JPS6293254A - Production of 2,6-naphthalenedicarboxylic acid - Google Patents

Production of 2,6-naphthalenedicarboxylic acid

Info

Publication number
JPS6293254A
JPS6293254A JP23277685A JP23277685A JPS6293254A JP S6293254 A JPS6293254 A JP S6293254A JP 23277685 A JP23277685 A JP 23277685A JP 23277685 A JP23277685 A JP 23277685A JP S6293254 A JPS6293254 A JP S6293254A
Authority
JP
Japan
Prior art keywords
bromine
diisopropylnaphthalene
ndca
acid
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23277685A
Other languages
Japanese (ja)
Inventor
Noriharu Matsuda
松田 紀晴
Atsushi Sasagawa
笹川 厚
Shoichiro Hayashi
林 昭一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP23277685A priority Critical patent/JPS6293254A/en
Priority to DE19863633417 priority patent/DE3633417A1/en
Priority to FR8614473A priority patent/FR2588864A1/en
Priority to GB08624875A priority patent/GB2182928A/en
Publication of JPS6293254A publication Critical patent/JPS6293254A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Abstract

PURPOSE:To suppress the formation of nuclear brominated substance caused by Br components and obtain the titled compound in good yield, by oxidizing a 2,6-diisopropylnaphthalene with molecular O2 in the presence of a specific catalyst in a solvent consisting of an aliphatic monocarboxylic acid. CONSTITUTION:2,6-Diisopropylnaphthalene or an oxidation intermediate thereof expressed by formula I (R1 is formula II, III or IV; R2 is R1, -COOH or -COH) is reacted with molecular O2 in the presence of a catalyst containing a heavy metal, e.g. Co such as cobalt acetate and/or Mn such as manganese acetate, and Br at 1X10<-4>-<1X10<-2> atomic ratio of Br to the above-mentioned heavy metal, e.g. ammonium bromide, as constituent components in a solvent consisting of a <=3C aliphatic monocarboxylic acid, e.g. acetic acid, at 140-210 deg.C under >=0.1kg/cm<2> (absolute) partial pressure of O2 to afford the aimed compound. USE:A raw material for polyethylene naphthalate, polyamide, etc., useful as a raw material for producing films, textile products, etc.

Description

【発明の詳細な説明】 皮栗上傅■几分■ 本発明は、フィルムや繊維製品の製造原料として有用な
ポリエチレンナフタレート及びその他のポリエステル、
ポリアミドの製造に利用される2、6−ナフタレンジカ
ルボン酸の有利な製造法に関する。
Detailed Description of the Invention The present invention provides polyethylene naphthalate and other polyesters useful as raw materials for producing films and textile products.
This invention relates to an advantageous process for the production of 2,6-naphthalene dicarboxylic acid for use in the production of polyamides.

従」41え面 従来、2,6−ナフタレンジカルボン酸の製造法として
は、2.6−ジメチルナフタレンを酸化する方法、例え
ば2.6−ジメチルナフタレンを酢酸溶媒中でコバルト
ならびにマンガンと臭素の各成分から成る触媒の存在下
に分子状酸素で酸化する方法が知られており、この方法
では上記酸化反応が比較釣合。
Conventionally, 2,6-naphthalene dicarboxylic acid has been produced by oxidizing 2,6-dimethylnaphthalene, for example, by oxidizing 2,6-dimethylnaphthalene with cobalt, manganese and bromine in an acetic acid solvent. A method of oxidation with molecular oxygen in the presence of a catalyst consisting of components is known, in which the oxidation reaction described above is carried out in a comparatively balanced manner.

易であるため、2.6−ナフタレンジカルボン酸を比較
的高純度且つ高収率で得ることができる。
Since it is easy, 2,6-naphthalene dicarboxylic acid can be obtained with relatively high purity and high yield.

しかしながら、この方法で出発物質として用いる2、6
−ジメチルナフタレンは、それを製造するための方法が
、煩雑であって、大m且つ安価に得ることが困難である
。すなわち、2.6−ジメチルナフタレンの合成法とし
ては、ナフタレンのメチル化、ジメチルナフタレンの異
性化、モノメチルナフタレンの不均化ならびにトランス
・アルキル化法等が知られているが、これらのいずれの
方法によるも、2.6−ジメヂルナフタレン以外の他の
異性体、特に2,7−シメチルナフタレンの生成を避け
ることができず、しかも2.7−異性体はその融点、沸
点及び溶解性の点で2.6−シメチルナフタレンに近似
しているため、上記各合成法で得られる反応混合物中か
ら2,6−シメチルナフタレンを単離することが極めて
困難となる。
However, the 2,6 used as starting material in this method
- Dimethylnaphthalene is difficult to obtain in large quantities and at low cost because the method for producing it is complicated. That is, as methods for synthesizing 2,6-dimethylnaphthalene, methylation of naphthalene, isomerization of dimethylnaphthalene, disproportionation of monomethylnaphthalene, trans-alkylation, etc. are known, but any of these methods However, the formation of isomers other than 2,6-dimethylnaphthalene, especially 2,7-dimethylnaphthalene, cannot be avoided, and the 2,7-isomer has a lower melting point, boiling point, and solubility. Since it is similar to 2,6-dimethylnaphthalene in this respect, it is extremely difficult to isolate 2,6-dimethylnaphthalene from the reaction mixture obtained by each of the above synthesis methods.

一方、上記2,6−シメチルナフタレンに比べて、ジイ
ソプロピルナフタレンはナフタレンとプロピレンを反応
させることにより容易に合成することができ、そのアル
キル化、不均化、異性化ならびにトランス・アルキル化
も比較的容易に行ない得る利点がある。また、上記反応
により得られる混合ジイソプロピルナフタレンから2.
6一体の分離も容易である。因に、例えば、上記混合ジ
イソプロピルナフタレン中に共存する2、7一体はその
融点が2.6一体の融点と大きな差があるので、この融
点差を利用して容易に分離できる。
On the other hand, compared to the above-mentioned 2,6-dimethylnaphthalene, diisopropylnaphthalene can be easily synthesized by reacting naphthalene and propylene, and its alkylation, disproportionation, isomerization, and trans-alkylation are also compared. It has the advantage of being easy to implement. In addition, 2.
6. Separation of the unit is also easy. Incidentally, for example, since the melting point of 2,7-unit coexisting in the above-mentioned mixed diisopropylnaphthalene is significantly different from that of 2.6-unit, it can be easily separated by utilizing this melting point difference.

しかし、本発明者らの研究によると、2,6−ジイソプ
ロピルナフタレンは上述のように入手が容易であるもの
の、それを酸化反応させる場合、p−キシレンや2,6
−シメチルナフタレンを酸化するのに通した公知の反応
条件を通用すると多量の副生物が生成するため、2.6
−ジイソプロピルナフタレンを出発物質として用い、そ
れを酸化反応させて2.6−ナフタレンジカルボン酸を
製造せんとしてもその収率及び純度も低く、したがって
、工業的に2.6−ナフタレンジカルボン酸を製造する
ための方法としては実用的でない。
However, according to the research of the present inventors, although 2,6-diisopropylnaphthalene is easily available as mentioned above, when oxidizing it, p-xylene and 2,6-diisopropylnaphthalene are easily available.
- If the known reaction conditions used to oxidize dimethylnaphthalene are used, large amounts of by-products will be produced;
- Even if diisopropylnaphthalene is not used as a starting material and oxidized to produce 2,6-naphthalene dicarboxylic acid, the yield and purity are low, and therefore 2,6-naphthalene dicarboxylic acid is produced industrially. This is not a practical method.

上記2.6−ジイソプロピルナフタレンの酸化による方
法に関しては、従来、例えば2,6−ジイソプロピルナ
フタレンを脂肪族モノカルボン酸溶媒中で、コバルトな
らびにマンガンのような重金属と臭素との成分から成る
触媒の存在下に、分子伏酸素で酸化するに当って、12
.6%のl見合ジイソプロピルナフタレンを含む混合イ
ソプロピルナフタレンを出発室料として用い、且つ上記
触媒としてコバルト、マンガン及び臭素が下記の量比で
含まれているものを用いる方法が提案されている(特公
昭48−27318号)。
Regarding the above-mentioned method by oxidation of 2,6-diisopropylnaphthalene, conventionally, for example, 2,6-diisopropylnaphthalene is oxidized in an aliphatic monocarboxylic acid solvent in the presence of a catalyst consisting of components of heavy metals such as cobalt and manganese and bromine. Below, when oxidizing with molecular oxygen, 12
.. A method has been proposed in which a mixed isopropylnaphthalene containing 6% l of diisopropylnaphthalene is used as the starting material, and a catalyst containing cobalt, manganese, and bromine in the following quantitative ratio is used (Tokuko Sho). No. 48-27318).

X+Y+Z≧2.0 Y≧0.15/ X 0.2≦ Z ≦lO X + Y (ただし、式中X、YおよびZは、アルキルナフタレン
IWif1部当りコバルト、マンガンおよび臭素の各原
子の重量百分率を示す) しかるに、上記提案の方法を、実質上2.6−ジイソプ
ロピルナフタレンのみから成る出発物質の酸化に通用す
る場合には、2.6−ジイソプロピルナフタレンは該方
法のように多量のモノイソプロピルナフタレンで希釈さ
れていないためか、副反応が多く起り、収率は約50%
程度にしかならず、したがって、工業上有利な方法とは
言えない。
X+Y+Z≧2.0 Y≧0.15/ X 0.2≦ Z ≦lO However, when the above proposed method is applied to the oxidation of a starting material consisting essentially only of 2,6-diisopropylnaphthalene, 2,6-diisopropylnaphthalene is replaced by a large amount of monoisopropylnaphthalene as in the method. Probably because it was not diluted with water, many side reactions occurred, resulting in a yield of about 50%.
Therefore, it cannot be said to be an industrially advantageous method.

また、2,6−ジイソプロピルナフタレンもしくはその
酸化中間体を酸化する方法として、上記触媒成分として
のコバルト及び/又はマンガンを上記各出発物質1モル
当り0.2モル以上存在させることを特徴とする方法も
提案されている(特開昭60−89445号)。なお、
この方法では触媒の他の成分である臭素量に関しては一
義的に規制するのは困難ではあるが、コバルト及び/又
はマンガンの合計量に対し原子比で0.01〜2の範囲
で存在させ得ることが開示されており、その際使用した
臭素化合物はその一部が分解しにくい核臭化物に変換さ
れることが記載されている。
Further, as a method for oxidizing 2,6-diisopropylnaphthalene or its oxidized intermediate, a method characterized in that cobalt and/or manganese as the catalyst component is present in an amount of 0.2 mole or more per mole of each of the above starting materials. has also been proposed (Japanese Patent Laid-Open No. 60-89445). In addition,
In this method, it is difficult to unambiguously control the amount of bromine, which is another component of the catalyst, but it can be present in an atomic ratio of 0.01 to 2 with respect to the total amount of cobalt and/or manganese. It is disclosed that a part of the bromine compound used at that time is converted into a nuclear bromide that is difficult to decompose.

ところで、上記方法においては、出発物質としてのジイ
ソプロピルナフタレンならびにその酸化中間体の核臭化
物もジイソプロピルナフタレンと同じように、その側鎖
が酸化されてカルボン酸となるが、これらのカルボン酸
はナフタレンジカルボン酸に近似した物性を有するため
、反応混合物からのナフタレンジカルボン酸の分離、ネ
rJ製が極めて困難となる。
By the way, in the above method, the side chains of diisopropylnaphthalene as a starting material and its oxidized intermediate nuclear bromide are oxidized to carboxylic acids in the same way as diisopropylnaphthalene, but these carboxylic acids are converted into naphthalene dicarboxylic acids. Because the naphthalene dicarboxylic acid has physical properties similar to those of the above, it is extremely difficult to separate naphthalene dicarboxylic acid from the reaction mixture.

この積車化物については、例えば特公昭56−3858
号公報は、2,6−ナフタレンジカルボン酸の精製に当
っては、臭素誘導体の除去が最も必要であって、2.6
−ナフタレンジカルボン酸に臭素誘導体が含まれている
と、これを原料として得られる樹脂の軟化点が低下して
致命的欠陥になると記載している。
Regarding this car-loaded product, for example,
The publication discloses that in purifying 2,6-naphthalene dicarboxylic acid, removal of bromine derivatives is most necessary, and 2.6
- It is stated that if naphthalene dicarboxylic acid contains a bromine derivative, the softening point of the resin obtained using it as a raw material will decrease, resulting in a fatal defect.

また、同公報は、その実施例において、粗2.6−ナフ
タレンジカルボン酸には1000〜2000ppm+の
臭素が含まれているが、種々の精製法によるもなお10
〜40ppmの臭素が除去されずに残存することを示し
ている。
In addition, the same publication states in its Examples that crude 2,6-naphthalene dicarboxylic acid contains 1000 to 2000 ppm+ bromine, but even after various purification methods, 10
This indicates that ~40 ppm of bromine remains without being removed.

すなわち、上記のことから、2.6−ジイツブロピルナ
フタレンならびにその酸化中間体の酸化反応に際して2
.6−ナフタレンジカルボン酸に件なりて副生ずる積車
化物の除去がいかに困難であるかが理解し得る。
That is, from the above, in the oxidation reaction of 2,6-diitubropylnaphthalene and its oxidized intermediate, 2.
.. It can be seen how difficult it is to remove the by-products of 6-naphthalene dicarboxylic acid.

1)がVンtしようとするr。 古 本発明は上述したような状況に鑑みなされたものであっ
て、2.6−ジイツブロピルナフタレンもしくはその酸
化中間体を酸化することにより2,6−ナフタレンジカ
ルボン酸を製造するに当って、その物性に悪影響を与え
且つその精製を困難にする積車化物の生成を1m制する
ための方法を提供することを目的とする。
1) tries to do Vntr. The old invention was made in view of the above-mentioned situation, and in producing 2,6-naphthalene dicarboxylic acid by oxidizing 2,6-diitubropylnaphthalene or its oxidized intermediate, It is an object of the present invention to provide a method for controlling the production of a 1 m long carton which adversely affects its physical properties and makes its purification difficult.

本発明者らは、上記積車化物の生成抑制について検討す
る過程で、2.6−ジイツプロピルナフタレンを、コバ
ルト及び/又はマンガンと臭素とを成分として含有する
触媒の存在下に酸化反応させる場合における2、6−ジ
イツブロビルナフタレンの2個のイソプロピル基の酸化
挙動を詳細に研究した結果、最初の1個目のイソプロピ
ル基の酸化と、その酸化に続いて行なわれる2個目のイ
ソプロピル基の酸化では積車化物の生成するための酸化
条件が異なることを見出した。
In the process of investigating the suppression of the formation of the above-mentioned carloads, the present inventors conducted an oxidation reaction on 2,6-diitupropylnaphthalene in the presence of a catalyst containing cobalt and/or manganese and bromine as components. As a result of a detailed study of the oxidation behavior of the two isopropyl groups of 2,6-diitubrobylnaphthalene in the case of It was found that the oxidation conditions for the formation of bulk products are different in the oxidation of isopropyl groups.

すなわち、最初の1個目のイソプロピル基の酸化には臭
素は必要ないか或は極めて僅かの量が存在すればよく、
この際臭素が多量に存在すれば積車化物の生成量も著し
く増大し、更に上記酸化を抑制する重質化物等の副生物
の生成も増大するが、一方、2個目のイソプロピル基の
酸化では前段階のIIII目のイソプロピル基の酸化の
際に生成する副生物の量が少なければ、微量の臭素が存
在すると、窓外にも酸化が有効に行なわれることがわか
った。なお、2個目のイソプロピル基の酸化においても
臭素が多量に存在すると積車化物及びその山の副生物の
生成が増大する。
That is, bromine is not necessary or only needs to be present in a very small amount for the oxidation of the first isopropyl group,
At this time, if a large amount of bromine exists, the amount of loaded products will increase significantly, and the production of by-products such as heavy products that suppress the above oxidation will also increase, but on the other hand, the oxidation of the second isopropyl group It was found that if the amount of by-products produced during the previous step of oxidizing the isopropyl group III is small, oxidation can be effectively carried out outside the window if a trace amount of bromine is present. In addition, in the oxidation of the second isopropyl group, if a large amount of bromine is present, the formation of by-products in the form of piles and piles will increase.

本発明者らは、上記知見に基づいて、2,6−ジイツプ
ロピルナフタレンを、コバルト及び/又はマンガンと極
めて微量の臭素を構成分とする触媒の存在下に酸化反応
を行なうことにより、臭素誘導体く積車化物)の副生が
非富に少ない2,6−ナフタレンジカルボン酸を得るこ
とに成功した。
Based on the above findings, the present inventors conducted an oxidation reaction of 2,6-diitupropylnaphthalene in the presence of a catalyst containing cobalt and/or manganese and an extremely small amount of bromine. We succeeded in obtaining 2,6-naphthalene dicarboxylic acid with very little by-product (derivative compound).

因に、従来は、前述したとおり、2.6−ジイツプロピ
ルナフタレンの酸化に、P−キシレンやジメチルナフタ
レンの酸化に用いられている触媒、すな 。
Incidentally, as mentioned above, conventionally, catalysts have been used for the oxidation of 2,6-diitupropylnaphthalene, P-xylene, and dimethylnaphthalene.

わち、原子比で臭素がコバルト及びマンガンに対して0
.01〜10の濃度範囲で含有されている触媒を通用し
たため副反応が増大し、例えば反応系における2、6−
ジイソプロピルナフタレンの供給を少量売行なって系内
における分散を良好にしたり、系内の濃度を小さくする
等の対策を行なっても、積車化物の生成を抑制できなか
った。
In other words, the atomic ratio of bromine to cobalt and manganese is 0.
.. Because the catalyst contained in the concentration range of 01 to 10 was used, side reactions increased, for example, 2,6-
Even if measures were taken, such as supplying a small amount of diisopropylnaphthalene to improve dispersion within the system or reducing the concentration within the system, the formation of carloads could not be suppressed.

すなわち、このような従来の技術水準に鑑み、触媒中の
臭素の濃度を極めて微量にすることにより、上記積車化
物の生成を有効に抑制し得ることは予期し得ないことと
言える。
In other words, in view of the conventional state of the art, it is unexpected that the formation of the above-mentioned carloads can be effectively suppressed by reducing the concentration of bromine in the catalyst to an extremely small amount.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

光皿二盪底 本発明の特徴は、2,6−ジイツプロピルナフタレンも
しくはその酸化中間体を、炭素数3以下の脂肪族モノカ
ルボン酸からなる溶媒中で分子状酸素で酸化して2,6
−ナフタレンジカルボン酸を製造する方法において、上
記酸化を、コバルト及び/又はマンガンの重金属と、臭
素とを構成成分とし、且つ重金属原子1モル当り臭素原
子を1×10−◆乃至1×10−”未満含有する触媒の
存在下で行なうことにある。
A feature of the present invention is that 2,6-diitupropylnaphthalene or its oxidized intermediate is oxidized with molecular oxygen in a solvent consisting of an aliphatic monocarboxylic acid having 3 or less carbon atoms.
- A method for producing naphthalene dicarboxylic acid, in which the oxidation is performed using a heavy metal such as cobalt and/or manganese and bromine as constituent components, and the bromine atom is 1×10-◆ to 1×10-” per mole of heavy metal atom. The method is carried out in the presence of a catalyst containing less than or equal to

ここでいう“2.6−ジイソプロピルナフタレンの酸化
中間体”とは下記式(1)で示される化合物を意味する
The term "oxidized intermediate of 2,6-diisopropylnaphthalene" as used herein means a compound represented by the following formula (1).

Cl1i    CI!3 一ε−CH1を表わし、R2は上記各基および−COO
1)又は−Cl(Oを表わし、R1とR2は同一であっ
ても異なっていてもよい) ■ 占を 7するための 。
Cl1i CI! 3 represents -ε-CH1, R2 is each of the above groups and -COO
1) or -Cl (represents O, R1 and R2 may be the same or different) ■ For determining the fortune of 7.

本発明は、上述のように酸化触媒として、コバルト及び
/又はマンガンからなる重金属原子1モル当り臭素原子
を1×10−”乃至1×10−2未満の範囲の極めて微
量含有するものを使用することを特徴とするものであり
、これらの触媒成分として下記のものを例示し得る。
As mentioned above, the present invention uses as an oxidation catalyst an oxidation catalyst containing an extremely small amount of bromine atoms in the range of 1 x 10-'' to less than 1 x 10-2 per mole of heavy metal atoms consisting of cobalt and/or manganese. These catalyst components are exemplified by the following.

重金属であるコバルトならびにマンガンの成分としては
、酸化物、水酸化物、炭酸塩、ハロゲン化物等の無機塩
の他、ギ酸、酢酸、プロピオン酸、ナフテン酸、芳香族
カルボン酸等の有機酸塩が挙げられ、これらのうち好ま
しいのは脂肪酸塩、特に酢酸塩である。
Components of the heavy metals cobalt and manganese include inorganic salts such as oxides, hydroxides, carbonates, and halides, as well as organic acid salts such as formic acid, acetic acid, propionic acid, naphthenic acid, and aromatic carboxylic acids. Preferred among these are fatty acid salts, especially acetates.

また、臭素成分としては、酸化反応系に溶解し、臭素イ
オンを生成するものであれば、有機化合物又は無機化合
物のいずれであってもよく、分子状臭素、臭化水素、臭
化水素塩等の無機臭素化合物又は臭化メチル、臭化エチ
ル等の臭化アルキル、ブロモ酢酸のような臭素化脂肪酸
が挙げられる。
The bromine component may be any organic compound or inorganic compound as long as it dissolves in the oxidation reaction system and produces bromide ions, such as molecular bromine, hydrogen bromide, hydrobromide salts, etc. Examples include inorganic bromine compounds, alkyl bromides such as methyl bromide and ethyl bromide, and brominated fatty acids such as bromoacetic acid.

これらのうち、好ましいのは臭化水素、臭化ナトリウム
、臭化カリウム、臭化アンモニウム、臭化コバルト及び
臭化マンガン等である。
Among these, preferred are hydrogen bromide, sodium bromide, potassium bromide, ammonium bromide, cobalt bromide, manganese bromide, and the like.

本発明では触媒成分としての上指の臭素化合物を原子比
でコバルト及びマンガンからなる重金属成分に対し1×
10→乃至1×10−2未満の範囲、好ましくは5X1
0−’乃至8XIO−’の範囲になるように添加する。
In the present invention, the upper bromine compound as a catalyst component is used in an atomic ratio of 1× to the heavy metal component consisting of cobalt and manganese.
In the range of 10 → to less than 1×10 −2 , preferably 5×1
It is added in a range of 0-' to 8XIO-'.

ここで臭素化合物の上記原子比が1×10→より低いと
2,6−ナフタレンジカルボン酸への酸化反応が遅くて
工業的とは言えず、一方、1×10−2より高いと副反
応が増大して核臭化物の生成量が多くなるので適当でな
い。
If the above atomic ratio of the bromine compound is lower than 1 x 10→, the oxidation reaction to 2,6-naphthalene dicarboxylic acid is too slow to be considered industrial, while on the other hand, if it is higher than 1 x 10-2, side reactions may occur. This is not suitable as it increases the amount of nuclear bromide produced.

因に、酸化触媒における臭素成分が上述のように極めて
微量なものを、P−キシレンや2,6−シメチルナフタ
レンのように側鎖がメチル基である芳香族炭化水素の酸
化反応に通用した場合には、触媒効果が低くて実用性が
ない。これに対し、2,6−ジイソプロピルナフタレン
ならびにその酸化中間体では、これらの物質の側鎖のイ
ソプロピル基における3級水素がメチル基の水素に比べ
て活性であることから、上述の臭素成分が極めて微量で
ある触媒の存在下でも触媒効果が損なわれることなく、
酸化反応が行なわれると共に、前述したように、臭素成
分に起因する核臭化物の生成を抑制することが可能とな
る。
Incidentally, as mentioned above, an oxidation catalyst with an extremely small amount of bromine component can be used for the oxidation reaction of aromatic hydrocarbons whose side chains are methyl groups, such as P-xylene and 2,6-dimethylnaphthalene. In some cases, the catalytic effect is so low that it is not practical. On the other hand, in 2,6-diisopropylnaphthalene and its oxidized intermediates, the tertiary hydrogen in the isopropyl group in the side chain of these substances is more active than the hydrogen in the methyl group, so the above-mentioned bromine component is extremely Even in the presence of a trace amount of catalyst, the catalytic effect remains unchanged.
While the oxidation reaction is carried out, it becomes possible to suppress the production of nuclear bromide caused by the bromine component, as described above.

すなわち、臭素成分を極めて微量にした酸化触媒を用い
ての酸化反応により、2,6−ナフタレンジカルボン酸
を副反応を伴なうことなく有利に製造し得るのは、2.
6−ジイソプロピルナフタレンならびにその酸化中間体
を出発物質として用いることに特有なことであると言え
る。
That is, 2,6-naphthalene dicarboxylic acid can be advantageously produced without side reactions by an oxidation reaction using an oxidation catalyst containing an extremely small amount of bromine component.
This can be said to be unique to the use of 6-diisopropylnaphthalene and its oxidized intermediates as starting materials.

また、本発明で用いる触媒の重金属成分であるコバルト
成分とマンガン成分の量は、反応系に使用する溶媒10
0g当り全屈として0.03〜0.15モル、好ましく
は0.04〜0.12モルの範囲である。
In addition, the amount of cobalt component and manganese component, which are heavy metal components of the catalyst used in the present invention, is 10% of the solvent used in the reaction system.
The amount is in the range of 0.03 to 0.15 mol, preferably 0.04 to 0.12 mol per 0 g.

なお、コバルト成分とマンガン成分は単独でも混合物で
も使用し得るが、混合物の方が高い活性を示す。混合物
の場合の混合割合は任意でよいが、コバルト対マンガン
の原子比が5=95〜70:30のものが好ましい。
Note that the cobalt component and the manganese component can be used alone or in a mixture, but the mixture exhibits higher activity. In the case of a mixture, the mixing ratio may be arbitrary, but it is preferable that the atomic ratio of cobalt to manganese is 5=95 to 70:30.

また、上記溶媒としては、炭素数3以下の低級脂肪族カ
ルボン酸であればよく、ギ酸、酢酸、プロピオン酸、蓚
酸等を例示し得るが、酢酸が最も好ましい。
The solvent may be any lower aliphatic carboxylic acid having 3 or less carbon atoms, and examples include formic acid, acetic acid, propionic acid, and oxalic acid, with acetic acid being most preferred.

本発明では、出発物質としての2.6−ジイソプロピル
ナフタレンならびにその酸化中間体は、上記溶媒100
重量部当り、20重量部以下の濃度で反応系に供給する
とよく、濃度が上記以上に高くなると、その酸化に用い
る酸素の系内における/8解性を阻害するので好ましく
ない。
In the present invention, 2,6-diisopropylnaphthalene as a starting material and its oxidized intermediate are
It is preferable to supply it to the reaction system at a concentration of 20 parts by weight or less per part by weight; if the concentration is higher than the above, it is not preferable because it inhibits the /8 decomposition of oxygen used for oxidation in the system.

上記酸化に用いる分子状酸素は、純酸素ならびにそれを
不活性ガスで希釈した混合ガスとして使用されるが、実
用上には酸素含有ガスである空気を用いるとよい。
The molecular oxygen used in the above oxidation can be pure oxygen or a mixed gas obtained by diluting it with an inert gas, but in practice it is preferable to use air, which is an oxygen-containing gas.

本発明における酸化反応は、系内の酸素分圧が高いほど
速やかに進行するが、実用上は、0.1kg/cd(絶
対)以上、好ましくは0.2kg/ca+(絶対)〜8
kg/cA(絶対)程度の酸素分圧で十分である。例え
ば、分子状酸素を不活性ガスとの混合状態で使用した場
合、30kg/cdG以下の全圧で反応は速やかに進行
する。
The oxidation reaction in the present invention progresses more rapidly as the oxygen partial pressure in the system is higher, but in practice, it is 0.1 kg/cd (absolute) or more, preferably 0.2 kg/ca+ (absolute) to 8
An oxygen partial pressure of the order of kg/cA (absolute) is sufficient. For example, when molecular oxygen is used in a mixed state with an inert gas, the reaction proceeds rapidly at a total pressure of 30 kg/cdG or less.

また1反応器度は140〜210℃、好ましくは160
〜200℃であって、これより低い温度では反応が遅く
なり、一方、温度が更に高(なると系内の溶媒の燃焼損
失が増大するので得策でない。
Also, the temperature of one reactor is 140 to 210°C, preferably 160°C.
~200° C., and lower temperatures slow down the reaction, while higher temperatures (higher temperatures increase the combustion loss of the solvent in the system, which is not a good idea).

以下に実施例及び比較例を示して、本発明及びその効果
を具体的に説明する。なお、各例中の部は特記しない限
り重量を示す。
EXAMPLES The present invention and its effects will be specifically explained by showing Examples and Comparative Examples below. In addition, parts in each example indicate weight unless otherwise specified.

実施例1 還流冷却器、ガス吹込管、排出管およびffl拌礪を有
するチタン製加圧反応器に、氷酢酸2070部、酢酸コ
バルト・4水塩132部、酢酸マンガン・4水塩3、)
1部、および臭化アンモニウム1部の割合で含む溶液を
、毎時752部導入し、温度180℃、圧力10kg/
cdGに保ち、激しく攪拌しながら、これに酸素送入速
度として、毎時171部の割合で圧縮空気を流通した。
Example 1 2070 parts of glacial acetic acid, 132 parts of cobalt acetate/tetrahydrate, and 3 parts of manganese acetate/tetrahydrate were added to a titanium pressurized reactor having a reflux condenser, a gas blowing pipe, a discharge pipe, and an ffl stirring tank.
752 parts of a solution containing 1 part of ammonium bromide and 1 part of ammonium bromide were introduced per hour at a temperature of 180°C and a pressure of 10 kg/hour.
While maintaining the temperature at cdG and stirring vigorously, compressed air was passed through the reactor at an oxygen introduction rate of 171 parts per hour.

この時の系内におけるコバルトとマンガンの重金属成分
にり1する臭素成分の原子比はBr/ (Co+Mn)
 = 5X10−’  であった。
At this time, the atomic ratio of the bromine component to the heavy metal components of cobalt and manganese in the system is Br/ (Co+Mn)
= 5X10-'.

次いで、上記系内に2,6−ジイツブロビルナフタレン
(DIPN)を毎時60部の割合で供給して反応を行な
った。
Next, 2,6-diitubrobylnaphthalene (DIPN) was fed into the system at a rate of 60 parts per hour to carry out a reaction.

反応終了後、得られた反応混合物より主とじて2.6−
ナフタレンジカルボン酸(NDCA)より成る固体沈澱
を濾別して熱酢酸で洗滌し、粗NDCAと濾液に分けた
After completion of the reaction, mainly 2.6-
The solid precipitate consisting of naphthalene dicarboxylic acid (NDCA) was filtered off, washed with hot acetic acid, and separated into crude NDCA and the filtrate.

得られたNDCAの原料D[PNに対する収率は85.
3%で粗NDCAの臭素含有量は1)05ppであった
The yield of the obtained NDCA relative to the raw material D [PN was 85.
At 3%, the bromine content of crude NDCA was 1) 05 pp.

この粗NDCAを特公昭56〜3858号公報の実施例
1に記載の手順に準じて、精製処理した。
This crude NDCA was purified according to the procedure described in Example 1 of Japanese Patent Publication No. 56-3858.

先ず、粗NDC410部を5χ−a01)水溶液80部
に溶解し、少量のアルカリ不溶物を濾別後、濾液を6規
定塩酸を用いpH=7まで下げ、NDCAのモノナトリ
ウム塩を析出させた。
First, 410 parts of crude NDC was dissolved in 80 parts of a 5χ-a01) aqueous solution, a small amount of alkali insoluble matter was filtered off, and the filtrate was lowered to pH=7 using 6N hydrochloric acid to precipitate the monosodium salt of NDCA.

続いて、NDCへのモノナトリウム塩10部を水200
部に加え、約90℃で6規定塩酸によってpH=2まで
下げ酸析し、精製NDC^を得た。精製NDCi中の臭
素はippm以下であった。
Subsequently, 10 parts of the monosodium salt to NDC was added to 200 parts of water.
In addition, the pH was lowered to 2 with 6N hydrochloric acid at about 90°C, and acid precipitation was performed to obtain purified NDC^. Bromine in purified NDCi was below ippm.

実施例2 実施例1と同様の加圧反応器に、氷酢酸2070部、酢
酸コバルト・4水塩132部、酢酸マンガン・4水塩3
91部、および臭化アンモニウム0.1部の割合からな
る溶液を、毎時1000部で導入した。
Example 2 In a pressurized reactor similar to Example 1, 2070 parts of glacial acetic acid, 132 parts of cobalt acetate tetrahydrate, and 3 parts of manganese acetate tetrahydrate were added.
A solution consisting of 91 parts of ammonium bromide and 0.1 part of ammonium bromide was introduced at 1000 parts per hour.

この時の溶液中の Br/ (Co+Mn) = 5X
10−’(原子比)であった。
Br/(Co+Mn) in the solution at this time = 5X
It was 10-' (atomic ratio).

次いで、上記溶液を温度180°C1圧力20kg/c
JGに保ち、激しく攪拌しながら酸素送入速度として、
毎時1.80部の割合で圧縮空気を、また、毎時80部
の割合でDIPNを流して反応させた。
Next, the above solution was heated at a temperature of 180°C and a pressure of 20kg/c.
Maintaining the temperature at JG and stirring vigorously, increase the oxygen supply rate.
The reaction was carried out by flowing compressed air at a rate of 1.80 parts per hour and DIPN at a rate of 80 parts per hour.

反応終了後、実施例Iと同様に、粗NDCへを濾別した
。原料1)1PNに対するN D CAの収率は73.
3%であり、また、粗N1)CA中の臭素含量は40p
pmであった。
After the reaction was completed, crude NDC was filtered off in the same manner as in Example I. Raw material 1) The yield of NDCA based on 1PN is 73.
3%, and the bromine content in crude N1) CA is 40p
It was pm.

比較例1 実施例1において、反応系中の臭化アンモニウムを1部
に換えて14.9部の割合で含む溶液(Br/ (Co
+Mn) = 7.5X10−” (In子比)〕を使
JT目゛る以外は、実施例1に記載と間し条件で反応を
行なったところ、原料DII”Nに列するNDCAの収
率は64.9%で、得られた粗NDCA中の臭素含有量
は3765ppmに著しく増大した。
Comparative Example 1 In Example 1, a solution containing 14.9 parts of ammonium bromide in the reaction system (Br/(Co
+Mn) = 7.5X10-" (In particle ratio)], and the reaction was carried out under the same conditions as described in Example 1, except for JT. The yield of NDCA in the raw material DII"N was 64.9%, and the bromine content in the obtained crude NDCA was significantly increased to 3765 ppm.

この粗NDCへを実施例1と同様にして精製処理したが
、NDCA中の臭素含有量は33ppraまでにしか減
少しなかった。
This crude NDC was purified in the same manner as in Example 1, but the bromine content in NDCA was only reduced to 33 ppra.

実施例3 実施例1と同様の加圧反応器に、氷酢酸2410部、酢
酸コバルト・4水PA97部、酢酸マンガン・4水塩1
93部および臭化アンモニウム0.12部の割合で含む
溶液を、毎時870部で導入した。このとき、上記溶液
中の Br/ (Co+門n) = 1.lX10−’
 (原子比)であった。
Example 3 In a pressurized reactor similar to Example 1, 2410 parts of glacial acetic acid, 97 parts of cobalt acetate/tetrahydrate PA, and 1 part of manganese acetate/tetrahydrate were added.
A solution containing 93 parts of ammonium bromide and 0.12 parts of ammonium bromide was introduced at a rate of 870 parts per hour. At this time, Br/(Co+gate n) in the above solution = 1. lX10-'
(atomic ratio).

次いで、上記溶液を温度170℃、圧力30kg/ct
Gで激しく攪拌しながら、酸素導入速度として毎時17
4部の圧縮空気を流通しながら、DIPNを毎時80部
導入た。
Next, the above solution was heated at a temperature of 170°C and a pressure of 30 kg/ct.
While stirring vigorously at G, the oxygen introduction rate was 17 per hour.
80 parts per hour of DIPN was introduced while passing 4 parts of compressed air.

得られたNDCAの収率は、原料DII’Nに対し72
.3%で粗1〜DCA中の臭素含量は53ppmであっ
た。
The yield of the obtained NDCA was 72% with respect to the raw material DII'N.
.. At 3%, the bromine content in crude 1-DCA was 53 ppm.

実施例4 実施例1と同様の加圧反応器に、氷酢酸2070部、酢
酸コバルト・4水塩350部、酢酸マンガン・4水塩1
70部および臭化アンモニウム1.5部の割合からなる
溶液を毎時1296部で導入した。この時の上記溶液中
の Br/ (Co+Mn) −7,4XIO−’ (
原子比)であった。
Example 4 In a pressurized reactor similar to Example 1, 2070 parts of glacial acetic acid, 350 parts of cobalt acetate tetrahydrate, and 1 part of manganese acetate tetrahydrate were added.
A solution consisting of 70 parts of ammonium bromide and 1.5 parts of ammonium bromide was introduced at 1296 parts per hour. At this time, Br/ (Co+Mn) -7,4XIO-' (
atomic ratio).

次いで、上記/8液を温度185℃、圧力20kg /
 aJ Gに保ら、激しく盟作しながら、これに酸素導
入速度として毎時240部の割合で圧縮空気を流通しな
がら、1llt’llを毎時104部導入して反応を行
なった。
Next, the above liquid /8 was heated at a temperature of 185°C and a pressure of 20 kg /
The reaction was carried out by introducing 104 parts per hour of 1llt'll while maintaining the aJG and vigorously working the mixture, while passing compressed air through the reactor at an oxygen introduction rate of 240 parts per hour.

得られたNDCAの収率は、原料1)1)’Nに対し8
0.7%であった。また粗NrlCA中の臭素含量は2
12ppmであった。
The yield of the obtained NDCA was 8 for the raw materials 1)1)'N
It was 0.7%. In addition, the bromine content in crude NrlCA is 2
It was 12 ppm.

この相NDCAを実施例1と同様の方法で精製したとこ
ろ、NDCA中の臭素は2 p p mまで低減した。
When this phase NDCA was purified in the same manner as in Example 1, the bromine content in NDCA was reduced to 2 ppm.

比較例2〜5 還流冷却器、ガス吹込管、排出管および攪拌機を有する
チクンオートクレープに、氷酢酸100部と下記表に示
す各触媒を入れ、これに10部のDIPNならびに10
部の2.6−シメチルナフタレン(DMN)をそれぞれ
導入して酸化を行なった。
Comparative Examples 2 to 5 100 parts of glacial acetic acid and each catalyst shown in the table below were placed in a chikun autoclave equipped with a reflux condenser, a gas blowing pipe, a discharge pipe, and a stirrer, and 10 parts of DIPN and 10 parts of DIPN were added to this.
2,6-dimethylnaphthalene (DMN) was introduced to perform oxidation.

酸化反応は、温度180℃、圧力10kg/cJGで空
気を酸素送入速度として毎時8部の割合で3時間流通し
て行なった。
The oxidation reaction was carried out at a temperature of 180° C., a pressure of 10 kg/cJG, and air flowing at a rate of 8 parts per hour for 3 hours.

結果は表に示すとおりである。The results are shown in the table.

手続粕1)正書 昭和60年12月5日 特許庁長官 宇 ¥X  ′fi 部 殿1、事件の表
示  昭和60年特許願第232776号2、発明の名
称  2,6−ナフタレンジカルボン酸の製造法3、補
正をする者 事件との関係 特許出願人 名 称   (1)0)呉羽化学工業株式会社4、代理
人 住 所 東京都港区東新橋2丁目7番7号新橋国際ビル
5、補正命令の日付  自発 6、補正により増加する発明の数 8、補正の内容 明m書を下記のとおり補正する。
Proceedings 1) Author: December 5, 1985 Director General of the Patent Office U ¥X'fi Department 1, Indication of the case: 1985 Patent Application No. 232776 2, Title of the invention: Production of 2,6-naphthalene dicarboxylic acid Law 3, Relationship with the case of the person making the amendment Patent applicant name (1) 0) Kureha Chemical Industry Co., Ltd. 4, agent address 5, Shinbashi Kokusai Building, 2-7-7 Higashi-Shinbashi, Minato-ku, Tokyo, order for amendment The date of the petition 6, the number of inventions increased by the amendment 8, and the statement of contents of the amendment are amended as follows.

(1)  特許請求の範囲を別紙のとおり補正する。(1) The scope of claims is amended as shown in the attached sheet.

(2)第1)頁第7行に[m全屈原子1モル当り臭素原
子を」とあるを[重金属に対する臭素の原子比が」と補
正する。
(2) In line 7 of page 1, the statement [bromine atoms per mole of all m-total atoms] is corrected to [the atomic ratio of bromine to heavy metals].

(3)第1)頁第8行に「未満含有する」とあるを「未
満である」と補正する。
(3) In the 8th line of page 1, the phrase "contains less than" is amended to "contains less than".

(4)第1)頁最終行に rclI3               rcHヨ−
C−COII  とあるを −叶001)  と補正す
る。
(4) 1st) In the last line of the page, rclI3 rcH yo-
C-COII is corrected to -Kano001).

Cl13J        CH3J (5)第12頁第3行に[異なっていてもよい)」とあ
るを「異なっていもよく、又は一方が−C1l (CH
3)2である。)」と補正する。
Cl13J CH3J (5) In the third line of page 12, it says "[may be different]" to "may be different, or one of them is -C1l (CH
3) It is 2. )” is corrected.

(6)第12頁第6〜7行に「重金属原子1モル当り臭
素原子を」とあるを「重金属に対する臭素の原子比が」
と補正する。
(6) On page 12, lines 6-7, the phrase “bromine atom per mole of heavy metal atom” should be replaced with “the atomic ratio of bromine to heavy metal.”
and correct it.

2、特許請求の範囲 fil  2,6−ジイソプロピルナフタレンもしくは
その酸化中間体を、炭素数3以下の脂肪族モノカルボン
酸からなる溶媒中で分子状酸素で酸化して2.6−ナフ
タレンジカルボン酸を製造する方法において、上記酸化
を、(i)コバルト及び/又はマンガンの重金属と、(
1))臭素とを構成成分とし且つ重金属に対する 74
の、予圧が1×10−”乃至1×10−2未満ユ上る触
媒の存在下で行なうことを特徴とする2、6−ナフタレ
ンジカルボン酸の製造法。
2. Claims fil 2,6-diisopropylnaphthalene or its oxidized intermediate is oxidized with molecular oxygen in a solvent consisting of an aliphatic monocarboxylic acid having 3 or less carbon atoms to produce 2,6-naphthalene dicarboxylic acid. In the manufacturing method, the oxidation is performed by combining (i) a heavy metal of cobalt and/or manganese;
1)) Contains bromine as a constituent and is resistant to heavy metals 74
A method for producing 2,6-naphthalene dicarboxylic acid, which is carried out in the presence of a catalyst with a prepressure of 1 x 10-'' to less than 1 x 10-2.

手続補正書 昭和61年1月8日 2、発明の名称  2,6−ナフタレンジカルボン酸の
製造法3、補正をする者 事件との関係 特許出願人 名 称  (1)0)呉羽化学工業株式会社4、代理人 住 所 東京都港区東新412丁目7番7号新橋国際ビ
ル5、補正命令の日付  自発 6、補正により増加する発明の数 8、補正の内容 明細書を下記のとおり補正する。
Procedural amendment dated January 8, 1985 2, Title of the invention Process for producing 2,6-naphthalene dicarboxylic acid 3, Relationship to the case of the person making the amendment Name of patent applicant (1) 0) Kureha Chemical Industry Co., Ltd. 4 , Agent address: 5 Shinbashi Kokusai Building, 412-7-7 Higashishin, Minato-ku, Tokyo Date of amendment order Voluntary action 6 Number of inventions increased by amendment 8 The detailed description of the amendment is amended as follows.

fil  第17頁第1行乃至第22頁最終行に「その
効果を具体的に説明する。−・−−一−−・−・−・・
・・−・−−一−−−・−・−・・−・・−・・−・・
−結果は表に示すとおりである。」とあるを次のように
補正する。
fil From the first line of page 17 to the last line of page 22, it says, ``Explain the effect in detail.
・・−・−−1−−−・−・−・・−・・−・・−・・
-The results are shown in the table. ” should be corrected as follows.

[その効果を具体的に説明する。[The effect will be explained in detail.

実施例 l 還流冷却器、ガス吹込管、排出管および攪拌機を有する
51チクン製加圧反応器に、氷酢酸2070g酢酸コバ
ルト・4水塩132g 、酢酸マンガン・4水塩391
 g 、および臭化アンモニウム1gの割合で含む溶液
を、毎時752g導入し、温度180℃、圧力10kg
/cnlGに保ち、激しく攪拌しながら、これに酸素送
入速度として、毎時171gの割合で圧縮空気を流通し
た。
Example 1 2070 g of glacial acetic acid, 132 g of cobalt acetate/tetrahydrate, and 391 g of manganese acetate/tetrahydrate were placed in a pressurized reactor manufactured by No. 51 Chikun, which had a reflux condenser, a gas blowing pipe, a discharge pipe, and a stirrer.
752 g of a solution containing 1 g of ammonium bromide and 1 g of ammonium bromide were introduced per hour at a temperature of 180°C and a pressure of 10 kg.
/cnlG, and while stirring vigorously, compressed air was passed through it at an oxygen feed rate of 171 g/hour.

この時の系内におけるコバルトとマンガンの重金属成分
に対する臭素成分の原子比は 1)r / (Co+Mnl = 5 Xl0−’  
であった。
At this time, the atomic ratio of the bromine component to the heavy metal components of cobalt and manganese in the system is 1) r / (Co+Mnl = 5 Xl0-'
Met.

次いで、上記系内に2.6−ジイツプロピルナフタレン
(DTI’N)を毎時60gの割合で供給して反応を行
なった。
Next, 2,6-diitupropylnaphthalene (DTI'N) was fed into the system at a rate of 60 g/hour to carry out a reaction.

反応終了後、得られた反応混合物より主として2.6−
ナフタレンジカルボン酸(NDCA)より成る固体化I
l没を濾別して熱酢酸で洗務し、粗NDCAと濾液に分
りた。
After completion of the reaction, mainly 2.6-
Solidified I consisting of naphthalene dicarboxylic acid (NDCA)
The residue was filtered off and washed with hot acetic acid to separate crude NDCA and filtrate.

fiられたNDCAの原料DIPNに対する収率は85
.3%で粗NDCAの臭素含有量は105ppiであっ
た。
The yield of NDCA based on the raw material DIPN was 85
.. At 3%, the bromine content of crude NDCA was 105 ppi.

この粗ND(:Aを特公昭56−3858号公報の実施
例1に記載の手順に準じて、精製処理した。
This crude ND(:A) was purified according to the procedure described in Example 1 of Japanese Patent Publication No. 56-3858.

先ず、相NDCA Logを5%−NaO1)水溶液8
0gに溶解し、少量のアルカリ不溶物を濾別後、濾液を
6規定塩酸を用いpH=7まで下げ、NDCAのモノナ
トリウム塩を析出させた。
First, phase NDCA Log was prepared using 5%-NaO1) aqueous solution 8
After dissolving a small amount of alkali insoluble matter by filtration, the filtrate was lowered to pH=7 using 6N hydrochloric acid to precipitate the monosodium salt of NDCA.

続いて、NDCAのモノナトリウム塩10gを水200
gに加え、約90℃で6規定塩酸によってpH=2まで
下げ酸析し、精製NDCAを(qた。精製NDCA中の
臭素は1 ppm以下であった。
Next, add 10 g of monosodium salt of NDCA to 200 g of water.
In addition, the purified NDCA was acidified by lowering the pH to 2 with 6N hydrochloric acid at about 90° C. to obtain purified NDCA (q).The bromine content in the purified NDCA was 1 ppm or less.

実施例 2 実施例1と同様の加圧反応器に、氷酢酸2070g、酢
酸コバルト・4水塩132g 、酢酸マンガン・4水塩
391g 、および臭化アンモニウム0.1gの割合か
らなる溶液を、毎時1000gで導入した。この時の溶
液中のBr / (Co+Mn) = 5 Xl0−′
+(原子比)であった。
Example 2 A solution consisting of 2070 g of glacial acetic acid, 132 g of cobalt acetate tetrahydrate, 391 g of manganese acetate tetrahydrate, and 0.1 g of ammonium bromide was added every hour to a pressurized reactor similar to Example 1. It was introduced at 1000g. Br/(Co+Mn) in the solution at this time = 5 Xl0-'
+ (atomic ratio).

次いで、上記溶液を温度180°C1圧力20kg/ 
cJGに保ち、激しく攪拌しながら酸素送入速度として
、毎時180gの割合で圧縮空気を、また、毎時80g
の割合でDIPNを流して反応さ−Uた。
Next, the above solution was heated at a temperature of 180°C and a pressure of 20kg/
cJG, compressed air at a rate of 180 g/hour while stirring vigorously, and 80 g/hour.
The reaction was carried out by flowing DIPN at a rate of .

反応終了後、実施例1と同様に、粗NDCAを濾別した
。原料DTPNに対するNDCAの収率は73.3%で
あり、また、粗NDC^中の臭素含量は40ppmであ
った。
After the reaction was completed, crude NDCA was filtered off in the same manner as in Example 1. The yield of NDCA based on the raw material DTPN was 73.3%, and the bromine content in the crude NDC was 40 ppm.

比較例 l 実施例1において、反応系中の臭化アンモニウムをIg
に1負えて14.9gの一;り合で含む・ン容l皮(B
r / (Go+Mn) =7.5 Xl0−2(原子
比)〕を使用する以外は、実施例1に記載と同じ条件で
反応を行なったところ、原料DIl’Nに対するNDC
Aの収率は64.9%で、(与られた粗HDCA中の臭
素含量は3765ppmに著しく増大した。
Comparative Example l In Example 1, ammonium bromide in the reaction system was
Contains 14.9g of skin (B)
r/(Go+Mn) = 7.5 Xl0-2 (atomic ratio)], the reaction was carried out under the same conditions as described in Example 1.
The yield of A was 64.9% (the bromine content in the given crude HDCA increased significantly to 3765 ppm).

この粗NDCAを実施例1と同様にして精製処理したが
、NDC^中の臭素含有量は839p1)1までにしか
減少しなかった。
This crude NDCA was purified in the same manner as in Example 1, but the bromine content in NDC^ was reduced only to 839p1)1.

実施例 3 実施例1と同様の加圧反応器に、氷酢酸2410g、酢
酸コバルト・4水塩97g、酢酸マンガン・4水塩19
3gおよび臭化アンモニウム0.12gの割合で含む溶
液を、毎時870gで導入した。このとき、上記/8液
中のBr / (Co+Mn) =1.I Xl0−”
 (原子比)であった。
Example 3 In a pressurized reactor similar to Example 1, 2410 g of glacial acetic acid, 97 g of cobalt acetate/tetrahydrate, and 19 g of manganese acetate/tetrahydrate were added.
A solution containing 3 g of ammonium bromide and 0.12 g of ammonium bromide was introduced at a rate of 870 g per hour. At this time, Br / (Co+Mn) in the above /8 solution = 1. IXl0-”
(atomic ratio).

次いで、上記溶液を温度170℃、圧力30kg/ c
iGで激しく攪拌しながら、酸素導入速度として毎時1
74gの圧縮空気を流通しながら、DIPNを毎時80
g導入した。
Next, the above solution was heated at a temperature of 170°C and a pressure of 30kg/c.
While stirring vigorously with iG, the oxygen introduction rate was 1/hour.
DIPN is 80 per hour while flowing 74g of compressed air.
g was introduced.

得られたNDCAの収率は、原料DIPNに対し72,
3%でl’1NDcA中の臭素含有量は53pp朔であ
った。
The yield of the obtained NDCA was 72%, based on the raw material DIPN.
At 3%, the bromine content in l'1NDcA was 53 ppm.

実施例 4 実施例1と同様の加圧反応器に、氷酢酸2070g、酢
酸コバルト・4水塩350g 、酢酸マンガン・4水塩
170 g 、および臭化アンモニウム1.5gの割合
からなる溶液を毎時1296gで導入した。この時の上
記溶液中のBr / ((:o+Mn) =7.4 X
l0−’ (原子比)であった。
Example 4 A solution consisting of 2070 g of glacial acetic acid, 350 g of cobalt acetate tetrahydrate, 170 g of manganese acetate tetrahydrate, and 1.5 g of ammonium bromide was added every hour to a pressurized reactor similar to Example 1. It was introduced at 1296 g. Br in the above solution at this time / ((:o+Mn) = 7.4
l0-' (atomic ratio).

次いで、上記/8/&を温度185°C1圧力20kg
/ cnlGに保ち、激しく攪拌しながら、これに酸素
導入速度として毎時240gの割合で圧縮空気を流通し
ながら、[]Il’Nを毎時140g導入して反応を行
なった。
Next, the above /8/& was heated at 185°C and 20kg under pressure.
/cnlG, and while vigorously stirring and flowing compressed air at an oxygen introduction rate of 240 g/hour, a reaction was carried out by introducing 140 g of []Il'N/hour.

得られたNDCAの収率は、原料DTPNに対し80.
7%であった。また粗NDCA中の臭素含有量は212
ppmであった。
The yield of the obtained NDCA was 80% based on the raw material DTPN.
It was 7%. In addition, the bromine content in crude NDCA is 212
It was ppm.

この#1NOcAを実施(夕1)と同様の方法で精製し
たところ、NDCA中の臭素は2 ppmまで低減した
When this #1 NOcA was purified in the same manner as in the experiment (evening 1), the bromine content in NDCA was reduced to 2 ppm.

比較例2〜5 1流冷却器、ガス吹込管、排出管および攪拌機を有する
0、2iチタンオートクレーブに、氷酢酸100gと下
記表に示す各触媒を入れ、これにlogのDIPNなら
びにlogの2,6−シメチルナフタレン(DトIN)
をそれぞれ導入して酸化を行なった。
Comparative Examples 2 to 5 100 g of glacial acetic acid and each catalyst shown in the table below were placed in a 0.2i titanium autoclave equipped with a one-flow cooler, a gas blowing pipe, a discharge pipe, and a stirrer, and log of DIPN and log of 2, 6-dimethylnaphthalene (D-IN)
were introduced and oxidized.

酸化反応は、温度180°C1圧力10kg/ c+j
Gで空気を酸素送入速度として毎時8gの割合で3時間
流通して行なった。
The oxidation reaction is carried out at a temperature of 180°C and a pressure of 10kg/c+j.
The test was carried out by circulating air at a rate of 8 g/hour for 3 hours with an oxygen supply rate of 8 g/hour.

結果は表に示すとおりである。」 (2)第23頁の表中、比較例2〜5の欄に「部」とあ
るを1g」と夫々補正する。
The results are shown in the table. (2) In the table on page 23, in the columns of Comparative Examples 2 to 5, the words ``part'' are corrected to ``1 g.''

Claims (1)

【特許請求の範囲】[Claims] (1)2,6−ジイソプロピルナフタレンもしくはその
酸化中間体を、炭素数3以下の脂肪族モノカルボン酸か
らなる溶媒中で分子状酸素で酸化して2,6−ナフタレ
ンジカルボン酸を製造する方法において、上記酸化を、
(i)コバルト及び/又はマンガンの重金属と、(ii
)臭素とを構成成分とし且つ重金属原子1モル当り臭素
原子を1×10^−^4乃至1×10^−^2未満含有
する触媒の存在下で行なうことを特徴とする2,6−ナ
フタレンジカルボン酸の製造法。
(1) A method for producing 2,6-naphthalene dicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene or its oxidized intermediate with molecular oxygen in a solvent consisting of an aliphatic monocarboxylic acid having 3 or less carbon atoms. , the above oxidation,
(i) heavy metals of cobalt and/or manganese; (ii)
) 2,6-naphthalene, characterized in that the reaction is carried out in the presence of a catalyst containing bromine as a constituent component and containing 1×10^-^4 to less than 1×10^-^2 bromine atoms per mole of heavy metal atoms. Method for producing dicarboxylic acid.
JP23277685A 1985-10-18 1985-10-18 Production of 2,6-naphthalenedicarboxylic acid Pending JPS6293254A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23277685A JPS6293254A (en) 1985-10-18 1985-10-18 Production of 2,6-naphthalenedicarboxylic acid
DE19863633417 DE3633417A1 (en) 1985-10-18 1986-10-01 METHOD FOR PRODUCING 2,6-NAPHTHALINDICARBONIC ACID
FR8614473A FR2588864A1 (en) 1985-10-18 1986-10-17 PROCESS FOR PRODUCING 2,6-NAPHTHALENEDICARBOXYLIC ACID
GB08624875A GB2182928A (en) 1985-10-18 1986-10-17 Process for producing 2,6-naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23277685A JPS6293254A (en) 1985-10-18 1985-10-18 Production of 2,6-naphthalenedicarboxylic acid

Publications (1)

Publication Number Publication Date
JPS6293254A true JPS6293254A (en) 1987-04-28

Family

ID=16944557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23277685A Pending JPS6293254A (en) 1985-10-18 1985-10-18 Production of 2,6-naphthalenedicarboxylic acid

Country Status (4)

Country Link
JP (1) JPS6293254A (en)
DE (1) DE3633417A1 (en)
FR (1) FR2588864A1 (en)
GB (1) GB2182928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164847A (en) * 1988-12-19 1990-06-25 Nkk Corp Oxidization of 2,6-diisopropylnaphthalene
JP2010168324A (en) * 2009-01-26 2010-08-05 Ueno Fine Chem Ind Ltd Method for producing 2,6-naphthalene dicarboxylic acid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082836B2 (en) * 1987-04-07 1996-01-17 呉羽化学工業株式会社 Process for producing 2,6-naphthalenedicarboxylic acid
GB9113476D0 (en) * 1991-06-21 1991-08-07 Interox Chemicals Ltd Oxidation of alkylaromatics
US5376732A (en) * 1992-10-30 1994-12-27 Research Corporation Technologies, Inc. Polymers having oxidic functionality and derivatives thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870754A (en) * 1972-08-28 1975-03-11 Teijin Ltd Process for the preparation of 2,6-naphthalenedicarboxylic acid
DE3128147C2 (en) * 1981-07-16 1986-03-06 Dynamit Nobel Ag, 5210 Troisdorf Process for the production of aromatic monocarboxylic acids
EP0142719B1 (en) * 1983-10-24 1987-07-08 Teijin Petrochemical Industries Ltd. Process for producing 2,6-naphthalenedicarboxylic acid
JPS6168444A (en) * 1984-09-10 1986-04-08 Kureha Chem Ind Co Ltd Production of 2,6-naphthalenedicarboxylic acid
DE3440407A1 (en) * 1984-11-06 1986-05-07 Dynamit Nobel Ag, 5210 Troisdorf Process for the preparation of p-tert-butylbenzoic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164847A (en) * 1988-12-19 1990-06-25 Nkk Corp Oxidization of 2,6-diisopropylnaphthalene
JP2010168324A (en) * 2009-01-26 2010-08-05 Ueno Fine Chem Ind Ltd Method for producing 2,6-naphthalene dicarboxylic acid

Also Published As

Publication number Publication date
FR2588864A1 (en) 1987-04-24
GB8624875D0 (en) 1986-11-19
DE3633417A1 (en) 1987-04-23
GB2182928A (en) 1987-05-28

Similar Documents

Publication Publication Date Title
US8884054B2 (en) Process for oxidizing alkyl aromatic compounds
US9169189B2 (en) Process for oxidizing alkyl aromatic compounds
US9266809B2 (en) Process for producing terephthalic acid
US9045407B2 (en) Mixtures used in oxidizing alkyl aromatic compounds
JP2009536662A (en) Method for producing aromatic carboxylic acid in water
US9394223B2 (en) Oxidation process for preparing purified aromatic carboxylic acids
EP0439007A2 (en) Process for producing 2,6-naphthalene dicarboxylic acid
US8933266B2 (en) Process for producing terephthalic acid
EP1971566B1 (en) A process for preparing high purity terephthalic acid
JPS6293254A (en) Production of 2,6-naphthalenedicarboxylic acid
US4990659A (en) Process for the manufacture of derivatives of benzoic acid
US4214100A (en) Process for preventing blackening of phthalic acid
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JP2005502694A (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP3319044B2 (en) Method for producing high-purity terephthalic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
US5700944A (en) Process for the production of pyridinecarboxylic acids
TWI419869B (en) Process for the production of high purity aromatic carboxylic acids using a benzoic acid and water solvent for oxidation and purification
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JP2000143583A (en) Production of naphtahlenedicarboxylic acid
EP0041778B1 (en) Oxidation of meta- or para-xylene to iso- or tere-phthalic acid
US20150099898A1 (en) Process for removing amide impurities in aromatic carboxylic acids
WO2021255671A1 (en) Method for producing aromatic dicarboxylic acid using iron co‑catalyst
JPH1192416A (en) Production of trimellitic acid