JP2000143583A - Production of naphtahlenedicarboxylic acid - Google Patents

Production of naphtahlenedicarboxylic acid

Info

Publication number
JP2000143583A
JP2000143583A JP10313077A JP31307798A JP2000143583A JP 2000143583 A JP2000143583 A JP 2000143583A JP 10313077 A JP10313077 A JP 10313077A JP 31307798 A JP31307798 A JP 31307798A JP 2000143583 A JP2000143583 A JP 2000143583A
Authority
JP
Japan
Prior art keywords
concentration
weight
cobalt
manganese
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10313077A
Other languages
Japanese (ja)
Other versions
JP4207273B2 (en
Inventor
Hiroshi Machida
博 町田
Fumiya Arima
文哉 在間
Masahito Inari
雅人 稲荷
Chu Watanabe
宙 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP31307798A priority Critical patent/JP4207273B2/en
Priority to EP99120885A priority patent/EP0999199B1/en
Priority to DE69915976T priority patent/DE69915976T2/en
Priority to US09/432,783 priority patent/US6268528B1/en
Publication of JP2000143583A publication Critical patent/JP2000143583A/en
Application granted granted Critical
Publication of JP4207273B2 publication Critical patent/JP4207273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially and advantageously producing naphthalenedicarboxylic acid by oxidizing a dialkylnaphthalene in the presence of a catalyst comprising a cobalt compound, a manganese compound and a bromine compound in a solvent containing a lower aliphatic carboxylic acid and effectively recovering the heavy metal catalyst and the solvent. SOLUTION: This production of naphthalenedicarboxylic acid is to carry out an oxidation reaction by bringing the sum amount of cobalt and manganese fed into a reactor based on 1 gram mole of a dialkylnaphthalene to 0.025-0.1 gram atom and the atomic ratio of manganese over cobalt to 0.03-0.5 at 160-240 deg.C and separate a solid from a liquid in the reaction mixture in the range of 8-30 wt.% concentration of naphthalenedicarboxylic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ジアルキルナフタレン
の液相酸化によるナフタレンジカルボン酸の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing naphthalenedicarboxylic acid by liquid phase oxidation of dialkylnaphthalene.

【0002】[0002]

【従来の技術】ナフタレンジカルボン酸、特に2,6-ナフ
タレンジカルボン酸(以下、2,6-NDCAと記す)及び
そのエステルは、高機能性ポリエステルの原料として有
用な物質である。従来、2,6-ジアルキルナフタレンや2,
6-ジアシルナフタレンおよびその誘導体を、低級脂肪族
カルボン酸を含む溶媒中でコバルト、マンガン及び臭素
を含む触媒を用いて酸化し、2,6-NDCAを得る方法
が、特公昭56−3337号、特開昭60−89445
号、米国特許第5183933号(特表平6−5035
86号)等に多数提案されている。
2. Description of the Related Art Naphthalenedicarboxylic acids, particularly 2,6-naphthalenedicarboxylic acid (hereinafter referred to as 2,6-NDCA) and esters thereof are useful substances as raw materials for high-performance polyesters. Conventionally, 2,6-dialkylnaphthalene and 2,6-dialkylnaphthalene
A method of oxidizing 6-diacylnaphthalene and its derivative in a solvent containing a lower aliphatic carboxylic acid using a catalyst containing cobalt, manganese and bromine to obtain 2,6-NDCA is disclosed in JP-B-56-3337, JP-A-60-89445
No. 5,183,933 (Tokuhyohei 6-5035).
No. 86).

【0003】一般にジアルキルナフタレンの酸化では、
パラキシレンの酸化によるテレフタル酸の製造の場合と
異なり、ナフタレン環の開裂によるベンゾトリカルボン
酸の副生が多い。特に2,6-ジアルキルナフタレンの場合
にはトリメリット酸(以下、TMAと記す)が副生す
る。しかも、TMA等のベンゾトリカルボン酸は重金属
触媒のコバルト、マンガン等と低級脂肪族カルボン酸溶
媒に対して難溶性の錯塩を形成し、重金属触媒を不活性
化させる。重金属触媒が不活性化し触媒として有効な濃
度が低下すると、更にTMAの副生が増大し、重金属触
媒の不活性化が促進される悪循環を招き、最悪の場合は
酸化反応が停止する。
[0003] Generally, in the oxidation of dialkylnaphthalene,
Unlike the case of producing terephthalic acid by oxidation of paraxylene, benzotricarboxylic acid is often produced as a by-product due to cleavage of the naphthalene ring. In particular, in the case of 2,6-dialkylnaphthalene, trimellitic acid (hereinafter referred to as TMA) is by-produced. In addition, benzotricarboxylic acid such as TMA forms a complex salt which is hardly soluble in a lower aliphatic carboxylic acid solvent with a heavy metal catalyst such as cobalt or manganese, and deactivates the heavy metal catalyst. When the heavy metal catalyst is deactivated and the concentration effective as a catalyst decreases, the by-product of TMA further increases, causing a vicious cycle in which the deactivation of the heavy metal catalyst is promoted. In the worst case, the oxidation reaction is stopped.

【0004】反応で副生するTMAが母液の循環使用で
蓄積し重金属触媒を不活性化させることに対しては、T
MA錯塩の形成量に見合うようにコバルト、マンガン等
の重金属触媒濃度を高める方法が用いられている(米国
特許第5183933号、特開平7−48314号
等)。特に米国特許第5183933号の方法では、コ
バルトに比して安価なマンガンを多量に使用するのが好
ましいとされている。しかしながら、このように重金属
触媒を多量に使用する方法では、2,6-NDCA結晶中に
多量のTMA重金属錯体が析出し、結晶中の重金属触媒
濃度が非常に高くなる。この結晶中の重金属は、触媒の
損失となるだけでなく、2,6-NDCAの精製工程に於い
て閉塞等の問題を起こす原因となる。
[0004] TMA produced as a by-product of the reaction accumulates due to the circulating use of the mother liquor and deactivates the heavy metal catalyst.
A method of increasing the concentration of a heavy metal catalyst such as cobalt or manganese to match the amount of the formed MA complex has been used (US Pat. No. 5,183,933, JP-A-7-48314). In particular, in the method of U.S. Pat. No. 5,183,933, it is preferable to use a large amount of manganese which is inexpensive compared to cobalt. However, in such a method using a large amount of heavy metal catalyst, a large amount of TMA heavy metal complex precipitates in the 2,6-NDCA crystal, and the concentration of the heavy metal catalyst in the crystal becomes extremely high. The heavy metals in the crystals not only cause loss of the catalyst, but also cause problems such as clogging in the purification process of 2,6-NDCA.

【0005】2,6-NDCA結晶中に多量のTMA重金属
錯体が析出することに対しては、2,6-NDCA結晶中の
TMA重金属錯体を除去し、重金属触媒を回収する方法
が、幾つか提案されている。例えば、特開平1−121
237号では、TMA重金属錯体が水に対して比較的高
い溶解度を有すること利用して、2,6-NDCAの結晶を
水で洗浄し、その洗浄液に炭酸イオンを生じる化合物を
添加して重金属触媒を不溶性の炭酸塩として回収する方
法が示されている。また、米国特許第5183933号
では、酸化反応生成物に水を添加し低級脂肪族カルボン
酸溶媒中の水分濃度を高めてTMA重金属錯体を溶解し
た後、2,6-NDCA結晶と溶媒を固液分離する方法が示
されている。
To cope with the precipitation of a large amount of TMA heavy metal complex in 2,6-NDCA crystals, there are several methods for removing the TMA heavy metal complex in 2,6-NDCA crystals and recovering the heavy metal catalyst. Proposed. For example, JP-A-1-121
No. 237 utilizes the fact that the TMA heavy metal complex has a relatively high solubility in water, so that 2,6-NDCA crystals are washed with water, and a compound that generates carbonate ions is added to the washing solution to prepare a heavy metal catalyst. Is recovered as an insoluble carbonate. Also, in US Pat. No. 5,183,933, after adding water to the oxidation reaction product to increase the water concentration in the lower aliphatic carboxylic acid solvent to dissolve the TMA heavy metal complex, the 2,6-NDCA crystal and the solvent are solid-liquid. A method of separating is shown.

【0006】しかしながら、2,6-NDCA結晶中の重金
属触媒を水で洗浄し回収する方法(特開平1−1212
37号)では、触媒回収後の廃水にTMA等の有機物が
溶解しているためその処理に費用がかかり、工業規模で
の実施には適さない。また、米国特許第5183933
号の方法では、母液中の水分濃度が高くなる為、触媒及
び低級脂肪族カルボン酸を回収再使用するには母液中の
水分を除去しなければならず、これに大量のエネルギー
を必要とする。
However, a method of recovering the heavy metal catalyst in the 2,6-NDCA crystal by washing with water (Japanese Patent Laid-Open No. 1-1212)
In the case of No. 37), since the organic matter such as TMA is dissolved in the wastewater after the recovery of the catalyst, the treatment is expensive, and is not suitable for implementation on an industrial scale. No. 5,183,933.
In the method of (1), since the water concentration in the mother liquor is high, the water in the mother liquor must be removed in order to recover and reuse the catalyst and lower aliphatic carboxylic acid, which requires a large amount of energy. .

【0007】[0007]

【発明が解決しようとする課題】以上の如く2,6-ジアル
キルナフタレンを酸化して2,6-NDCAを製造する方法
では、反応で副生するTMAが重金属触媒を不活性化さ
せるので、大量の重金属触媒を用いなければならず、こ
れにより2,6-NDCA結晶中に多量のTMA重金属錯体
が析出することになる。また母液を循環使用すれば、T
MAが蓄積するので更に大量の重金属触媒を用いなけれ
ばならず、2,6-NDCA結晶中に更に多量のTMA重金
属錯体が析出することになる。この2,6-NDCA結晶中
の重金属触媒を回収するには大量の水を用いる必要があ
るので、重金属触媒成分や溶媒(低級脂肪族カルボン
酸)を有効に回収することが困難である。本発明の目的
は、ジアルキルナフタレンを酸化してナフタレンジカル
ボン酸を製造する方法において、重金属触媒や溶媒を有
効に回収し、ナフタレンジカルボン酸を工業的に有利に
製造する方法を提供することにある。
In the method for producing 2,6-NDCA by oxidizing 2,6-dialkylnaphthalene as described above, since TMA by-produced in the reaction inactivates the heavy metal catalyst, a large amount of TMA is produced. Must be used, which results in the precipitation of a large amount of TMA heavy metal complex in the 2,6-NDCA crystal. If mother liquor is used in circulation, T
Since MA accumulates, a larger amount of heavy metal catalyst must be used, and a larger amount of TMA heavy metal complex will precipitate in 2,6-NDCA crystals. Since it is necessary to use a large amount of water to recover the heavy metal catalyst in the 2,6-NDCA crystals, it is difficult to effectively recover the heavy metal catalyst component and the solvent (lower aliphatic carboxylic acid). An object of the present invention is to provide a method for producing a naphthalenedicarboxylic acid by oxidizing a dialkylnaphthalene to effectively recover a heavy metal catalyst and a solvent and industrially advantageously produce a naphthalenedicarboxylic acid.

【0008】[0008]

【課題を解決するための手段】本発明者らは、ジアルキ
ルナフタレンを酸化してナフタレンジカルボン酸を製造
する際の上記の如き前述の課題を解決するために反応条
件を鋭意検討した結果、特定の反応条件下、特にマンガ
ン濃度を低くしてコバルトの比率を高めた触媒組成条件
で反応し、ナフタレンジカルボン酸の結晶化を特定濃度
範囲で行うことにより、ナフタレンジカルボン酸が高い
収率で得られると共に、ナフタレンジカルボン酸の結晶
へのベンゾトリカルボン酸と重金属との錯体の析出を抑
え、結晶中の重金属濃度を著しく低減でき、重金属触媒
や溶媒を有効に回収できることを見出し、本発明に到達
した。
Means for Solving the Problems The inventors of the present invention have intensively studied the reaction conditions in order to solve the above-mentioned problems in producing naphthalenedicarboxylic acid by oxidizing dialkylnaphthalene, and as a result, a specific By reacting under the reaction conditions, especially under the catalyst composition conditions in which the manganese concentration is reduced and the ratio of cobalt is increased, and crystallization of naphthalenedicarboxylic acid is performed in a specific concentration range, naphthalenedicarboxylic acid can be obtained in a high yield. The present inventors have found that the precipitation of a complex of benzotricarboxylic acid and a heavy metal on a crystal of naphthalenedicarboxylic acid can be suppressed, the heavy metal concentration in the crystal can be significantly reduced, and a heavy metal catalyst and a solvent can be effectively recovered.

【0009】即ち本発明は、ジアルキルナフタレンを、
低級脂肪族カルボン酸を含む溶媒中でコバルト化合物、
マンガン化合物及び臭素化合物からなる触媒の存在下
に、分子状酸素を含むガスを用いて酸化してナフタレン
ジカルボン酸を製造するに際して、ジアルキルナフタレ
ン1グラムモルに対して反応器に供給するコバルトとマ
ンガンの合計量を0.025〜0.1グラム原子、コバ
ルトに対するマンガンの原子比を0.03〜0.5と
し、160〜240℃の温度で酸化反応を行ない、ナフ
タレンジカルボン酸の濃度が8〜30重量%の範囲にお
いて反応生成物中の固液分離を行なうことを特徴とする
ナフタレンジカルボン酸の製造法である。
That is, the present invention provides a dialkylnaphthalene,
A cobalt compound in a solvent containing a lower aliphatic carboxylic acid,
When producing naphthalenedicarboxylic acid by oxidizing using a gas containing molecular oxygen in the presence of a catalyst comprising a manganese compound and a bromine compound, the sum of cobalt and manganese supplied to the reactor per 1 gram mole of dialkylnaphthalene The amount is 0.025 to 0.1 g atom, the atomic ratio of manganese to cobalt is 0.03 to 0.5, the oxidation reaction is performed at a temperature of 160 to 240 ° C., and the concentration of naphthalenedicarboxylic acid is 8 to 30% by weight. %, Wherein a solid-liquid separation of the reaction product is performed in the range of 0.1%.

【0010】[0010]

【発明の実施の形態】本発明で原料として用いられるジ
アルキルナフタレンとしては、ジメチルナフタレン、ジ
エチルナフタレン、ジイソプロピルナフタレン及びその
酸化誘導体が挙げられる。高機能性ポリエステルの原料
にはジアルキルナフタレンの2,6-体が一般に用いられ、
原料として入手の容易性等から2,6-ジメチルナフタレン
が最も好適に用いられる。液相酸化で溶媒として使用さ
れる低級脂肪族カルボン酸としては蟻酸、酢酸、プロピ
オン酸、酪酸等、或いはこれらの混合物が挙げられる
が、熱安定性や非腐食性等から、酢酸が最も好ましい。
溶媒には水が含有されていても良いが、水の含有量は好
ましくは20重量%以下、より好ましくは15重量%以
下である。水の含有量が多すぎるとTMA等のベンゾト
リカルボン酸の生成量が増加し易い。溶媒の使用量は酸
化原料のジアルキルナフタレンに対して2〜20重量
倍、好ましくは2.5〜15重量倍である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The dialkylnaphthalene used as a raw material in the present invention includes dimethylnaphthalene, diethylnaphthalene, diisopropylnaphthalene and its oxidized derivatives. The 2,6-form of dialkylnaphthalene is generally used as a raw material for high-performance polyester,
As a raw material, 2,6-dimethylnaphthalene is most preferably used because of its availability. Examples of the lower aliphatic carboxylic acid used as a solvent in the liquid phase oxidation include formic acid, acetic acid, propionic acid, butyric acid and the like, and a mixture thereof. Acetic acid is most preferable because of thermal stability and non-corrosiveness.
Although the solvent may contain water, the content of water is preferably 20% by weight or less, more preferably 15% by weight or less. If the water content is too large, the amount of benzotricarboxylic acid such as TMA tends to increase. The amount of the solvent to be used is 2 to 20 times by weight, preferably 2.5 to 15 times by weight, relative to the dialkylnaphthalene used as the oxidation raw material.

【0011】本発明では酸化触媒として、コバルト化合
物、マンガン化合物及び臭素化合物が用いられるが、必
要に応じてこれに鉄、セリウム、ニッケル等の重金属化
合物を添加しても良い。用いられるコバルト、マンガン
及びその他の重金属化合物としては、有機酸塩、水酸化
物、ハロゲン化物、炭酸塩等が例示し得るが、特に酢酸
塩及び臭化物が好ましい。また、臭素化合物としては、
反応系で溶解し、臭素イオンを発生するものであれば如
何なるものでも良く、臭化水素、臭化ナトリウム及び臭
化コバルト等の無機臭化物、ブロモ酢酸等の有機臭化物
を例示し得るが、特に臭化水素、臭化コバルト、臭化マ
ンガンが好ましい。
In the present invention, a cobalt compound, a manganese compound and a bromine compound are used as the oxidation catalyst, but if necessary, heavy metal compounds such as iron, cerium and nickel may be added. Examples of cobalt, manganese and other heavy metal compounds to be used include organic acid salts, hydroxides, halides, carbonates and the like, and particularly preferred are acetates and bromides. Further, as the bromine compound,
Any substance that dissolves in the reaction system and generates bromine ions may be used, and examples thereof include inorganic bromides such as hydrogen bromide, sodium bromide and cobalt bromide, and organic bromides such as bromoacetic acid. Hydrogen hydride, cobalt bromide and manganese bromide are preferred.

【0012】本発明における酸化反応条件は、反応で生
成するTMA等と触媒重金属の錯体が2,6-NDCA等の
結晶中に析出するのを抑制する条件が選ばれる。本発明
者等の検討によれば、TMA等の重金属錯体の溶解度
は、一般的な電解質の溶解度と同様に溶解度積の形で表
される。従って、TMA等の重金属錯体が2,6-NDCA
等の結晶中に析出するのを抑えるには、反応で副生する
TMA等の濃度と重金属触媒の濃度の積が、より小さく
なる様な反応条件が好適である。更に本発明者等は、T
MAとマンガンの錯体はTMAとコバルトの錯体に比べ
低級脂肪族カルボン酸溶媒への溶解度が小さく、2,6-N
DCA結晶中に析出し易いことを見い出した。従って、
マンガンの使用量を必要最低限度に抑え、相対的にコバ
ルトの使用比率を高めることで、TMA重金属錯体の2,
6-NDCA結晶中への析出を著しく低減することが出来
る。
The oxidation reaction conditions in the present invention are selected so that the complex of TMA or the like and the catalyst heavy metal formed in the reaction is prevented from precipitating in crystals of 2,6-NDCA or the like. According to studies by the present inventors, the solubility of heavy metal complexes such as TMA is expressed in the form of a solubility product, similarly to the solubility of general electrolytes. Therefore, heavy metal complexes such as TMA are 2,6-NDCA
In order to suppress precipitation in crystals such as the above, it is preferable to use reaction conditions such that the product of the concentration of TMA or the like by-produced in the reaction and the concentration of the heavy metal catalyst becomes smaller. Further, the present inventors have proposed that T
The complex of MA and manganese has a lower solubility in lower aliphatic carboxylic acid solvents than the complex of TMA and cobalt, and 2,6-N
It was found that it was easy to precipitate in DCA crystals. Therefore,
By reducing the amount of manganese used to the minimum necessary and increasing the ratio of cobalt used relatively, the 2,2
Precipitation into 6-NDCA crystals can be significantly reduced.

【0013】以上より本発明の酸化反応におけるコバル
トとマンガンの使用量は、次のような条件が選定され
る。まず、コバルトとマンガンの合計量は、酸化原料の
ジアルキルナフタレン1グラムモルに対して、0.02
5〜0.1グラム原子、好ましくは0.03〜0.08
グラム原子の範囲となるように反応器に供給する。この
範囲内で触媒金属の使用量が多いほどTMAの副生量が
低減され、高い収率で2,6-NDCAを得ることが出来
る。しかしながら、この範囲よりも金属使用量を多くし
てもその効果は頭打ちとなり、過剰の触媒金属がTMA
と錯体を形成して2,6-NDCA結晶中に多量に析出する
ことになる。一方、重金属触媒使用量がこの範囲よりも
少ない場合には、TMAの生成が大幅に増大し、やはり
TMA重金属錯体の結晶への析出が多くなり、最悪の場
合は反応が停止する。
From the above, the following conditions are selected for the amounts of cobalt and manganese used in the oxidation reaction of the present invention. First, the total amount of cobalt and manganese was 0.02 to 1 gram mole of dialkylnaphthalene as an oxidation raw material.
5 to 0.1 gram atoms, preferably 0.03 to 0.08
Feed to reactor to be in the range of gram atoms. Within this range, as the amount of the catalyst metal used increases, the amount of by-product TMA decreases, and 2,6-NDCA can be obtained with a high yield. However, even if the amount of metal used is larger than this range, the effect level out, and the excess
And a complex is formed, and a large amount is precipitated in 2,6-NDCA crystals. On the other hand, when the amount of the heavy metal catalyst used is less than this range, the production of TMA is greatly increased, and the precipitation of the TMA heavy metal complex on the crystal also increases, and in the worst case, the reaction is stopped.

【0014】次に、重金属触媒中のマンガンとコバルト
の比率は、コバルトに対するマンガンの原子比で0.0
3〜0.5、好ましくは0.05〜0.4、より好まし
くは0.07〜0.3の範囲とする。この範囲よりもマ
ンガンの比率が高い場合には、TMA重金属錯体が結晶
中に多量に析出する。一方、この範囲よりもマンガンの
比率が低い場合には、TMAの副生量が増大し、やはり
TMA重金属錯体の結晶への析出が増大する。
Next, the ratio of manganese to cobalt in the heavy metal catalyst is 0.0
The range is 3 to 0.5, preferably 0.05 to 0.4, and more preferably 0.07 to 0.3. When the ratio of manganese is higher than this range, a large amount of TMA heavy metal complex precipitates in the crystal. On the other hand, when the ratio of manganese is lower than this range, the amount of by-product TMA increases, and the precipitation of heavy metal complexes of TMA also increases.

【0015】また臭素量は、酸化原料のジアルキルナフ
タレン1グラムモルに対して、0.005〜0.2グラ
ム原子、好ましくは0.01〜0.15グラム原子、よ
り好ましくは0.02〜0 .1グラム原子の範囲とな
るように反応器に供給する。この範囲に於いては臭素濃
度が高いほど、TMAの副生量が減少し、しかもTMA
重金属錯体の溶解度が高くなる。しかし、この範囲より
も臭素濃度が高くなると、ナフタレンジカルボン酸の核
臭素化物や着色物質の生成が多くなる。臭素濃度がこの
範囲よりも低くなるとTMAの副生量が増加し、TMA
重金属錯体の結晶への析出量が多くなる。
The amount of bromine is 0.005 to 0.2 g atom, preferably 0.01 to 0.15 g atom, more preferably 0.02 to 0.1 g atom, relative to 1 g mole of dialkylnaphthalene used as the raw material for oxidation. Feed into reactor to be in the range of 1 gram atom. In this range, the higher the bromine concentration, the lower the amount of by-product TMA,
The solubility of the heavy metal complex increases. However, when the bromine concentration is higher than this range, generation of nuclear bromides of naphthalenedicarboxylic acid and coloring substances increases. If the bromine concentration is lower than this range, the amount of by-product TMA increases, and TMA increases.
The amount of heavy metal complex deposited on the crystal increases.

【0016】本発明における酸化反応の温度は160〜
240℃、好ましくは180〜220℃の範囲である。
この範囲より低い反応温度では、TMAの生成が増大
し、さらに6-ホルミル- 2-ナフトエ酸等の反応中間体が
多量に生成物中に残存する。またこの範囲より高い反応
温度にしても、TMA生成量を低減できず、しかも低級
脂肪族カルボン酸溶媒の燃焼量が増大するため好ましく
ない。反応圧力は、5〜40 kg/cm2 G 、好ましくは1
0〜30 kg/cm2 G の範囲である。反応器内の酸素分圧
としては、0.005kg/cm2 (絶対圧)以上とするのが好ま
しく、酸素分圧がこれより低いと反応中間体の生成量が
多くなり2,6-NDCAの収率が低下する。
The temperature of the oxidation reaction in the present invention is from 160 to
240 ° C., preferably in the range of 180 to 220 ° C.
At a reaction temperature lower than this range, the production of TMA increases, and a large amount of a reaction intermediate such as 6-formyl-2-naphthoic acid remains in the product. If the reaction temperature is higher than this range, the amount of TMA produced cannot be reduced, and the amount of combustion of the lower aliphatic carboxylic acid solvent increases, which is not preferable. The reaction pressure is 5 to 40 kg / cm 2 G, preferably 1
The range is from 0 to 30 kg / cm 2 G. The oxygen partial pressure in the reactor is preferably not less than 0.005 kg / cm 2 (absolute pressure). If the oxygen partial pressure is lower than this, the production amount of the reaction intermediate increases and the yield of 2,6-NDCA is increased. The rate drops.

【0017】本発明で使用される分子状酸素を含むガス
としては、酸素ガスまたは酸素を窒素、アルゴン等の不
活性ガスと混合したガスが挙げられるが、空気が最も一
般的である。反応の方式は、原料のジアルキルナフタレ
ンの全量を予め反応器に仕込む回分方式よりは、半回分
方式または連続方式が好ましい。
The gas containing molecular oxygen used in the present invention includes oxygen gas or a gas obtained by mixing oxygen with an inert gas such as nitrogen or argon, and air is the most common. The reaction system is preferably a semi-batch system or a continuous system, rather than a batch system in which the entire amount of the raw material dialkylnaphthalene is previously charged into a reactor.

【0018】酸化反応で生成したナフタレンジカルボン
酸の結晶は、固液分離機により溶媒と分離される。本発
明の方法では、反応生成物スラリー中のナフタレンジカ
ルボン酸の濃度が、8〜30重量%、好ましくは10〜
25重量%、更に好ましくは12〜20重量%の範囲で
固液分離を行なう。反応生成物スラリー中のナフタレン
ジカルボン酸の濃度が上記範囲よりも高い場合は、副生
するTMA等の濃度も高くなり、分離されたナフタレン
ジカルボン酸の結晶中に多量のTMA等の重金属錯体が
残留する。一方、溶媒量が多くなりナフタレンジカルボ
ン酸の濃度が小さくなるほど、TMAや重金属触媒の濃
度が低くなりTMA等の重金属錯体の析出を抑えること
が出来る。しかしながら、溶媒量が多くなると固液分離
機の負荷が大きくなるので、過剰な量の溶媒を使用する
のは好ましくない。
The crystals of naphthalenedicarboxylic acid generated by the oxidation reaction are separated from the solvent by a solid-liquid separator. In the method of the present invention, the concentration of naphthalenedicarboxylic acid in the reaction product slurry is from 8 to 30% by weight, preferably from 10 to 30% by weight.
The solid-liquid separation is performed at 25% by weight, more preferably at 12 to 20% by weight. When the concentration of naphthalenedicarboxylic acid in the reaction product slurry is higher than the above range, the concentration of by-produced TMA or the like also increases, and a large amount of heavy metal complex such as TMA remains in the separated crystals of naphthalenedicarboxylic acid. I do. On the other hand, as the amount of the solvent increases and the concentration of the naphthalenedicarboxylic acid decreases, the concentration of the TMA or the heavy metal catalyst decreases, and the precipitation of a heavy metal complex such as TMA can be suppressed. However, when the amount of the solvent increases, the load on the solid-liquid separator increases, and it is not preferable to use an excessive amount of the solvent.

【0019】なお、酸化反応器から抜き出された反応生
成物スラリー中のナフタレンジカルボン酸の濃度が上記
範囲よりも高い場合には、低級脂肪族カルボン酸を添加
してスラリーを希釈し、逆にナフタレンジカルボン酸の
濃度が低い場合には、スラリーを加熱して溶媒を蒸発さ
せて濃縮する方法により、ナフタレンジカルボン酸の濃
度を上記の範囲に調節する事が出来る。また、結晶中の
TMA等の重金属錯体濃度を低減するために、必要に応
じて、反応生成物スラリーに臭素イオンを発生する化合
物を添加することにより、TMA等の重金属錯体の溶解
度を高めて、結晶中の重金属錯体を溶解してから固液分
離を行うことも行われる。添加する臭素イオンを発生す
る化合物としては、臭化水素酸、臭化ナトリウム、臭化
カリウム等が例示されるが、臭化水素酸が最も好まし
い。
When the concentration of naphthalenedicarboxylic acid in the reaction product slurry withdrawn from the oxidation reactor is higher than the above range, a lower aliphatic carboxylic acid is added to dilute the slurry, and conversely. When the concentration of naphthalenedicarboxylic acid is low, the concentration of naphthalenedicarboxylic acid can be adjusted to the above range by heating the slurry to evaporate the solvent and concentrating. Further, in order to reduce the concentration of heavy metal complexes such as TMA in the crystals, if necessary, a compound that generates bromine ions is added to the reaction product slurry to increase the solubility of heavy metal complexes such as TMA, Solid-liquid separation is also performed after dissolving the heavy metal complex in the crystal. Examples of the compound that generates bromine ions to be added include hydrobromic acid, sodium bromide, and potassium bromide, and hydrobromic acid is most preferred.

【0020】固液分離機の形式としては、遠心沈降機、
遠心濾過機、真空濾過機等が挙げられる。これらの分離
機で分離されるケーキは、不純物や酸化触媒を溶解して
いる母液を含んでいる。従ってより純度の高いナフタレ
ンジカルボン酸の結晶を得るために、反応生成物を固液
分離して得られた結晶(ケーキ)を洗浄することが好ま
しい。この結晶を洗浄する方法としては、分離機内で
ケーキを洗浄液と接触させて結晶に付着する母液を置換
する方法や、あるいは反応生成物を固液分離して得ら
れた結晶(ケーキ)を、低級脂肪族カルボン酸を含む溶
媒に分散させた後、再度固液分離する方法が用いられ
る。なお、再度固液分離して得られた母液の少なくとも
一部を循環して反応生成物に添加し一段目の固液分離を
行なうこともでき、これにより洗浄に用いる低級脂肪族
カルボン酸の使用量を削減することができる。
The type of solid-liquid separator is a centrifugal settling machine,
Examples include a centrifugal filter and a vacuum filter. The cake separated by these separators contains a mother liquor in which impurities and an oxidation catalyst are dissolved. Therefore, in order to obtain higher purity naphthalenedicarboxylic acid crystals, it is preferable to wash the crystals (cake) obtained by solid-liquid separation of the reaction product. As a method for washing the crystals, a method in which a cake is brought into contact with a washing liquid in a separator to replace a mother liquor adhered to the crystals, or a method for solid-liquid separation of a reaction product to obtain a crystal (cake), After dispersing in a solvent containing an aliphatic carboxylic acid, a method of performing solid-liquid separation again is used. In addition, at least a part of the mother liquor obtained by the solid-liquid separation can be circulated and added to the reaction product to perform the first-stage solid-liquid separation, whereby the lower aliphatic carboxylic acid used for washing can be used. The amount can be reduced.

【0021】以上の洗浄液には水や低級脂肪族カルボン
酸を使用するのが適当であるが、本発明の方法では、大
量の水を用いてTMA等の重金属錯体を溶解する必要は
無く、水分濃度10%以下の低級脂肪族カルボン酸溶媒
で充分に洗浄できる。従来のプロセスで粗ナフタレンジ
カルボン酸の結晶に含まれる触媒重金属分を低下させる
ためには大量の水を使用しなければならず、該洗浄廃液
から触媒成分を回収することが困難であった。これに対
して本発明の方法では水分濃度10%以下の低級脂肪族
カルボン酸溶媒で洗浄できるので、該洗浄廃液は酸化反
応の溶媒として直接に使用することができ、系内に添加
される水量が著しく減少する。従って本発明によりエネ
ルギーを大量に消費することなく触媒成分や溶媒が有効
に回収され、酸化反応に利用されることになる。
Although it is appropriate to use water or a lower aliphatic carboxylic acid for the above-mentioned washing solution, in the method of the present invention, it is not necessary to use a large amount of water to dissolve heavy metal complexes such as TMA. It can be sufficiently washed with a lower aliphatic carboxylic acid solvent having a concentration of 10% or less. In order to reduce the catalytic heavy metal content contained in the crude naphthalenedicarboxylic acid crystals in the conventional process, a large amount of water had to be used, and it was difficult to recover the catalyst component from the washing waste liquid. On the other hand, in the method of the present invention, it is possible to wash with a lower aliphatic carboxylic acid solvent having a water concentration of 10% or less, so that the washing waste liquid can be used directly as a solvent for the oxidation reaction, Is significantly reduced. Therefore, according to the present invention, the catalyst components and the solvent are effectively recovered without consuming a large amount of energy, and are used for the oxidation reaction.

【0022】固液分離で得られたナフタレンジカルボン
酸の粗結晶は、精製して高純度のナフタレンジカルボン
酸とすることや、或いはメタノールでエステル化してナ
フタレンジカルボン酸ジメチルエステルにした後、精製
して高純度ナフタレンジカルボン酸ジメチルとすること
で、高機能性ポリエステルの原料として使用できる。従
来のプロセスでは、これらの精製工程において粗ナフタ
レンジカルボン酸に含まれる触媒重金属分が配管の閉塞
等の問題を発生させる原因になるが、本発明の方法では
粗ナフタレンジカルボン酸に含まれる重金属分の濃度が
低いので、このような問題を回避することができる。
The crude crystals of naphthalenedicarboxylic acid obtained by solid-liquid separation can be purified to give high-purity naphthalenedicarboxylic acid, or they can be esterified with methanol to give naphthalenedicarboxylic acid dimethyl ester and then purified. By using high-purity dimethyl naphthalenedicarboxylate, it can be used as a raw material for a high-performance polyester. In the conventional process, the catalytic heavy metal component contained in the crude naphthalenedicarboxylic acid in these purification steps causes problems such as blockage of pipes, but in the method of the present invention, the heavy metal component contained in the crude naphthalenedicarboxylic acid is contained. Since the concentration is low, such a problem can be avoided.

【0023】一方、固液分離で得られた母液は、酸化触
媒成分の大部分を含有している。この触媒成分、特に重
金属触媒は高価であるので、回収して再使用することが
必要である。触媒を再使用する最も簡単な方法として通
常用いられるのは、母液をそのまま反応器に再循環する
方法である。しかしながら、本発明の方法では反応で生
成したTMA等の大部分がこの母液中に含まれており、
この母液を反応器に循環することは、酸化反応系内にT
MA等を蓄積させ、TMA等の重金属錯体の結晶への析
出をもたらす結果となる。よって、母液の大部分を反応
器に再循環することは好ましくなく、母液の循環割合は
TMA等の重金属錯体が酸化反応系内で析出しないよう
な比率に抑える必要がある。
On the other hand, the mother liquor obtained by the solid-liquid separation contains most of the oxidation catalyst component. This catalyst component, especially the heavy metal catalyst, is expensive and must be recovered and reused. The easiest way to reuse the catalyst is usually to recycle the mother liquor directly to the reactor. However, in the method of the present invention, most of TMA and the like generated by the reaction are contained in the mother liquor,
Circulating this mother liquor to the reactor means that T
This results in accumulation of MA and the like, resulting in precipitation of heavy metal complexes such as TMA on crystals. Therefore, it is not preferable to recycle most of the mother liquor to the reactor, and the circulation ratio of the mother liquor needs to be suppressed to such a ratio that heavy metal complexes such as TMA do not precipitate in the oxidation reaction system.

【0024】本発明において母液中の触媒を回収再使用
する方法として好ましいのは、触媒成分を化学的または
物理的な手段で母液から分離して回収する方法であり、
特開昭51−97592号等に示される母液に蓚酸イオ
ンを添加し難溶性の蓚酸塩として重金属触媒を回収する
方法、あるいは特開昭53−104590号等に示され
るイオン交換樹脂を用いる方法などが例示される。特に
好ましいのは、重金属成分だけでなく臭素イオンも同時
に回収される陰イオン交換樹脂を用いる方法である。こ
の方法で用いられる陰イオン交換樹脂としては、第一、
第二、第三級アミン及び第4級アンモニウム型の強塩基
性及び弱塩基性の陰イオン交換樹脂のいずれも使用可能
であり、例えばアンバーライトIRA−900、アンバ
ーライトIRA−96SB(商標名、オルガノ社製)、
ダウエックスI−X4(商標名、ダウケミカル社製)、
ダイヤイオンSA10(商標名、三菱化学社製)等が挙
げられる。陰イオン交換樹脂を用いる方法において、処
理する母液中の水分濃度は15重量%以下が好ましく、
水分濃度が15重量%を超えると金属の回収率が低下す
る。本発明の方法では、母液及び粗ナフタレンジカルボ
ン酸結晶の洗浄液の水分濃度を15重量%以下に出来る
ので、蒸留等の水分濃度を下げる処理なしでそのまま陰
イオン交換樹脂による触媒回収処理を行える。なお、陰
イオン交換樹脂による方法では、触媒金属成分のコバル
ト及びマンガンに対して2倍モルの臭素イオンが同時に
吸着される。従って、処理する母液中の臭素イオンの金
属成分に対するモル比は2以上とするのが好ましく、必
要に応じて臭化水素酸等の臭素イオンを発生する化合物
を母液に添加する。また、陰イオン交換樹脂に吸着した
金属及び臭素を溶離回収するには、水、もしくは15重
量%以上、好ましくは25重量%以上の水分を含む低級
脂肪族カルボン酸溶媒が溶離液として用いられる。この
陰イオン交換樹脂を用いる方法及び前述の蓚酸を用いる
方法では、以下の実施例に示されるように、高価な重金
属であるコバルトに関してはいずれも99%を越える回
収率が得られ、母液側から失われるコバルト触媒は極め
て少ない量に抑えることが出来る。
In the present invention, a preferred method of recovering and reusing the catalyst in the mother liquor is a method of separating and recovering the catalyst component from the mother liquor by chemical or physical means.
JP-A-51-97592, etc., a method in which oxalate ions are added to a mother liquor to recover a heavy metal catalyst as a sparingly soluble oxalate, or a method using an ion-exchange resin, as disclosed in JP-A-53-104590. Is exemplified. Particularly preferred is a method using an anion exchange resin that can simultaneously recover bromine ions as well as heavy metal components. As the anion exchange resin used in this method, first,
Both strong and weak base anion exchange resins of the secondary and tertiary amine and quaternary ammonium types can be used, for example, Amberlite IRA-900, Amberlite IRA-96SB (trade name, Organo),
Dowex I-X4 (trade name, manufactured by Dow Chemical Company),
Diaion SA10 (trade name, manufactured by Mitsubishi Chemical Corporation) and the like. In the method using an anion exchange resin, the water concentration in the mother liquor to be treated is preferably 15% by weight or less,
If the water concentration exceeds 15% by weight, the recovery rate of the metal decreases. According to the method of the present invention, the water concentration of the mother liquor and the washing solution of the crude naphthalenedicarboxylic acid crystals can be reduced to 15% by weight or less, so that the catalyst recovery treatment using an anion exchange resin can be performed without any treatment for lowering the water concentration such as distillation. In the method using an anion exchange resin, twice the amount of bromine ions is simultaneously adsorbed to the catalytic metal components cobalt and manganese. Therefore, the molar ratio of bromine ions to the metal component in the mother liquor to be treated is preferably 2 or more. If necessary, a compound that generates bromine ions such as hydrobromic acid is added to the mother liquor. To elute and recover the metal and bromine adsorbed on the anion exchange resin, water or a lower aliphatic carboxylic acid solvent containing 15% by weight or more, preferably 25% by weight or more of water is used as an eluent. In the method using this anion exchange resin and the method using oxalic acid described above, as shown in the following examples, a recovery rate of more than 99% was obtained for cobalt, which is an expensive heavy metal, from the mother liquor side. The amount of cobalt catalyst lost can be kept very small.

【0025】[0025]

【実施例】次に実施例によって本発明をより具体的に説
明する。なお、本発明は、これらの実施例により制限さ
れるものではない。なお、表1において DMN,Co,Mn
は、各々、反応器への原料の2,6-ジメチルナフタレン、
コバルト触媒およびマンガン触媒の供給量を示す。ま
た、表1〜3において、コバルト (マンガン) 残留率
は、コバルト (マンガン) 供給量に対する結晶中に残留
したコバルト( マンガン) の割合を示す。
Next, the present invention will be described more specifically with reference to examples. Note that the present invention is not limited by these examples. In Table 1, DMN, Co, Mn
Is the starting material 2,6-dimethylnaphthalene to the reactor,
This shows the supply amounts of the cobalt catalyst and the manganese catalyst. In Tables 1 to 3, the residual ratio of cobalt (manganese) indicates the ratio of cobalt (manganese) remaining in the crystal to the supply amount of cobalt (manganese).

【0026】実施例1 氷酢酸に、酢酸コバルト・ 4水塩、酢酸マンガン・ 4水
塩、47重量%臭化水素酸水溶液及び水を混合し溶解さ
せ、コバルト濃度0.20重量%、マンガン濃度0.05重量
%、臭素濃度0.30重量%、水分濃度3重量%の触媒液を
320g調合した。撹拌機、還流冷却器及び原料送液ポン
プを備えた500ml チタン製オートクレーブに、前記の触
媒液 120gを仕込んだ。残りの触媒液 200gは、2,6-ジ
メチルナフタレン40gと混合し原料供給槽に仕込み、加
熱してジメチルナフタレンを溶解させ、原料液を調製し
た。窒素で反応系内の圧力を 18kg/cm2 G に調整し、撹
拌しながら温度200 ℃に加熱した。温度、圧力が安定し
た後、原料液及び圧縮空気を反応器に供給し酸化反応を
開始した。排ガス中の酸素濃度が約2容量%になるよう
に供給空気流量を調節しながら、原料液を1時間かけて
連続的に供給した。原料液の供給終了後、排ガス中の酸
素濃度が10容量%になるまで空気の供給を継続した。反
応終了後、オートクレーブを約70℃に冷却して反応生成
物を取り出し、ガラスフィルターで吸引濾過し結晶と母
液を分離した。フィルター上のケーキを氷酢酸80gで洗
浄した後、乾燥し、粗2,6-NDCAの結晶52.6gを得
た。得られた結晶の組成及び反応収率を表1に示す。結
晶中の重金属触媒の濃度は非常に低く、供給した量に対
してコバルトは98.7重量%、マンガンは97.9重量%が分
離した母液中に回収されている。
Example 1 Cobalt acetate tetrahydrate, manganese acetate tetrahydrate, a 47% by weight aqueous solution of hydrobromic acid and water were mixed and dissolved in glacial acetic acid to obtain a cobalt concentration of 0.20% by weight and a manganese concentration of 0.05% by weight. %, Bromine concentration 0.30% by weight, water concentration 3% by weight
320g was prepared. In a 500 ml titanium autoclave equipped with a stirrer, a reflux condenser and a raw material feed pump, 120 g of the above catalyst solution was charged. The remaining 200 g of the catalyst solution was mixed with 40 g of 2,6-dimethylnaphthalene, charged into a raw material supply tank, and heated to dissolve dimethylnaphthalene, thereby preparing a raw material liquid. The pressure in the reaction system was adjusted to 18 kg / cm 2 G with nitrogen, and heated to a temperature of 200 ° C. with stirring. After the temperature and pressure were stabilized, the raw material liquid and compressed air were supplied to the reactor to start the oxidation reaction. The raw material liquid was continuously supplied over one hour while adjusting the supply air flow rate so that the oxygen concentration in the exhaust gas became about 2% by volume. After the supply of the raw material liquid was completed, the supply of air was continued until the oxygen concentration in the exhaust gas reached 10% by volume. After the completion of the reaction, the autoclave was cooled to about 70 ° C., and the reaction product was taken out. The cake on the filter was washed with 80 g of glacial acetic acid and then dried to obtain 52.6 g of crude 2,6-NDCA crystals. Table 1 shows the composition and reaction yield of the obtained crystals. The concentration of the heavy metal catalyst in the crystal was very low, and 98.7% by weight of cobalt and 97.9% by weight of manganese were recovered in the separated mother liquor based on the supplied amounts.

【0027】実施例2 触媒液の組成をコバルト濃度0.15重量%、マンガン濃度
0.06重量%、臭素濃度0.30重量%、水分濃度3重量%と
した他は、実施例1と同様にして酸化反応を行い、粗2,
6-NDCAの結晶52.4gを得た。得られた結晶の組成、
反応収率及び結晶中に残留した重金属触媒の割合を表1
に示す。
Example 2 The composition of the catalyst solution was changed to a cobalt concentration of 0.15% by weight and a manganese concentration.
The oxidation reaction was carried out in the same manner as in Example 1 except that 0.06% by weight, the bromine concentration was 0.30% by weight, and the water concentration was 3% by weight.
52.4 g of crystals of 6-NDCA were obtained. The composition of the obtained crystals,
Table 1 shows the reaction yield and the ratio of the heavy metal catalyst remaining in the crystal.
Shown in

【0028】実施例3 触媒液の組成をコバルト濃度0.30重量%、マンガン濃度
0.05重量%、臭素濃度0.30重量%、水分濃度3重量%と
した他は実施例1と同様にして酸化反応を行い、粗2,6-
NDCAの結晶52.8gを得た。得られた結晶の組成、反
応収率及び結晶中に残留した重金属触媒の割合を表1に
示す。
Example 3 The composition of the catalyst solution was changed to a cobalt concentration of 0.30% by weight and a manganese concentration.
The oxidation reaction was carried out in the same manner as in Example 1 except that 0.05 wt%, the bromine concentration was 0.30 wt%, and the water concentration was 3 wt%.
52.8 g of NDCA crystals were obtained. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals.

【0029】実施例4 反応温度220 ℃、反応圧力 20kg/cm2 G とした他は実施
例1と同様にして酸化反応を行い、粗2,6-NDCAの結
晶52.3gを得た。得られた結晶の組成、反応収率及び結
晶中に残留した重金属触媒の割合を表1に示す。
Example 4 An oxidation reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 220 ° C. and the reaction pressure was 20 kg / cm 2 G, to obtain 52.3 g of crude 2,6-NDCA crystals. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals.

【0030】実施例5 反応温度 180℃、反応圧力 16kg/cm2 G とした他は実施
例1と同様にして酸化反応を行い、粗2,6-NDCAの結
晶52.1gを得た。得られた結晶の組成、反応収率及び結
晶中に残留した重金属触媒の割合を表1に示す。
Example 5 An oxidation reaction was carried out in the same manner as in Example 1 except that the reaction temperature was set to 180 ° C. and the reaction pressure was set to 16 kg / cm 2 G, to obtain 52.1 g of crude 2,6-NDCA crystals. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals.

【0031】実施例6 氷酢酸に、酢酸コバルト・ 4水塩、酢酸マンガン・ 4水
塩、47重量%臭化水素酸水溶液及び水を混合し溶解さ
せ、コバルト濃度0.24重量%、マンガン濃度0.04重量
%、臭素濃度0.30重量%、水分濃度3重量%の触媒液 3
25gを調合した。実施例1で用いた500ml チタン製オー
トクレーブに、前記の触媒液 125gを仕込んだ。残りの
触媒液 200gは、2,6-ジメチルナフタレン50gと混合し
原料供給槽に仕込み、加熱してジメチルナフタレンを溶
解させ、原料液を調製した。以後は実施例1と同様にし
て酸化反応を行い、粗2,6-NDCAの結晶65.8gを得た。得
られた結晶の組成、反応収率及び結晶中に残留した重金
属触媒の割合を表1に示す。
Example 6 Cobalt acetate tetrahydrate, manganese acetate tetrahydrate, a 47% by weight aqueous solution of hydrobromic acid and water were mixed and dissolved in glacial acetic acid to obtain a cobalt concentration of 0.24% by weight and a manganese concentration of 0.04% by weight. %, Bromine concentration 0.30% by weight, water concentration 3% by weight 3
25 g were prepared. Into the 500 ml titanium autoclave used in Example 1, 125 g of the above catalyst solution was charged. The remaining 200 g of the catalyst solution was mixed with 50 g of 2,6-dimethylnaphthalene, charged into a raw material supply tank, and heated to dissolve dimethylnaphthalene, thereby preparing a raw material liquid. Thereafter, an oxidation reaction was carried out in the same manner as in Example 1 to obtain 65.8 g of crude 2,6-NDCA crystals. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals.

【0032】比較例1 触媒液の組成をコバルト濃度0.40重量%、マンガン濃度
0.10重量%、臭素濃度0.30重量%、水分濃度3重量%と
した他は実施例1と同様にして酸化反応を実施し、粗2,
6-NDCAの結晶53.5gを得た。得られた結晶の組成、
反応収率及び結晶中に残留した重金属触媒の割合を表1
に示す。重金属触媒の使用量が多くなるとTMAの副生
が減少するが、結晶中に残留する重金属触媒量、特にマ
ンガン濃度が高くなっている。
Comparative Example 1 The composition of the catalyst solution was changed to a cobalt concentration of 0.40% by weight and a manganese concentration.
The oxidation reaction was carried out in the same manner as in Example 1 except that 0.10% by weight, the bromine concentration was 0.30% by weight, and the water concentration was 3% by weight.
53.5 g of crystals of 6-NDCA were obtained. The composition of the obtained crystals,
Table 1 shows the reaction yield and the ratio of the heavy metal catalyst remaining in the crystal.
Shown in When the amount of the heavy metal catalyst used increases, the by-product of TMA decreases, but the amount of the heavy metal catalyst remaining in the crystal, particularly the manganese concentration, increases.

【0033】比較例2 触媒液の組成をコバルト濃度0.08重量%、マンガン濃度
0.02重量%、臭素濃度0.30重量%、水分濃度3重量%と
した他は実施例1と同様にして酸化反応を行い、粗2,6-
NDCAの結晶50.7gを得た。得られた結晶の組成、反
応収率及び結晶中に残留した重金属触媒の割合を表1に
示す。重金属触媒の使用量が少ない場合には、2,6-ND
CAの収率が低下し、TMAや2-ホルミル-6- ナフトエ
酸の副生が非常に多くなる。
Comparative Example 2 The composition of the catalyst solution was changed to a cobalt concentration of 0.08% by weight and a manganese concentration.
The oxidation reaction was carried out in the same manner as in Example 1 except that 0.02% by weight, the bromine concentration was 0.30% by weight, and the water concentration was 3% by weight.
50.7 g of NDCA crystals were obtained. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals. If the amount of heavy metal catalyst used is small, 2,6-ND
The yield of CA decreases, and the by-products of TMA and 2-formyl-6-naphthoic acid increase significantly.

【0034】比較例3 触媒液の組成をコバルト濃度0.15重量%、マンガン濃度
0.10重量%、臭素濃度0.30重量%、水分濃度3重量%と
した他は実施例1と同様にして酸化反応を行い、粗2,6-
NDCAの結晶52.9gを得た。得られた結晶の組成、反
応収率及び結晶中に残留した重金属触媒の割合を表1に
示す。触媒中のコバルトに対するマンガンの比率が高い
場合には、マンガンが多量に2,6-NDCA結晶中に残留
するだけでなく、コバルトの結晶中濃度も高くなってい
る。
Comparative Example 3 The composition of the catalyst solution was changed to a cobalt concentration of 0.15% by weight and a manganese concentration.
The oxidation reaction was carried out in the same manner as in Example 1 except that 0.10% by weight, the bromine concentration was 0.30% by weight, and the water concentration was 3% by weight.
52.9 g of NDCA crystals were obtained. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals. When the ratio of manganese to cobalt in the catalyst is high, not only a large amount of manganese remains in the 2,6-NDCA crystals, but also the concentration of cobalt in the crystals is high.

【0035】比較例4 触媒液の組成をコバルト濃度0.25重量%、マンガン濃度
0.005 重量%、臭素濃度0.30重量%、水分濃度3重量%
とした他は実施例1と同様にして酸化反応を行い、粗2,
6-NDCAの結晶51.0gを得た。得られた結晶の組成、
反応収率及び結晶中に残留した重金属触媒の割合を表1
に示す。コバルトに対するマンガンの比率が過小になる
と、2,6-NDCAの収率が低下すると共に、結晶中のコ
バルト濃度が高くなっている。
Comparative Example 4 The composition of the catalyst solution was changed to a cobalt concentration of 0.25% by weight and a manganese concentration.
0.005 wt%, bromine concentration 0.30 wt%, moisture concentration 3 wt%
The oxidation reaction was carried out in the same manner as in Example 1 except that
51.0 g of crystals of 6-NDCA were obtained. The composition of the obtained crystals,
Table 1 shows the reaction yield and the ratio of the heavy metal catalyst remaining in the crystal.
Shown in When the ratio of manganese to cobalt is too small, the yield of 2,6-NDCA decreases and the concentration of cobalt in the crystals increases.

【0036】比較例5 反応温度 150℃、反応圧力 14kg/cm2 G とした他は実施
例1と同様にして酸化反応を行い、粗2,6-NDCAの結
晶50.8gを得た。得られた結晶の組成、反応収率及び結
晶中に残留した重金属触媒の割合を表1に示す。反応温
度が低くなると、TMAや2-ホルミル-6- ナフトエ酸の
副生が非常に多くなり、2,6-NDCAの収率が低下して
いる。また、結晶中の重金属触媒濃度も高くなってい
る。
Comparative Example 5 An oxidation reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 150 ° C. and the reaction pressure was 14 kg / cm 2 G, to obtain 50.8 g of crude 2,6-NDCA crystals. Table 1 shows the composition of the obtained crystals, the reaction yield, and the ratio of the heavy metal catalyst remaining in the crystals. When the reaction temperature is lowered, by-products of TMA and 2-formyl-6-naphthoic acid are extremely increased, and the yield of 2,6-NDCA is lowered. Further, the concentration of the heavy metal catalyst in the crystal is also high.

【0037】[0037]

【表1】 実施例1 実施例2 実施例3 実施例4 実施例5 反応温度 200 200 200 220 180 触媒液量/DMN(重量比) 8 8 8 8 8 触媒液組成 (重量%) コバルト 0.20 0.15 0.30 0.20 0.20 マンガン 0.05 0.06 0.05 0.05 0.05 臭素 0.30 0.30 0.30 0.30 0.30 (Co+Mn)/DMN (モル比) 0.054 0.045 0.075 0.054 0.054 Mn/Co (モル比) 0.27 0.43 0.18 0.27 0.27 酸化反応生成物中の2,6-NDCA濃度 (重量%) 13.5 13.4 13.6 13.5 13.3 母液中の水分 (重量%) 6.1 6.0 6.2 6.9 5.9 乾燥結晶重量 (g) 52.6 52.4 52.9 52.3 52.1 乾燥結晶組成 (重量%) 2,6-NDCA 98.0 97.9 98.2 97.8 97.5 TMA 0.059 0.188 0.066 0.052 0.171 2-ホルミル-6- ナフトエ酸 0.169 0.150 0.188 0.049 0.529 コバルト 0.0160 0.0206 0.0246 0.0135 0.0234 マンガン 0.0064 0.0285 0.0075 0.0058 0.0226 反応収率 (モル%) 2,6-NDCA 93.4 93.0 94.1 92.7 92.0 TMA 3.2 3.5 2.6 3.1 3.7 2-ホルミル-6- ナフトエ酸 0.18 0.16 0.20 0.05 0.55 コバルト残留率 (%) 1.3 2.3 1.4 1.1 1.9 マンガン残留率 (%) 2.1 7.8 2.5 1.9 7.4 Table 1 Example 1 Example 2 Example 3 Example 4 Example 5 Reaction temperature 200 200 200 220 180 Catalyst solution amount / DMN (weight ratio) 8 8 8 8 8 Catalyst solution composition (% by weight) Cobalt 0.20 0.15 0.30 0.20 0.20 Manganese 0.05 0.06 0.05 0.05 0.05 Bromine 0.30 0.30 0.30 0.30 0.30 (Co + Mn) / DMN (molar ratio) 0.054 0.045 0.075 0.054 0.054 Mn / Co (molar ratio) 0.27 0.43 0.18 0.27 0.27 2 in oxidation products , 6-NDCA concentration (% by weight) 13.5 13.4 13.6 13.5 13.3 Water in mother liquor (% by weight) 6.1 6.0 6.2 6.9 5.9 Dry crystal weight (g) 52.6 52.4 52.9 52.3 52.1 Dry crystal composition (% by weight) 2,6-NDCA 98.0 97.9 98.2 97.8 97.5 TMA 0.059 0.188 0.066 0.052 0.171 2-formyl-6-naphthoic acid 0.169 0.150 0.188 0.049 0.529 Cobalt 0.0160 0.0206 0.0246 0.0135 0.0234 Manganese 0.0064 0.0285 0.0075 0.0058 0.0226 Reaction yield (mol%) 2,6-NDCA 93.4 93.0 94.1 92.7 92.0 TMA 3.2 3.5 2.6 3.1 3.7 2-formyl-6-naphthoic acid 0.18 0.16 0.20 0.05 0.55 Cobalt residue ( %) 1.3 2.3 1.4 1.1 1.9 Manganese residual rate (%) 2.1 7.8 2.5 1.9 7.4

【0038】 (表1続き) 実施例6 比較例1 比較例2 比較例3 比較例4 比較例5 反応温度 200 200 200 200 220 150 触媒液量 6.5 8 8 8 8 8 触媒液組成 コバルト 0.24 0.40 0.08 0.15 0.25 0.20 マンガン 0.04 0.10 0.02 0.10 0.005 0.05 臭素 0.30 0.30 0.30 0.30 0.30 0.30 (Co+Mn)/DMN 0.049 0.108 0.022 0.055 0.054 0.054 Mn/Co 0.18 0.27 0.27 0.71 0.021 0.27 酸化反応生成物中の2,6-NDCA濃度 16.1 13.6 12.6 13.4 13.0 12.4 母液の水分 6.8 6.2 6.0 6.2 6.3 5.8 乾燥結晶重量 66.0 53.5 50.7 52.9 51.0 50.8 乾燥結晶組成 2,6-NDCA 98.2 97.4 94.7 97.0 97.7 93.0 TMA 0.063 0.582 0.071 0.714 0.206 1.31 2-ホルミル-6- ナフトエ酸 0.199 0.205 1.67 0.217 0.245 2.43 コバルト 0.0228 0.0893 0.0064 0.0466 0.0503 0.161 マンガン 0.0048 0.0842 0.0031 0.130 0.0038 0.150 反応収率 2,6-NDCA 93.9 94.3 87.1 92.9 90.3 85.7 TMA 2.8 2.2 5.8 3.2 4.9 6.3 2-ホルミル-6- ナフトエ酸 0.21 0.22 1.7 0.23 0.25 2.5 Co残留率 1.9 3.7 1.3 5.1 3.2 12.8 Mn残留率 2.4 14.1 2.5 21.5 12.0 47.5 (Table 1 continued) Example 6 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Reaction temperature 200 200 200 200 220 150 Catalyst solution amount 6.5 8 8 8 8 8 Catalyst solution composition Cobalt 0.24 0.40 0.08 0.15 0.25 0.20 manganese 0.04 0.10 0.02 0.10 0.005 0.05 bromine 0.30 0.30 0.30 0.30 0.30 0.30 (Co + Mn) / DMN 0.049 0.108 0.022 0.055 0.054 0.054 Mn / Co 0.18 0.27 0.27 0.71 0.021 0.27 2,6-NDCA in oxidation reaction products Concentration 16.1 13.6 12.6 13.4 13.0 12.4 Moisture of mother liquor 6.8 6.2 6.0 6.2 6.3 5.8 Dry crystal weight 66.0 53.5 50.7 52.9 51.0 50.8 Dry crystal composition 2,6-NDCA 98.2 97.4 94.7 97.0 97.7 93.0 TMA 0.063 0.582 0.071 0.714 0.206 1.31 2-formyl- 6-Naphthoic acid 0.199 0.205 1.67 0.217 0.245 2.43 Cobalt 0.0228 0.0893 0.0064 0.0466 0.0503 0.161 Manganese 0.0048 0.0842 0.0031 0.130 0.0038 0.150 Reaction yield 2,6-NDCA 93.9 94.3 87.1 92.9 90.3 85.7 TMA 2.8 2.2 5.8 3.2 4.9 6.3 2-Formyl-6 -Naphthoic acid 0.21 0.22 1.7 0.23 0.25 2.5 Residual ratio of Co 1 .9 3.7 1.3 5.1 3.2 12.8 Mn residual ratio 2.4 14.1 2.5 21.5 12.0 47.5

【0039】比較例6 氷酢酸7kgに、酢酸コバルト・ 4水塩、酢酸マンガン・
4水塩、47重量%臭化水素酸水溶液及び水を混合し溶解
させ、コバルト濃度0.60重量%、マンガン濃度0.15重量
%、臭素濃度0.75重量%、水分濃度2重量%の触媒液を
調合した。撹拌機、還流冷却器を備えた内容積約3Lの
チタン製反応器に、前記の触媒液1200gを仕込んだ。ま
た、触媒液とは別の槽に純度99.7重量%の2,6-ジメチル
ナフタレンを仕込み、120 ℃以上の温度に加熱して溶融
させた。窒素で反応器内の圧力を 14kg/cm2 G に調整
し、撹拌しながら温度200 ℃に加熱した。温度、圧力が
安定した後、2,6-ジメチルナフタレンを反応器に 300g/
hrの流量で供給し同時に圧縮空気を約 0.3Nm3 /hr の流
量で反応器に供給して酸化反応を開始した。2,6-ジメチ
ルナフタレンを 450g供給した時点(反応開始より90分
後)より、前記の触媒液の供給を 800g/hr の流量で開
始し、続いて反応器内の液面が一定になるように反応生
成物を常圧下にある受槽へ抜き出した〔(Co+Mn)/DMN=0.
054 、Mn/Co=0.27 〕。約8時間反応を継続した後、2,
6-ジメチルナフタレン、触媒液、空気の供給を停止し反
応を終了した。反応器内のスラリーも受槽に抜き出し、
10.2kgの反応生成物スラリーを得た。スラリー中の2,6-
NDCAの濃度は30.8重量%であった。供給した2,6-ジメチ
ルナフタレン基準の収率は、2,6-NDCAが94.8モル
%、TMAが1.7 モル%、2-ホルミル-6- ナフトエ酸が
0.27モル%であった。以上の酸化反応により得られた反
応生成物スラリー1000gを約70℃の温度でガラスフィル
ターを用いて吸引濾過して固液分離を行った。次にフィ
ルター上のケーキを氷酢酸500gで洗浄した後、乾燥して
粗2,6-NDCAの結晶を得た。得られた結晶の組成及び
結晶中に残留した重金属触媒の割合を表2に示す。スラ
リー中の2,6-NDCA濃度が高い条件で固液分離を行うと、
極めて大量の重金属触媒が結晶中に残留し、氷酢酸によ
る洗浄では充分に除去できないことが分かる。
Comparative Example 6 Cobalt acetate tetrahydrate, manganese acetate
A tetrahydrate, a 47% by weight aqueous solution of hydrobromic acid and water were mixed and dissolved to prepare a catalyst solution having a cobalt concentration of 0.60% by weight, a manganese concentration of 0.15% by weight, a bromine concentration of 0.75% by weight, and a water concentration of 2% by weight. 1200 g of the above catalyst solution was charged into a titanium reactor having an internal volume of about 3 L equipped with a stirrer and a reflux condenser. Separately from the catalyst liquid, 2,6-dimethylnaphthalene having a purity of 99.7% by weight was charged and heated to a temperature of 120 ° C. or more to be melted. The pressure in the reactor was adjusted to 14 kg / cm 2 G with nitrogen, and heated to 200 ° C. with stirring. After the temperature and pressure stabilize, add 2,6-dimethylnaphthalene to the reactor at 300 g /
hr, and at the same time, compressed air was supplied to the reactor at a flow rate of about 0.3 Nm 3 / hr to start the oxidation reaction. From the point when 450 g of 2,6-dimethylnaphthalene was supplied (90 minutes after the start of the reaction), the supply of the catalyst solution was started at a flow rate of 800 g / hr, and then the liquid level in the reactor was kept constant. The reaction product was withdrawn to a receiving tank under normal pressure ((Co + Mn) / DMN = 0.
054, Mn / Co = 0.27]. After continuing the reaction for about 8 hours,
The supply of 6-dimethylnaphthalene, catalyst solution and air was stopped to terminate the reaction. The slurry in the reactor is also drawn into the receiving tank,
10.2 kg of reaction product slurry was obtained. 2,6- in the slurry
The concentration of NDCA was 30.8% by weight. The yield based on the supplied 2,6-dimethylnaphthalene was 94.8 mol% of 2,6-NDCA, 1.7 mol% of TMA, and 2-formyl-6-naphthoic acid.
0.27 mol%. 1000 g of the reaction product slurry obtained by the above oxidation reaction was suction-filtered using a glass filter at a temperature of about 70 ° C. to perform solid-liquid separation. Next, the cake on the filter was washed with 500 g of glacial acetic acid and dried to obtain crude 2,6-NDCA crystals. Table 2 shows the composition of the obtained crystal and the ratio of the heavy metal catalyst remaining in the crystal. When solid-liquid separation is performed under conditions where the 2,6-NDCA concentration in the slurry is high,
It can be seen that a very large amount of heavy metal catalyst remains in the crystals and cannot be sufficiently removed by washing with glacial acetic acid.

【0040】実施例7 比較例6の酸化反応により得られた反応生成物スラリー
1000gに水分濃度5重量%の含水酢酸300gを添加し、さ
らに47重量%臭化水素酸水溶液を添加して母液中の臭素
イオン濃度を 5000ppmに調整した。これを約70℃の温度
に保持し15分間撹拌した後、ガラスフィルターで吸引濾
過して固液分離を行った。次にフィルター上のケーキを
氷酢酸500gで洗浄した後、乾燥した。得られた粗2,6-ND
CAの結晶の組成及び結晶中に残留した重金属触媒の割合
を表2に示す。
Example 7 Reaction product slurry obtained by the oxidation reaction of Comparative Example 6
300 g of aqueous acetic acid having a water concentration of 5% by weight was added to 1000 g, and a bromide ion concentration in the mother liquor was adjusted to 5000 ppm by further adding a 47% by weight aqueous solution of hydrobromic acid. This was maintained at a temperature of about 70 ° C., stirred for 15 minutes, and then suction-filtered with a glass filter to perform solid-liquid separation. Next, the cake on the filter was washed with 500 g of glacial acetic acid and dried. The obtained crude 2,6-ND
Table 2 shows the composition of the CA crystal and the ratio of the heavy metal catalyst remaining in the crystal.

【0041】実施例8 比較例6の酸化反応により得られた反応生成物スラリー
1000gに水分濃度5重量%の含水酢酸800gを添加し、さ
らに47重量%臭化水素酸水溶液を母液中の臭素イオン濃
度が 3000ppmになるように添加した。その後、実施例7
と同様の操作で、粗2,6-NDCAの結晶を得た。得られ
た結晶の組成及び結晶中に残留した重金属触媒の割合を
表2に示す。
Example 8 Reaction product slurry obtained by the oxidation reaction of Comparative Example 6
800 g of aqueous acetic acid having a water concentration of 5% by weight was added to 1000 g, and a 47% by weight aqueous solution of hydrobromic acid was further added so that the bromide ion concentration in the mother liquor became 3000 ppm. Then, Example 7
By the same operation as in above, crude 2,6-NDCA crystals were obtained. Table 2 shows the composition of the obtained crystal and the ratio of the heavy metal catalyst remaining in the crystal.

【0042】実施例9 比較例6の酸化反応により得られた反応生成物スラリー
1000gに水分濃度5重量%の含水酢酸800gを添加し、さ
らに臭化ナトリウムを母液中の臭素イオン濃度が 4000p
pmになるように添加した。その後、実施例7と同様の操
作で、粗2,6-NDCAの結晶を得た。得られた結晶の組
成及び結晶中に残留した重金属触媒の割合を表2に示
す。
Example 9 Reaction product slurry obtained by the oxidation reaction of Comparative Example 6
800 g of water-containing acetic acid having a water concentration of 5% by weight is added to 1000 g, and sodium bromide is added to the broth to a concentration of 4000 p.
pm. Then, crude 2,6-NDCA crystals were obtained in the same manner as in Example 7. Table 2 shows the composition of the obtained crystal and the ratio of the heavy metal catalyst remaining in the crystal.

【0043】実施例10 比較例6の酸化反応により得られた反応生成物スラリー
1000gに水分濃度5重量%の含水酢酸1200g を添加し
た。その後、実施例7と同様の操作で、粗2,6-NDCA
の結晶を得た。得られた結晶の組成及び結晶中に残留し
た重金属触媒の割合を表2に示す。
Example 10 Reaction product slurry obtained by the oxidation reaction of Comparative Example 6
To 1000 g, 1200 g of hydrous acetic acid having a water concentration of 5% by weight was added. Then, crude 2,6-NDCA was obtained in the same manner as in Example 7.
Was obtained. Table 2 shows the composition of the obtained crystal and the ratio of the heavy metal catalyst remaining in the crystal.

【0044】実施例11 比較例6の酸化反応により得られた反応生成物スラリー
1000gに水分濃度5重量%の含水酢酸 1200gを添加し
た。これを約70℃の温度に保持し15分間攪拌した
後、ガラスフィルターで吸引濾過し固液分離を行った。
次に、分離したケーキに水分濃度5重量%の含水酢酸を
加え合計 1600gとした。このスラリーを約70℃の温度で
保持し15分間攪拌した後、再度ガラスフィルターで吸引
濾過し固液分離を行った。分離したケーキを乾燥して得
られた結晶の組成及び結晶中に残留した重金属触媒の割
合を表3に示す。
Example 11 Slurry of reaction product obtained by oxidation reaction of Comparative Example 6
To 1000 g, 1200 g of water-containing acetic acid having a water concentration of 5% by weight was added. This was kept at a temperature of about 70 ° C. and stirred for 15 minutes, and then suction-filtered with a glass filter to perform solid-liquid separation.
Next, acetic acid containing water having a water concentration of 5% by weight was added to the separated cake to make a total of 1600 g. This slurry was maintained at a temperature of about 70 ° C., stirred for 15 minutes, and then suction-filtered again with a glass filter to perform solid-liquid separation. Table 3 shows the composition of the crystals obtained by drying the separated cake and the ratio of the heavy metal catalyst remaining in the crystals.

【0045】比較例7 触媒液中の重金属触媒の濃度をコバルト0.20重量%、マ
ンガン0.60重量%とした他は比較例6と同様にして酸化
反応を実施し、10.3kgの反応生成物スラリーを得た。ス
ラリー中の2,6-NDCAの濃度は30.2重量%であった
〔(Co+Mn)/DMN=0.060 、Mn/Co=3.22 〕。供給した2,6-
ジメチルナフタレン基準の収率は、2,6-NDCAが93.9
モル%、TMAが2.5 モル%、2-ホルミル-6- ナフトエ
酸が0.31モル%であった。次に、反応で得られたスラリ
ー1000gに、実施例11と同様に水分濃度5重量%の含
水酢酸 1200gを添加した後、固液分離した。更に実施例
11と同様の方法で分離したケーキに水分濃度5重量%
の含水酢酸を加えスラリー化した後、再度固液分離を行
いケーキを乾燥して粗2,6-NDCAの結晶を得た。得られた
結晶の組成及び結晶中に残留した重金属触媒の割合を表
3に示す。触媒中のコバルトに対するマンガンの比率が
高い場合には、比較例3と同様に洗浄後も2,6-NDCA
結晶中に多量の重金属触媒が残留している。
Comparative Example 7 An oxidation reaction was carried out in the same manner as in Comparative Example 6 except that the concentration of the heavy metal catalyst in the catalyst solution was changed to 0.20% by weight of cobalt and 0.60% by weight of manganese, thereby obtaining 10.3 kg of a reaction product slurry. Was. The concentration of 2,6-NDCA in the slurry was 30.2% by weight [(Co + Mn) /DMN=0.060, Mn / Co = 3.22]. 2,6-
The yield based on dimethylnaphthalene was 93.9% for 2,6-NDCA.
Mol%, TMA was 2.5 mol%, and 2-formyl-6-naphthoic acid was 0.31 mol%. Next, 1200 g of hydrous acetic acid having a water concentration of 5% by weight was added to 1000 g of the slurry obtained by the reaction in the same manner as in Example 11, followed by solid-liquid separation. Further, the cake separated in the same manner as in Example 11 had a water concentration of 5% by weight.
And hydrated acetic acid was added thereto to form a slurry, followed by solid-liquid separation again, and the cake was dried to obtain crude 2,6-NDCA crystals. Table 3 shows the composition of the obtained crystal and the ratio of the heavy metal catalyst remaining in the crystal. When the ratio of manganese to cobalt in the catalyst was high, 2,6-NDCA was used after washing as in Comparative Example 3.
A large amount of heavy metal catalyst remains in the crystals.

【0046】[0046]

【表2】 比較例6 実施例7 実施例8 実施例9 実施例10 酸化反応生成物中の2,6-NDCA濃度 (重量%) 30.8 23.6 17.1 17.1 14.0 母液中水分濃度 (重量%) 10.4 9.1 7.7 7.5 7.1 母液中臭素イオン濃度 (重量%) 0.33 0.50 0.30 0.40 0.12 結晶組成 (重量%) 2,6-NDCA 97.4 98.1 98.2 98.1 98.2 TMA 0.650 0.069 0.037 0.113 0.029 2-ホルミル-6- ナフトエ酸 0.251 0.253 0.253 0.253 0.254 コバルト 0.104 0.031 0.018 0.025 0.014 マンガン 0.088 0.011 0.006 0.017 0.004 コバルト残留率 (%) 8.7 2.6 1.5 2.1 1.2 マンガン残留率 (%) 29.6 3.6 1.8 5.6 1.5 Table 2 Comparative Example 6 Example 7 Example 8 Example 9 Example 10 2,6-NDCA concentration in oxidation reaction product (% by weight) 30.8 23.6 17.1 17.1 14.0 Moisture concentration in mother liquor (% by weight) 10.4 9.1 7.7 7.5 7.1 Bromine ion concentration in mother liquor (wt%) 0.33 0.50 0.30 0.40 0.12 Crystal composition (wt%) 2,6-NDCA 97.4 98.1 98.2 98.1 98.2 TMA 0.650 0.069 0.037 0.113 0.029 2-formyl-6-naphthoic acid 0.251 0.253 0.253 0.253 0.254 Cobalt 0.104 0.031 0.018 0.025 0.014 Manganese 0.088 0.011 0.006 0.017 0.004 Cobalt residual rate (%) 8.7 2.6 1.5 2.1 1.2 Manganese residual rate (%) 29.6 3.6 1.8 5.6 1.5

【0047】[0047]

【表3】 [Table 3]

【0048】実施例12 実施例10で得られた分離母液と洗浄液の混合液(コバ
ルト濃度 0.150重量%,マンガン濃度 0.037重量%,水分濃
度 5.3重量%) 200g に蓚酸・2 水和物を0.9g添加し、10
分間攪拌した後、生成した沈殿をフィルターで分離し
た。分離した母液中の触媒金属濃度はコバルトが1.2pp
m、マンガンが15ppm で、蓚酸塩結晶への金属回収率は
コバルトが99.92 重量% 、マンガンが96.0重量% であっ
た。実施例10の結果で示される2,6-NDCA結晶中に
残留した触媒金属と本実施例で母液から回収されなかっ
た触媒金属の合計量より、プロセス全体での酸化反応触
媒の回収率を求めると、コバルト回収率は98.7重量% 、
マンガン回収率は94.6重量% で、非常に良好な値が得ら
れている。
EXAMPLE 12 0.9 g of oxalic acid dihydrate was added to 200 g of a mixture of the separated mother liquor and the washing solution obtained in Example 10 (cobalt concentration: 0.150% by weight, manganese concentration: 0.037% by weight, water concentration: 5.3% by weight). Add, 10
After stirring for minutes, the formed precipitate was separated by a filter. The catalyst metal concentration in the separated mother liquor is 1.2 pp for cobalt.
m, manganese was 15 ppm, and the metal recovery to oxalate crystals was 99.92% by weight for cobalt and 96.0% by weight for manganese. From the total amount of the catalyst metal remaining in the 2,6-NDCA crystal shown in the results of Example 10 and the catalyst metal not recovered from the mother liquor in this example, the recovery rate of the oxidation reaction catalyst in the whole process is obtained. The cobalt recovery rate is 98.7% by weight,
The manganese recovery was 94.6% by weight, which is a very good value.

【0049】実施例13 実施例10で得られた分離母液と洗浄液の混合液に47重
量% 臭化水素酸水溶液を添加し、コバルト濃度 0.149重
量% 、マンガン濃度 0.037重量% 、臭素イオン濃度0.56
重量% 、水分濃度 5.8重量% に調合した (金属に対する
臭素イオンのモル比は2.2)。この液を、予め臭化水素酸
の酢酸溶液を通液して臭素イオン型にした弱塩基性陰イ
オン交換樹脂 (オルガノ社製、IRA96SB)50mlを
充填したジャケット付イオン交換塔 (内径20mm、70℃に
調節) に、流量 250 g/hr で 2.5時間供給した。得られ
た流出液の組成及び金属と臭素の回収率を表4に示す。
続いてこのイオン交換塔に水を35重量% 含む酢酸溶液を
流量 250 g/hr で 1時間供給し、吸着した触媒を溶離し
た。溶離液中の金属及び臭素イオンは、それぞれの吸着
量に見合う量であった。実施例13の結果で示される2,
6-NDCA結晶中に残留した触媒金属と本実施例で母液
から回収されなかった触媒金属の合計量より、プロセス
全体での酸化反応触媒の回収率を求めると、コバルト回
収率は98.6重量% 、マンガン回収率は93.7重量% で、非
常に良好な値が得られている。
Example 13 A 47% by weight aqueous solution of hydrobromic acid was added to a mixture of the separated mother liquor and the washing solution obtained in Example 10 to obtain a cobalt concentration of 0.149% by weight, a manganese concentration of 0.037% by weight, and a bromine ion concentration of 0.56%.
% By weight and a water concentration of 5.8% by weight (molar ratio of bromide ion to metal: 2.2). This solution was previously passed through an acetic acid solution of hydrobromic acid to form a bromide ion-type weakly basic anion exchange resin (manufactured by Organo, IRA96SB). ° C) at a flow rate of 250 g / hr for 2.5 hours. Table 4 shows the composition of the obtained effluent and the recovery rates of metal and bromine.
Subsequently, an acetic acid solution containing 35% by weight of water was supplied to the ion exchange tower at a flow rate of 250 g / hr for 1 hour to elute the adsorbed catalyst. The amounts of metal and bromine ions in the eluate were in proportion to the respective amounts of adsorption. As shown by the results of Example 13,
From the total amount of the catalyst metal remaining in the 6-NDCA crystal and the catalyst metal not recovered from the mother liquor in this example, the recovery of the oxidation reaction catalyst in the entire process was determined to be 98.6% by weight of cobalt. The manganese recovery was 93.7% by weight, which is a very good value.

【0050】参考例 実施例10で得られた分離母液と洗浄液の混合液に47重
量% 臭化水素酸水溶液及び水を添加し、コバルト濃度
0.130重量% 、マンガン濃度 0.032重量% 、臭素イオン
濃度0.49重量%(金属に対する臭素イオンのモル比は2.
2)、水分濃度18重量% に調合した以外は、実施例13と
同様の方法でイオン交換塔に供給して触媒の回収を行っ
た。得られた流出液の組成及び金属と臭素の回収率を表
4に示す。供給液の水分濃度が高い場合には、触媒の回
収率が低下することが分かる。
Reference Example A 47% by weight aqueous solution of hydrobromic acid and water were added to a mixed solution of the separated mother liquor and the washing solution obtained in Example 10, and the cobalt concentration was increased.
0.130% by weight, manganese concentration 0.032% by weight, bromine ion concentration 0.49% by weight (the molar ratio of bromine ions to metal is 2.
2) The catalyst was recovered by supplying it to the ion exchange tower in the same manner as in Example 13 except that the water content was adjusted to 18% by weight. Table 4 shows the composition of the obtained effluent and the recovery rates of metal and bromine. It can be seen that when the water concentration of the supply liquid is high, the recovery rate of the catalyst decreases.

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【発明の効果】以上の実施例から示されるように、本発
明の方法によれば、(1)トリメリット酸等の副生物の
生成を抑えられて高い収率でナフタレンジカルボン酸を
得ることができ、(2)トリメリット酸等のベンゾトリ
カルボン酸と錯塩を形成してナフタレンジカルボン酸の
結晶に析出する重金属触媒の量が著しく低減されること
により、粗ナフタレンジカルボン酸の精製が容易になる
と共に、(3)高価な重金属触媒を非常に高い割合で容
易に回収再使用することができ、(4)また系内で使用
する水量が減少するので溶媒を回収するための使用エネ
ルギーを削減することができる。従って本発明の方法に
より、ナフタレンジカルボン酸を工業的に極めて有利に
製造することができる。
As shown in the above examples, according to the method of the present invention, (1) it is possible to obtain naphthalenedicarboxylic acid in high yield by suppressing the formation of by-products such as trimellitic acid. (2) The amount of the heavy metal catalyst which forms a complex salt with benzotricarboxylic acid such as trimellitic acid and precipitates on the crystals of naphthalenedicarboxylic acid is remarkably reduced, so that the purification of crude naphthalenedicarboxylic acid becomes easy and (3) The expensive heavy metal catalyst can be easily recovered and reused at a very high rate, and (4) The amount of water used in the system is reduced, so that the energy used for recovering the solvent can be reduced. Can be. Therefore, naphthalenedicarboxylic acid can be produced very advantageously industrially by the method of the present invention.

【手続補正書】[Procedure amendment]

【提出日】平成12年1月24日(2000.1.2
4)
[Submission date] January 24, 2000 (2000.1.2
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】ナフタレンジカルボン酸、特に2,6-ナフ
タレンジカルボン酸(以下、2,6-NDCAと記す)及び
そのエステルは、高機能性ポリエステルの原料として有
用な物質である。従来、2,6-ジアルキルナフタレンや2-
アルキル-6- アシルナフタレンおよびその誘導体を、低
級脂肪族カルボン酸を含む溶媒中でコバルト、マンガン
及び臭素を含む触媒を用いて酸化し、2,6-NDCAを得
る方法が、特公昭56−3337号、特開昭60−89
445号、米国特許第5183933号(特表平6−5
03586号)等に多数提案されている。
2. Description of the Related Art Naphthalenedicarboxylic acids, particularly 2,6-naphthalenedicarboxylic acid (hereinafter referred to as 2,6-NDCA) and esters thereof are useful substances as raw materials for high-performance polyesters. Conventionally, 2,6-dialkylnaphthalene and 2-
A method of oxidizing alkyl-6-acylnaphthalene and derivatives thereof in a solvent containing a lower aliphatic carboxylic acid using a catalyst containing cobalt, manganese and bromine to obtain 2,6-NDCA is disclosed in JP-B-56-3337. No., JP-A-60-89
No. 445, U.S. Pat. No. 5,183,933 (Tokuhyo Hei 6-5).
No. 03586).

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0047】[0047]

【表3】 [Table 3]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0049[Correction target item name] 0049

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0049】実施例13 実施例10で得られた分離母液と洗浄液の混合液に47重
量% 臭化水素酸水溶液を添加し、コバルト濃度 0.149重
量% 、マンガン濃度 0.037重量% 、臭素イオン濃度0.56
重量% 、水分濃度 5.8重量% に調合した (金属に対する
臭素イオンのモル比は2.2)。この液を、予め臭化水素酸
の酢酸溶液を通液して臭素イオン型にした弱塩基性陰イ
オン交換樹脂 (オルガノ社製、IRA96SB)50mlを
充填したジャケット付イオン交換塔 (内径20mm、70℃に
調節) に、流量 250 g/hr で 2.5時間供給した。得られ
た流出液の組成及び金属と臭素の回収率を表4に示す。
続いてこのイオン交換塔に水を35重量% 含む酢酸溶液を
流量 250 g/hr で 1時間供給し、吸着した触媒を溶離し
た。溶離液中の金属及び臭素イオンは、それぞれの吸着
量に見合う量であった。実施例10の結果で示される2,
6-NDCA結晶中に残留した触媒金属と本実施例で母液
から回収されなかった触媒金属の合計量より、プロセス
全体での酸化反応触媒の回収率を求めると、コバルト回
収率は98.6重量% 、マンガン回収率は93.7重量% で、非
常に良好な値が得られている。
Example 13 A 47% by weight aqueous solution of hydrobromic acid was added to a mixture of the separated mother liquor and the washing solution obtained in Example 10 to obtain a cobalt concentration of 0.149% by weight, a manganese concentration of 0.037% by weight, and a bromine ion concentration of 0.56%.
% By weight and a water concentration of 5.8% by weight (molar ratio of bromide ion to metal: 2.2). This liquid was passed through an acetic acid solution of hydrobromic acid in advance to form a bromide ion-type weakly basic anion exchange resin (IRA96SB, manufactured by Organo Corporation). ° C) at a flow rate of 250 g / hr for 2.5 hours. Table 4 shows the composition of the obtained effluent and the recovery rates of metal and bromine.
Subsequently, an acetic acid solution containing 35% by weight of water was supplied to the ion exchange tower at a flow rate of 250 g / hr for 1 hour to elute the adsorbed catalyst. The amounts of metal and bromine ions in the eluate were in proportion to the respective amounts of adsorption. As shown by the results of Example 10 ,
From the total amount of the catalyst metal remaining in the 6-NDCA crystal and the catalyst metal that was not recovered from the mother liquor in this example, the recovery of the oxidation reaction catalyst in the entire process was determined to be 98.6% by weight of cobalt. The manganese recovery was 93.7% by weight, which is a very good value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 宙 岡山県倉敷市水島海岸通り3丁目10番地 三菱瓦斯化学株式会社水島工場内 Fターム(参考) 4H006 AA02 AC46 AD15 BA08 BA16 BA19 BA20 BA21 BA30 BA37 BB17 BC10 BD82 BE30 BS30 4H039 CA65 CC30  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Satoshi Watanabe 3-10 Mizushima Kaigan-dori, Kurashiki-shi, Okayama Pref. BC10 BD82 BE30 BS30 4H039 CA65 CC30

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ジアルキルナフタレンを、低級脂肪族カル
ボン酸を含む溶媒中でコバルト化合物、マンガン化合物
及び臭素化合物からなる触媒の存在下に、分子状酸素を
含むガスを用いて酸化してナフタレンジカルボン酸を製
造するに際して、ジアルキルナフタレン1グラムモルに
対して反応器に供給するコバルトとマンガンの合計量を
0.025〜0.1グラム原子、コバルトに対するマン
ガンの原子比を0.03〜0.5とし、160〜240
℃の温度で酸化反応を行ない、ナフタレンジカルボン酸
の濃度が8〜30重量%の範囲において反応生成物中の
固液分離を行なうことを特徴とするナフタレンジカルボ
ン酸の製造法。
1. A process for oxidizing a dialkylnaphthalene using a gas containing molecular oxygen in a solvent containing a lower aliphatic carboxylic acid in the presence of a catalyst comprising a cobalt compound, a manganese compound and a bromine compound to obtain naphthalenedicarboxylic acid. In producing, the total amount of cobalt and manganese supplied to the reactor with respect to 1 gram mole of dialkylnaphthalene is 0.025 to 0.1 gram atom, and the atomic ratio of manganese to cobalt is 0.03 to 0.5, 160-240
A process for producing naphthalenedicarboxylic acid, wherein an oxidation reaction is carried out at a temperature of ° C., and solid-liquid separation in the reaction product is carried out at a naphthalenedicarboxylic acid concentration of 8 to 30% by weight.
【請求項2】ジアルキルナフタレンが2,6-ジメチルナフ
タレンである請求項1に記載のナフタレンジカルボン酸
の製造法。
2. The method for producing naphthalenedicarboxylic acid according to claim 1, wherein the dialkylnaphthalene is 2,6-dimethylnaphthalene.
【請求項3】反応生成物に臭素イオンを発生する化合物
を添加した後、固液分離を行なう請求項1又は請求項2
に記載のナフタレンジカルボン酸の製造法。
3. A solid-liquid separation after adding a compound which generates bromine ions to the reaction product.
3. The method for producing naphthalenedicarboxylic acid according to 1.).
【請求項4】反応生成物を固液分離して得られた結晶
を、水分濃度10%以下の低級脂肪族カルボン酸で洗浄
する請求項1〜3に記載のナフタレンジカルボン酸の製
造法。
4. The method for producing naphthalenedicarboxylic acid according to claim 1, wherein crystals obtained by solid-liquid separation of the reaction product are washed with a lower aliphatic carboxylic acid having a water concentration of 10% or less.
【請求項5】反応生成物を固液分離して得られた結晶
を、水分濃度10%以下の低級脂肪族カルボン酸に分散
させた後、再度固液分離する請求項4に記載のナフタレ
ンジカルボン酸の製造法。
5. The naphthalenedicarboxylic acid according to claim 4, wherein the crystals obtained by solid-liquid separation of the reaction product are dispersed in a lower aliphatic carboxylic acid having a water concentration of 10% or less and then solid-liquid separated again. Method of producing acid.
【請求項6】再度固液分離して得られた母液の少なくと
も一部を循環して反応生成物に添加し一段目の固液分離
を行なう請求項5に記載のナフタレンジカルボン酸の製
造法。
6. The method for producing naphthalenedicarboxylic acid according to claim 5, wherein at least a part of the mother liquor obtained by the solid-liquid separation is circulated and added to the reaction product to perform the first-stage solid-liquid separation.
JP31307798A 1998-04-11 1998-11-04 Method for producing naphthalenedicarboxylic acid Expired - Fee Related JP4207273B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31307798A JP4207273B2 (en) 1998-11-04 1998-11-04 Method for producing naphthalenedicarboxylic acid
EP99120885A EP0999199B1 (en) 1998-11-04 1999-10-27 Method of producing naphthalenedicarboxylic acid
DE69915976T DE69915976T2 (en) 1998-11-04 1999-10-27 Process for the preparation of naphthalenedicarboxylic acid
US09/432,783 US6268528B1 (en) 1998-04-11 1999-11-03 Method of producing naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31307798A JP4207273B2 (en) 1998-11-04 1998-11-04 Method for producing naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JP2000143583A true JP2000143583A (en) 2000-05-23
JP4207273B2 JP4207273B2 (en) 2009-01-14

Family

ID=18036922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31307798A Expired - Fee Related JP4207273B2 (en) 1998-04-11 1998-11-04 Method for producing naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP4207273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070000A (en) * 2004-09-06 2006-03-16 Mitsubishi Gas Chem Co Inc Preparation method of dimethyl naphthalenedicarboxylate
KR100721439B1 (en) 2006-06-01 2007-05-23 주식회사 효성 Process for purification naphthalene dicarboxylic acid
JP2013053101A (en) * 2011-09-05 2013-03-21 Mitsubishi Gas Chemical Co Inc Purification method for aromatic carboxylic acid
CN112441908A (en) * 2019-09-04 2021-03-05 中国石油化工股份有限公司 Method for synthesizing 2,6-naphthalene dicarboxylic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070000A (en) * 2004-09-06 2006-03-16 Mitsubishi Gas Chem Co Inc Preparation method of dimethyl naphthalenedicarboxylate
KR100721439B1 (en) 2006-06-01 2007-05-23 주식회사 효성 Process for purification naphthalene dicarboxylic acid
JP2013053101A (en) * 2011-09-05 2013-03-21 Mitsubishi Gas Chemical Co Inc Purification method for aromatic carboxylic acid
CN112441908A (en) * 2019-09-04 2021-03-05 中国石油化工股份有限公司 Method for synthesizing 2,6-naphthalene dicarboxylic acid
CN112441908B (en) * 2019-09-04 2023-04-07 中国石油化工股份有限公司 Method for synthesizing 2,6-naphthalene dicarboxylic acid

Also Published As

Publication number Publication date
JP4207273B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
EP0465100B1 (en) Process for producing high purity isophthalic acid
US4286101A (en) Process for preparing terephthalic acid
JP3390169B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPH0451539B2 (en)
US5110982A (en) Process for producing 2,6-napthalene dicarboxylic acid
JPH0259820B2 (en)
US6268528B1 (en) Method of producing naphthalenedicarboxylic acid
EP1971566A1 (en) A process for preparing high purity terephthalic acid
KR100562436B1 (en) Process for the preparation of high purity dimethyl 2,6-naphthalenedicarboxylate
JP2000143583A (en) Production of naphtahlenedicarboxylic acid
JPH10316615A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS6089445A (en) Production of 2,6-naphthalenedicarboxylic acid
JP2002105018A (en) Method for producing aromatic carboxylic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JP4352191B2 (en) Production of pyromellitic acid
JP3319044B2 (en) Method for producing high-purity terephthalic acid
JPH0532586A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPH1053557A (en) Production of 2,6-naphthalenedicarboxylic acid having high purity
JPH1180074A (en) Production of highly pure 2,6-naphthalene dicarboxylic acid
JPH11165079A (en) Method for recovering acetic acid in liquid-phase air oxidation reaction and method for recovering catalyst
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JPS6323983B2 (en)
JP3201436B2 (en) Production method of high purity isophthalic acid
JPH1192416A (en) Production of trimellitic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees