conditions of 2 , 42 parts of 2,6-dimethylnaphthalene were continuously fed into the mixture over 1 hour, and an oxidation reaction was carried out by flowing excess compressed air. One hour after the start of the feeding of 2,6-dimethylnaphthalene, the feeding of the catalyst liquid having the above composition was started while the feeding of 2,6-dimethylnaphthalene was continued. Thereafter, in order to keep the amount of the reaction mixture in the autoclave constant, the reaction was continued while extracting a part of the reaction mixture, and the reaction was performed for a total of 15 hours.

【0029】抜出した反応混合物から主としてNDCA
よりなる固体沈澱を分離して反応母液を得た。固体沈澱
を、酢酸洗浄した後固液分離して洗浄濾液を得た。固体
沈澱の分離性は良好であった。この時NDCAの収率9
3.9モル%、ODCAの収率3.7モル%、酢酸の分
解率は5.0%であった。また、反応母液と洗浄濾液に
含まれるODCAはすべてセリウムと錯体を形成してい
た。
From the withdrawn reaction mixture, mainly NDCA
The resulting solid precipitate was separated to obtain a reaction mother liquor. The solid precipitate was washed with acetic acid and then solid-liquid separated to obtain a washed filtrate. The separability of the solid precipitate was good. At this time, the yield of NDCA was 9
3.9 mol%, the yield of ODCA was 3.7 mol%, and the decomposition rate of acetic acid was 5.0%. Further, ODCA contained in the reaction mother liquor and the washing filtrate all formed a complex with cerium.

【0030】反応母液と洗浄濾液を全量合一後、濃縮し
て過剰な水分を除去した。この時、反応に使用したコバ
ルト、マンガン、セリウムのうち、それぞれ98.5
%、97.5%、6.0%が濃縮後の液中に含まれてい
た。また、発生したODCAのうち、濃縮後の液中に含
まれていたのは3.7%であった。
After the reaction mother liquor and the washing filtrate were all combined, they were concentrated to remove excess water. At this time, of the cobalt, manganese, and cerium used in the reaction, each was 98.5.
%, 97.5%, and 6.0% were contained in the liquid after concentration. Further, 3.7% of the generated ODCA was contained in the liquid after concentration.

【0031】[0031]

【実施例2】実施例1で得た濃縮液に、洗浄ケークに同
伴されたものと同量のコバルト、マンガン、セリウム、
臭素を添加して、実施例1で使用した触媒液と、触媒濃
度が等しくなるように酢酸と水とを添加して触媒液を調
製した。この触媒液を用いた以外は実施例1と同様の操
作を行った。反応液の固体沈澱の分離性は良好であっ
た。この時NDCAの収率93.7モル%、ODCAの
収率3.6モル%、酢酸の分解率は5.2%であった。
また、反応母液と洗浄濾液に含まれるODCAはすべて
セリウムと錯体を形成していた。反応母液と洗浄濾液を
全量合一した後、濃縮して過剰な水分を除去した。この
時、使用したコバルト、マンガン、セリウムのうち、そ
れぞれ97.5%、96.0%、7.0%が濃縮後の液
中に含まれていた。また、反応混合物中に含まれるOD
CAのうち、濃縮後の液中に含まれていたものは3.5
%であった。
Example 2 The concentrated solution obtained in Example 1 was added with the same amount of cobalt, manganese, cerium as that entrained in the washing cake.
Bromine was added, and acetic acid and water were added so that the catalyst concentration used in Example 1 was equal to the catalyst solution to prepare a catalyst solution. The same operation as in Example 1 was performed except that this catalyst liquid was used. The separability of the solid precipitate of the reaction solution was good. At this time, the yield of NDCA was 93.7 mol%, the yield of ODCA was 3.6 mol%, and the decomposition rate of acetic acid was 5.2%.
Further, ODCA contained in the reaction mother liquor and the washing filtrate all formed a complex with cerium. After the reaction mother liquor and the washing filtrate were all combined, they were concentrated to remove excess water. At this time, of the cobalt, manganese, and cerium used, 97.5%, 96.0%, and 7.0% were contained in the liquid after concentration, respectively. In addition, the OD contained in the reaction mixture
Among the CAs, those contained in the liquid after concentration were 3.5.
%Met.

【0032】[0032]

【実施例3〜11】実施例2で得た濃縮液を用いて実施
例2と同様の操作を行った。以下、これと同様の操作を
繰返し、計10回反応を行った。各回の反応における固
体沈澱の分離性は良好であった。また、副生成物の蓄積
も見られなかった。反応結果を表1に示す。
Examples 3 to 11 The same operation as in Example 2 was performed using the concentrated solution obtained in Example 2. Hereinafter, the same operation was repeated, and the reaction was performed ten times in total. The separability of the solid precipitate in each reaction was good. No accumulation of by-products was observed. Table 1 shows the reaction results.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示す通り、コバルト、マンガンは、
その大部分が液側に回収され、ODCAの大部分が反応
系から除去できた。また、生成粗NDCAに同伴される
コバルト、マンガン、セリウム、臭素を補充して、反応
母液、洗浄濾液を循環再使用することにより、これらの
液に溶解している反応中間体から生成するNDCAを回
収できることから、NDCA収率は、実施例1に比べて
実施例2、3で向上し、以降良好なレベルを維持してい
ることが判った。
As shown in Table 1, cobalt and manganese are:
Most of the ODCA was recovered on the liquid side, and most of the ODCA could be removed from the reaction system. Also, the cobalt entrained in the produced crude ND CA, supplemented manganese, cerium, bromine, the reaction mother liquor, by the washing filtrate circulating reuse, generates a reactive intermediate dissolved in these solutions NDCA From the results, it was found that the NDCA yield was improved in Examples 2 and 3 as compared with Example 1 and maintained at a favorable level thereafter.

【0035】[0035]

【比較例1】実施例1で得た濃縮液に、セリウムを添加
しなかった以外は実施例2と同様の操作を行った。この
時、NDCAの収率92.0モル%、ODCAの収率
4.9モル%、酢酸の分解率は5.4%であった。この
時、反応に使用したコバルト、マンガンのうち、それぞ
れ80.0%、65.0%が反応母液、洗浄濾液中に含
まれていた。また、ODCAのうち、72.0%が濃縮
後の液中に含まれていた。
Comparative Example 1 The same operation as in Example 2 was performed except that cerium was not added to the concentrate obtained in Example 1. At this time, the yield of NDCA was 92.0 mol%, the yield of ODCA was 4.9 mol%, and the decomposition rate of acetic acid was 5.4%. At this time, 80.0% and 65.0% of cobalt and manganese used for the reaction were contained in the reaction mother liquor and the washing filtrate, respectively. Moreover, 72.0% of ODCA was contained in the liquid after concentration.

【0036】[0036]

【比較例2】比較例1で得た濃縮液を用いて、比較例1
と同様の操作を行った。この時、2,6―ジメチルナフ
タレン送入開始40分間後に酸素吸収が停止し、反応の
回復は不可能であった。なお、2,6―ジメチルナフタ
レンの転化率は65%であった。
Comparative Example 2 Using the concentrated solution obtained in Comparative Example 1, Comparative Example 1
The same operation as described above was performed. At this time, oxygen absorption was stopped 40 minutes after the start of 2,6-dimethylnaphthalene feeding, and it was impossible to recover the reaction. The conversion of 2,6-dimethylnaphthalene was 65%.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−250851(JP,A) 特開 平7−48314(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 51/487 C07C 51/265 C07C 63/38 C07B 61/00 300 B01J 31/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-250851 (JP, A) JP-A-7-48314 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 51/487 C07C 51/265 C07C 63/38 C07B 61/00 300 B01J 31/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ジメチルナフタレン及び/又はその酸化
誘導体を原料とし、該原料の少なくとも2重量倍の低級
脂肪族カルボン酸溶媒を用いて、コバルト、マンガン及
び臭素からなる触媒の存在下に、分子状酸素含有ガスを
用いて酸化する方法において、 (i)セリウムを添加して副生するオルソ―ベンゼンジ
カルボン酸類と選択的にキレート錯体を形成させ、 (ii)得られた反応混合物を生成ケークと濾液とに固
液分離し、該キレート錯体は生成ケークとして反応系外
に除去せしめ、 (iii)コバルト、マンガンの触媒活性を維持して、(iv)生成ケーク又はこれを低級脂肪族カルボン酸で
洗浄して得られた洗浄ケークに同伴されるコバルト、マ
ンガン、セリウム及び臭素を補充して、反応母液及び/
又は生成ケークの洗浄濾液を全量循 環再使用せしめるこ
とを特徴とするナフタレンジカルボン酸の連続製造法。
1. Using dimethylnaphthalene and / or an oxidized derivative thereof as a raw material, and using a lower aliphatic carboxylic acid solvent at least twice as much as the raw material in the presence of a catalyst composed of cobalt, manganese and bromine, In the method of oxidizing using an oxygen-containing gas, (i) cerium is added to selectively form a chelate complex with ortho-benzenedicarboxylic acids by-produced, and (ii ) the resulting reaction mixture is formed into a cake and a filtrate. To the solid
And liquid separation, the chelate complex is brought removed as product cake out reaction system, (iii) cobalt, to maintain the catalytic activity of manganese, at (iv) generating cake or which lower aliphatic carboxylic acid
Cobalt and mask entrained in the washed cake obtained by washing
Replenish with gangue, cerium and bromine and add the reaction mother liquor and / or
Or continuous preparation of naphthalenedicarboxylic acid, wherein the allowed to total amount recycling reuse washing filtrate product cake.
【請求項2】 溶媒中の触媒濃度が0.2重量%以上で
ある請求項1に記載のナフタレンジカルボン酸の連続製
造法。
2. The continuous production method of naphthalenedicarboxylic acid according to claim 1, wherein the concentration of the catalyst in the solvent is 0.2% by weight or more.
【請求項3】 低級脂肪族カルボン酸が酢酸である請求
項1に記載のナフタレンジカルボン酸の連続製造法。
3. The method for continuous production of naphthalenedicarboxylic acid according to claim 1, wherein the lower aliphatic carboxylic acid is acetic acid.
【請求項4】 酸化を反応温度180〜230℃で行う
請求項1に記載のナフタレンジカルボン酸の連続製造
法。
4. The continuous production method of naphthalenedicarboxylic acid according to claim 1, wherein the oxidation is performed at a reaction temperature of 180 to 230 ° C.
【請求項5】 溶媒中の水分濃度が5〜45重量%であ
る請求項1に記載のナフタレンジカルボン酸の連続製造
法。
5. The method for continuously producing naphthalenedicarboxylic acid according to claim 1, wherein the solvent has a water concentration of 5 to 45% by weight.
JP20062293A 1993-08-12 1993-08-12 Continuous production method of naphthalenedicarboxylic acid Expired - Fee Related JP3187212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20062293A JP3187212B2 (en) 1993-08-12 1993-08-12 Continuous production method of naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20062293A JP3187212B2 (en) 1993-08-12 1993-08-12 Continuous production method of naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPH0753457A JPH0753457A (en) 1995-02-28
JP3187212B2 true JP3187212B2 (en) 2001-07-11

Family

ID=16427444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20062293A Expired - Fee Related JP3187212B2 (en) 1993-08-12 1993-08-12 Continuous production method of naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP3187212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018059A1 (en) * 1997-10-03 1999-04-15 Eastman Chemical Company Preparation of 2,6-naphthalenedicarboxylic acid
KR100717650B1 (en) * 2002-08-08 2007-05-11 에스케이케미칼주식회사 Preparation method of naphthalene dicarboxylic acid

Also Published As

Publication number Publication date
JPH0753457A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
US4286101A (en) Process for preparing terephthalic acid
US3700731A (en) Process for oxidizing xylenes to phthalic acids
EP0142719B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
US5110982A (en) Process for producing 2,6-napthalene dicarboxylic acid
EP0204119B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPH01121240A (en) Production of 2,6-naphthalenedicarboxylic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JP4207273B2 (en) Method for producing naphthalenedicarboxylic acid
JPH0340015B2 (en)
JPS6293254A (en) Production of 2,6-naphthalenedicarboxylic acid
US4259522A (en) Process for the production of isophtahalic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JP3319044B2 (en) Method for producing high-purity terephthalic acid
JP4352191B2 (en) Production of pyromellitic acid
JPH04266846A (en) Production of 2,6-naphthalenedicarboxylic acid
JPH0529022B2 (en)
JPH0335307B2 (en)
JPH0645569B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0665143A (en) Production of naphthalendicarboxylic acid
JPH0571574B2 (en)
JP3288743B2 (en) Catalyst recovery method
JP3264753B2 (en) Method for producing 4-biphenylcarboxylic acid
JPH06228048A (en) Production of naphthalenecarboxylic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees