JPH0665143A - Production of naphthalendicarboxylic acid - Google Patents

Production of naphthalendicarboxylic acid

Info

Publication number
JPH0665143A
JPH0665143A JP4216110A JP21611092A JPH0665143A JP H0665143 A JPH0665143 A JP H0665143A JP 4216110 A JP4216110 A JP 4216110A JP 21611092 A JP21611092 A JP 21611092A JP H0665143 A JPH0665143 A JP H0665143A
Authority
JP
Japan
Prior art keywords
ndca
solid
acid
oxidation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4216110A
Other languages
Japanese (ja)
Inventor
Mitsuhito Aoyanagi
三仁 青柳
Hideo Hasegawa
英雄 長谷川
Akio Namatame
昭夫 生天目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4216110A priority Critical patent/JPH0665143A/en
Publication of JPH0665143A publication Critical patent/JPH0665143A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide the grain diameter of a produced naphthalendicarboxylic acid (NDCA) crystal to a size suitable for the solid-liquid separation by carrying out the oxidation at a specific reactional temperature in an oxidizing step for obtaining the NDCA. CONSTITUTION:The objective method for producing NDCA is to oxidize a dialkylnaphthalene and/or its oxidation derivative with a molecular oxygen- containing gas in the presence of a catalyst composed of a heavy metallic oxidation catalyst (e.g. cobalt, manganese, cerium or nickel) in a solvent containing a lower aliphatic carboxylic acid such as acetic acid at 180-220 deg.C and then subjecting the resultant product to the solid-liquid separation with a centrifugal separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジアルキルナフタレン
及び/またはその酸化誘導体を酸化してナフタレンジカ
ルボン酸(以下、NDCAと略称することがある)を製
造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a naphthalenedicarboxylic acid (hereinafter sometimes abbreviated as NDCA) by oxidizing a dialkylnaphthalene and / or an oxidized derivative thereof.

【0002】[0002]

【従来の技術】NDCA及びそのエステル(以下、ND
CA等と略称することがある)は、高分子材料、染料中
間体等として有用な物質である。特に、2,6―NDC
A等とエチレングリコールとから形成されるポリエチレ
ンナフタレートはポリエチレンテレフタレートよりも耐
熱性、破断強度等に優れており、フィルム、食品包装材
料等の素材として注目されている。更に、ポリブチレン
ナフタレート樹脂は、ポリブチレンテレフタレート樹脂
に比べて、結晶化速度が大きく、高い耐湿熱性を有して
いるので、NDCA等は樹脂原料としても有用である。
2. Description of the Related Art NDCA and its ester (hereinafter referred to as ND
(Sometimes abbreviated as CA, etc.) is a substance useful as a polymer material, a dye intermediate, and the like. Especially 2,6-NDC
Polyethylene naphthalate formed from A and the like and ethylene glycol is superior to polyethylene terephthalate in heat resistance, breaking strength and the like, and is attracting attention as a material for films, food packaging materials and the like. Further, since polybutylene naphthalate resin has a higher crystallization rate and higher wet heat resistance than polybutylene terephthalate resin, NDCA or the like is useful as a resin raw material.

【0003】従来、NDCAの製造方法としては、ジア
ルキルナフタレン及び/またはその酸化誘導体をコバル
ト、マンガン、臭素等を触媒に用いて、低級脂肪族カル
ボン酸を含む溶媒中、分子状酸素により酸化する方法が
多数提案されている。
Conventionally, as a method for producing NDCA, a method of oxidizing dialkylnaphthalene and / or an oxidized derivative thereof with molecular oxygen in a solvent containing a lower aliphatic carboxylic acid using cobalt, manganese, bromine or the like as a catalyst. Have been proposed.

【0004】しかしながら、いずれの方法においても、
得られる粗NDCAの結晶粒径が小さく、しかも反応溶
媒に対するNDCAの溶解度が非常に小さいためテレフ
タル酸製造プロセスの場合のように多段晶析を行っても
NDCAの粒径をあまり大きく出来ないので、反応母液
の分離工程あるいはそれに続く洗浄工程における固液分
離、特に工業的に有利な遠心分離機による固液分離が極
めて難しいという問題がある。
However, in either method,
Since the crystal grain size of the obtained crude NDCA is small and the solubility of NDCA in the reaction solvent is very small, the grain size of NDCA cannot be increased so much even if multi-stage crystallization is performed as in the terephthalic acid production process. There is a problem that solid-liquid separation in the separation step of the reaction mother liquor or the subsequent washing step, particularly solid-liquid separation by an industrially advantageous centrifugal separator, is extremely difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる状況
に鑑み、その目的とするところは、ジアルキルナフタレ
ン及び/またはその誘導体を酸化して得られるNDCA
結晶の粒径を大きくして固液分離を容易にし、NDCA
を工業的に有利に製造する方法を提供することにある。
DISCLOSURE OF THE INVENTION In view of such circumstances, the present invention has as its object the NDCA obtained by oxidizing dialkylnaphthalene and / or its derivative.
NDCA is used to increase the crystal grain size and facilitate solid-liquid separation.
It is to provide a method for industrially producing the above.

【0006】[0006]

【課題を解決するための手段】本発明者らは、酸化条件
と得られたNDCA結晶の粒径の関係について鋭意検討
した結果、ジアルキルナフタレン及び/またはその酸化
誘導体を、低級脂肪族モノカルボン酸を含む溶媒中、重
金属酸化触媒及び臭素からなる触媒の存在下に、分子状
酸素含有ガスを用いて、特定の反応温度で酸化すれば、
NDCA結晶の粒径が大きくなり固液分離が容易になる
ことを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the relationship between the oxidizing conditions and the particle size of the obtained NDCA crystals, the present inventors have found that dialkylnaphthalene and / or its oxidized derivative is a lower aliphatic monocarboxylic acid. In a solvent containing, in the presence of a catalyst composed of a heavy metal oxidation catalyst and bromine, using a molecular oxygen-containing gas, if oxidized at a specific reaction temperature,
The inventors have found that the particle size of NDCA crystals is large and solid-liquid separation is easy, and have completed the present invention.

【0007】本発明は、ジアルキルナフタレン及び/ま
たはその酸化誘導体を、低級脂肪族カルボン酸を含む溶
媒中、重金属酸化触媒及び臭素からなる触媒の存在下
に、180〜220℃で分子状酸素含有ガスを用いて酸
化した後、反応生成物を遠心分離機により固液分離する
ナフタレンジカルボン酸の製造方法である。
In the present invention, a dialkylnaphthalene and / or an oxidized derivative thereof is treated with a molecular oxygen-containing gas at 180 to 220 ° C. in a solvent containing a lower aliphatic carboxylic acid in the presence of a heavy metal oxidation catalyst and a catalyst consisting of bromine. Is a method for producing naphthalenedicarboxylic acid, in which the reaction product is subjected to solid-liquid separation with a centrifuge after being oxidized with.

【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】本発明で酸化原料として用いるジアルキル
ナフタレンとしては、ジメチルナフタレン、ジエチルナ
フタレン、ジイソプロピルナフタレン等が挙げられ、そ
の酸化誘導体としては、ホルミルナフトエ酸、アセチル
ナフトエ酸の如き前記ジアルキルナフタレンの酸化中間
体あるいはメチルアセチルナフタレン、メチルブチリル
ナフタレンの如きアルキルアシルナフタレンあるいはジ
アシルナフタレン等が挙げられる。そして、これらのう
ち、特に2,6―体が工業的に有用である。
Examples of the dialkylnaphthalene used as an oxidizing raw material in the present invention include dimethylnaphthalene, diethylnaphthalene, diisopropylnaphthalene and the like, and its oxidized derivative is an oxidized intermediate of the dialkylnaphthalene such as formylnaphthoic acid and acetylnaphthoic acid. Alternatively, alkylacylnaphthalene such as methylacetylnaphthalene and methylbutyrylnaphthalene, diacylnaphthalene and the like can be mentioned. Of these, the 2,6-body is industrially useful.

【0010】本発明方法においては、炭素数1乃至5個
の脂肪族モノカルボン酸、すなわち蟻酸、酢酸、プロピ
オン酸、酪酸等、あるいはこれらの混合物が溶媒の低級
脂肪族カルボン酸として使用されるが、酢酸、プロピオ
ン酸が好ましく、特に酢酸が好ましい。また、溶媒の使
用量はジアルキルナフタレン及び/またはその酸化誘導
体に対し通常2〜15重量倍、好ましくは3〜10重量
倍である。
In the method of the present invention, an aliphatic monocarboxylic acid having 1 to 5 carbon atoms, that is, formic acid, acetic acid, propionic acid, butyric acid, etc., or a mixture thereof is used as a lower aliphatic carboxylic acid as a solvent. , Acetic acid and propionic acid are preferable, and acetic acid is particularly preferable. The amount of the solvent used is usually 2 to 15 times by weight, preferably 3 to 10 times by weight, the amount of dialkylnaphthalene and / or its oxidized derivative.

【0011】本発明方法において使用される酸化触媒
は、重金属化合物及び臭素化合物である。重金属酸化触
媒としては、コバルト及び/またはマンガンが好まし
く、必要に応じて、セリウム、ニッケル等を添加しても
よい。これらは有機酸塩、ハロゲン化物、水酸化物、酸
化物、炭酸塩等の形で用いられ、脂肪酸塩、特に酢酸
塩、及び臭化物が好ましい。
The oxidation catalysts used in the method of the present invention are heavy metal compounds and bromine compounds. As the heavy metal oxidation catalyst, cobalt and / or manganese are preferable, and cerium, nickel and the like may be added if necessary. These are used in the form of organic acid salts, halides, hydroxides, oxides, carbonates and the like, and fatty acid salts, particularly acetates and bromides are preferable.

【0012】本発明方法における重金属酸化触媒の使用
量は、用いる酸化原料の種類によって異なるが、溶媒に
対して0.1重量%以上であり、好ましくは0.5重量
%以上である。
The amount of the heavy metal oxidation catalyst used in the method of the present invention varies depending on the kind of the oxidizing raw material used, but is 0.1% by weight or more, preferably 0.5% by weight or more, based on the solvent.

【0013】一方、臭素化合物としては、酸化反応系に
溶解し、臭素イオンを発生するものであれば有機化合物
または無機化合物のいずれであってもよく、具体的に
は、分子状臭素(Br2 )、臭化水素、臭化ナトリウ
ム、臭化カリウム、臭化アンモニウム等の無機臭化物、
または臭化アルキル、ブロモ酢酸の如き臭素化脂肪酸等
の有機臭化物が挙げられる。臭化水素、臭化ナトリウ
ム、臭化カリウム、臭化コバルト及び臭化マンガン等が
特に好ましい例である。臭素は、重金属酸化触媒の合計
に対し、原子比で0.01〜2の範囲で通常使用され
る。
On the other hand, the bromine compound may be either an organic compound or an inorganic compound as long as it dissolves in an oxidation reaction system to generate a bromine ion. Specifically, molecular bromine (Br 2 ), Hydrogen bromide, sodium bromide, potassium bromide, inorganic bromide such as ammonium bromide,
Alternatively, organic bromides such as alkyl bromide and brominated fatty acids such as bromoacetic acid can be used. Hydrogen bromide, sodium bromide, potassium bromide, cobalt bromide, manganese bromide and the like are particularly preferable examples. Bromine is usually used in an atomic ratio of 0.01 to 2 with respect to the total weight of the heavy metal oxidation catalyst.

【0014】本発明方法においては、粗NDCAは、酸
化して得られた反応生成物を遠心分離機により固液分離
して得られるが、この場合の遠心分離機としては、許容
給液濃度が30〜50%と高く、目詰まりのない安定し
た運転及びケークの連続排出が可能なデカンター型(特
に、コンベヤ型)の遠心沈降機が好ましく用いられる。
分離板型の遠心沈降機を採用した場合には、微粒子の分
離には適しているが、許容給液濃度が数%〜10%と低
いため、酸化反応時に溶媒を大量に使用する必要があ
り、高価な酸化反応器の容積効率が悪くなるため好まし
くない。また、遠心脱水機による微粒子の取扱は、目詰
まりを起こしやすいといった欠点があるため好ましくな
い。
In the method of the present invention, crude NDCA is obtained by subjecting the reaction product obtained by oxidation to solid-liquid separation with a centrifuge. In this case, the centrifuge has an allowable feed concentration. A decanter-type (particularly, conveyor-type) centrifugal settler having a high 30-50% and capable of stable operation without clogging and continuous discharge of cake is preferably used.
When a separation plate type centrifugal settler is used, it is suitable for separating fine particles, but since the allowable feed liquid concentration is as low as several% to 10%, it is necessary to use a large amount of solvent during the oxidation reaction. However, the volumetric efficiency of the expensive oxidation reactor is deteriorated, which is not preferable. Further, handling of fine particles by a centrifugal dehydrator is not preferable because it has a drawback that clogging is likely to occur.

【0015】該粗NDCAは、更に酢酸、水洗浄、アル
コール洗浄等によって触媒、反応中間体及び副生物を除
去し、純度アップすることが可能であるが、この際の固
液分離にもデカンター型の遠心沈降機が好ましく用いら
れる。
The crude NDCA can be further purified by removing the catalyst, reaction intermediates and by-products by washing with acetic acid, water, alcohol and the like, and the decanter type is also used for solid-liquid separation at this time. The centrifugal sedimentation machine of is preferably used.

【0016】デカンター型の遠心沈降機の分離補集径は
1〜10μm前後であり、好ましくは2μm程度以上の
粒子の分離に適しているとされているが、ジアルキルナ
フタレンの酸化により得られる粗NDCAの粒径が小さ
いため、従来は運転トラブルの発生が多かった。
It is said that the decanter type centrifugal settler has a separation and collection diameter of about 1 to 10 μm, and it is said that it is suitable for separating particles of about 2 μm or more, but crude NDCA obtained by oxidation of dialkylnaphthalene. Because of the small particle size, there have been many operating problems in the past.

【0017】本発明における酸化反応温度は、180℃
〜220℃、好ましくは185℃〜215℃の範囲であ
り、この範囲の反応温度で酸化を行うと、粗NDCAの
結晶サイズが2μm程度以上となり、デカンター型の遠
心沈降機で安定して固液分離が出来るが、反応温度がこ
れより低いと、得られるNDCA結晶の粒径が小さくな
り、反応母液の分離工程における固液分離が難しくな
る。特に、それに続く洗浄工程における固液分離では、
当初凝集していた粒子が破壊され、更に細かくなるので
固液分離がより困難になる。また、反応中間体の生成が
多くなり、得られるNDCAの純度が低下するため、後
酸化を実施する必要が生じ、設備費が高くなり好ましく
ない。一方、反応温度がこれより高いと、副反応生成物
が増加して、得られるNDCAの純度が低下すると共
に、溶媒の燃焼ロスも急激に増加するため好ましくな
い。
The oxidation reaction temperature in the present invention is 180 ° C.
~ 220 ° C, preferably 185 ° C to 215 ° C, and when the oxidation is carried out at the reaction temperature in this range, the crystal size of the crude NDCA becomes about 2 µm or more, and the solid-liquid state is stable in a decanter type centrifugal settler. Separation is possible, but if the reaction temperature is lower than this, the particle size of the obtained NDCA crystals becomes small, and solid-liquid separation in the separation step of the reaction mother liquor becomes difficult. Especially in the solid-liquid separation in the subsequent washing step,
The initially aggregated particles are destroyed and become finer, which makes solid-liquid separation more difficult. In addition, the production of reaction intermediates increases and the purity of the obtained NDCA decreases, so that it is necessary to carry out post-oxidation, which is not preferable because the equipment cost becomes high. On the other hand, if the reaction temperature is higher than this range, the side reaction products increase, the purity of the obtained NDCA decreases, and the combustion loss of the solvent rapidly increases, which is not preferable.

【0018】その際の反応圧力は、該反応温度において
反応系が液相に保持される圧力であればいいが、通常1
0〜30kg/cm2 G程度が適当である。
The reaction pressure at that time may be any pressure as long as the reaction system is kept in the liquid phase at the reaction temperature, but is usually 1
About 0 to 30 kg / cm 2 G is suitable.

【0019】本発明方法において使用する分子状酸素含
有ガスとしては、酸素ガスまたはそれを不活性ガスで希
釈した混合ガスが使用される。工業的には、空気が最も
入手しやすく好ましい。
As the molecular oxygen-containing gas used in the method of the present invention, oxygen gas or a mixed gas obtained by diluting it with an inert gas is used. Industrially, air is the most available and preferred.

【0020】[0020]

【実施例】以下、実施例に基づいて、本発明を具体的に
説明する。なお、実施例及び比較例における部及び%は
それぞれ重量部および重量%を示す。
EXAMPLES The present invention will be specifically described below based on examples. The parts and% in the examples and comparative examples represent parts by weight and% by weight, respectively.

【0021】[0021]

【実施例1】還流冷却器付のガス排出管、ガス拭き込み
管、原料連続送入ポンプ及び撹拌器を有するチタン製オ
ートクレーブに、酢酸174部、酢酸コバルト(四水
塩)6.74部、酢酸マンガン(四水塩)13.26
部、47%臭化水素水1.40部、水12部を装入し
た。この触媒液中の水分濃度は9%であった。この触媒
液を、温度200℃、圧力30kg/cm2 G下で激し
く撹拌しながら、これに2,6―ジエチルナフタレン5
5部及び圧縮空気を連続的に1.3時間かけて送入し、
酸化反応を行った。原料2,6―ジエチルナフタレンの
送入完了後、そのまま、更に200℃、30kg/cm
2 Gに保って圧縮空気を14分間供給した。反応完結
後、反応生成物を取り出して、主として2,6―NDC
Aよりなる固体沈殿を分離し、乾燥した。得られた粗
2,6―NDCAの純度は95.0%、平均粒径は10
μmであった。
Example 1 A titanium autoclave having a gas discharge pipe with a reflux condenser, a gas wiping pipe, a continuous feed pump for raw materials and a stirrer was placed in 174 parts of acetic acid, 6.74 parts of cobalt acetate (tetrahydrate), and acetic acid. Manganese (tetrahydrate) 13.26
Parts, 47% hydrogen bromide water 1.40 parts, and water 12 parts. The water concentration in this catalyst liquid was 9%. The catalyst solution was stirred vigorously at a temperature of 200 ° C. and a pressure of 30 kg / cm 2 G while adding 2,6-diethylnaphthalene 5
5 parts and compressed air were continuously fed in over 1.3 hours,
The oxidation reaction was carried out. After the feeding of the raw material 2,6-diethylnaphthalene is completed, it is further maintained at 200 ° C. and 30 kg / cm.
It was kept at 2 G and compressed air was supplied for 14 minutes. After completion of the reaction, the reaction product was taken out and mainly 2,6-NDC
The solid precipitate consisting of A was separated and dried. The crude 2,6-NDCA obtained has a purity of 95.0% and an average particle size of 10
was μm.

【0022】[0022]

【実施例2】実施例1と同様の反応を行い、粗2,6―
NDCAよりなる固体沈殿を分離したのち、更に3倍量
の酢酸で洗浄し、分離乾燥を行った。得られた2,6―
NDCAの純度は96.5%、平均粒径は3.5μmで
あった。
Example 2 The same reaction as in Example 1 was carried out to give crude 2,6-
After separating a solid precipitate consisting of NDCA, the solid precipitate was washed with 3 times the amount of acetic acid and separated and dried. Obtained 2,6-
The purity of NDCA was 96.5%, and the average particle size was 3.5 μm.

【0023】[0023]

【実施例3】実施例2で得られた2,6―NDCAを、
更に6倍量の水で洗浄し、分離乾燥を行った。得られた
2,6―NDCAの純度は96.7%、平均粒径は3.
4μmであった。
Example 3 The 2,6-NDCA obtained in Example 2 was
It was further washed with 6 times the amount of water and separated and dried. The obtained 2,6-NDCA had a purity of 96.7% and an average particle size of 3.
It was 4 μm.

【0024】[0024]

【比較例1〜3】反応温度を170℃とした以外は、実
施例1〜3と同様の反応、分離操作を行った。得られた
2,6―NDCAの純度、平均粒径は表1の通りであっ
た。
Comparative Examples 1 to 3 The same reaction and separation operations as in Examples 1 to 3 were performed except that the reaction temperature was 170 ° C. The purity and average particle size of the obtained 2,6-NDCA are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【実施例4〜5,比較例4〜5】反応温度を変えた以外
は実施例2と同様の反応、分離操作を行い、表2に示し
た結果を得た。
Examples 4 to 5 and Comparative Examples 4 to 5 The same reaction and separation operation as in Example 2 were carried out except that the reaction temperature was changed, and the results shown in Table 2 were obtained.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【実施例6】実施例1と同様の反応装置に酢酸161
部、酢酸コバルト(四水塩)1.68部、酢酸マンガン
(四水塩)3.29部、47%臭化水素水3.47部を
装入した。この触媒液を、温度200℃、圧力30kg
/cm2 Gの条件下で激しく撹拌しながら、これに2,
6―ジメチルナフタレン48部及び圧縮空気を連続的に
1.3時間かけて送入して、その他は実施例1と同様の
反応条件、反応操作で酸化反応を行い、粗2,6―ND
CAよりなる固体沈殿を分離したのち、更に3倍量の酢
酸で洗浄し、分離乾燥を行った。この時、2,6―ND
CAの純度は96.9%、平均粒径は5.0μmであっ
た。
Example 6 Acetic acid 161 was placed in the same reactor as in Example 1.
Parts, cobalt acetate (tetrahydrate) 1.68 parts, manganese acetate (tetrahydrate) 3.29 parts, and 47% hydrogen bromide water 3.47 parts. This catalyst liquid is used at a temperature of 200 ° C. and a pressure of 30 kg.
/ Cm 2 G under vigorous stirring,
48 parts of 6-dimethylnaphthalene and compressed air were continuously fed in over 1.3 hours, and the oxidation reaction was carried out under the same reaction conditions and reaction operation as in Example 1 except that crude 2,6-ND was used.
After the solid precipitate of CA was separated, it was further washed with 3 times the amount of acetic acid and separated and dried. At this time, 2,6-ND
The purity of CA was 96.9%, and the average particle size was 5.0 μm.

【0029】[0029]

【実施例7】実施例1と同様の反応装置に酢酸177
部、酢酸コバルト(四水塩)7.63部、酢酸マンガン
(四水塩)7.51部、臭化カリウム14.58部、酢
酸カリウム12.02部を装入した。この触媒液を、温
度200℃、圧力30kg/cm2 Gの条件下で激しく
撹拌しながら、これに2,6―ジイソプロピルナフタレ
ン65部及び圧縮空気を連続的に1.3時間かけて送入
して、その他は実施例1と同様の反応条件、反応操作で
酸化反応を行い、粗2,6―NDCAよりなる固体沈殿
を分離したのち、更に3倍量の酢酸で洗浄し、分離乾燥
を行った。この時、2,6―NDCAの純度は96.9
%、平均粒径は6.0μmであった。
Example 7 Acetic acid 177 was added to a reactor similar to that of Example 1.
Parts, cobalt acetate (tetrahydrate) 7.63 parts, manganese acetate (tetrahydrate) 7.51 parts, potassium bromide 14.58 parts, and potassium acetate 12.02 parts. This catalyst solution was vigorously stirred under the conditions of a temperature of 200 ° C. and a pressure of 30 kg / cm 2 G, to which 65 parts of 2,6-diisopropylnaphthalene and compressed air were continuously fed over 1.3 hours. Then, the oxidation reaction is performed under the same reaction conditions and reaction procedures as in Example 1 except that the solid precipitate consisting of crude 2,6-NDCA is separated, washed with 3 times the amount of acetic acid and separated and dried. It was At this time, the purity of 2,6-NDCA is 96.9.
%, And the average particle size was 6.0 μm.

【0030】[0030]

【比較例6,7】反応温度を170℃とした以外は、実
施例6,7と同様の反応、分離操作を行った。得られた
2,6―NDCAの純度、平均粒径は表3の通りであっ
た。
Comparative Examples 6 and 7 The same reaction and separation operations as in Examples 6 and 7 were performed except that the reaction temperature was 170 ° C. The purity and average particle size of the obtained 2,6-NDCA are shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ジアルキルナフタレン及び/またはその
酸化誘導体を、低級脂肪族カルボン酸を含む溶媒中、重
金属酸化触媒及び臭素からなる触媒の存在下に、180
〜220℃で分子状酸素含有ガスを用いて酸化した後、
反応生成物を遠心分離機により固液分離するナフタレン
ジカルボン酸の製造方法。
1. 180% of dialkylnaphthalene and / or its oxidized derivative in a solvent containing a lower aliphatic carboxylic acid in the presence of a heavy metal oxidation catalyst and a catalyst consisting of bromine.
After oxidation with molecular oxygen-containing gas at ~ 220 ° C,
A method for producing naphthalenedicarboxylic acid, in which a reaction product is subjected to solid-liquid separation by a centrifuge.
【請求項2】 得られたナフタレンジカルボン酸を溶媒
で洗浄し、遠心分離機により固液分離して精製する請求
項1に記載のナフタレンジカルボン酸の製造方法。
2. The method for producing naphthalenedicarboxylic acid according to claim 1, wherein the obtained naphthalenedicarboxylic acid is washed with a solvent and solid-liquid separated by a centrifugal separator for purification.
【請求項3】 遠心分離機がデカンター型遠心沈降機で
ある請求項1あるいは2に記載のナフタレンジカルボン
酸の製造方法。
3. The method for producing naphthalenedicarboxylic acid according to claim 1, wherein the centrifuge is a decanter type centrifugal settler.
【請求項4】 重金属酸化触媒がコバルト、マンガン、
セリウム及びニッケルよりなる群から選ばれた少くとも
1種の成分である請求項1に記載のナフタレンジカルボ
ン酸の製造方法。
4. The heavy metal oxidation catalyst is cobalt, manganese,
The method for producing naphthalenedicarboxylic acid according to claim 1, which is at least one component selected from the group consisting of cerium and nickel.
JP4216110A 1992-08-13 1992-08-13 Production of naphthalendicarboxylic acid Pending JPH0665143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216110A JPH0665143A (en) 1992-08-13 1992-08-13 Production of naphthalendicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216110A JPH0665143A (en) 1992-08-13 1992-08-13 Production of naphthalendicarboxylic acid

Publications (1)

Publication Number Publication Date
JPH0665143A true JPH0665143A (en) 1994-03-08

Family

ID=16683404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216110A Pending JPH0665143A (en) 1992-08-13 1992-08-13 Production of naphthalendicarboxylic acid

Country Status (1)

Country Link
JP (1) JPH0665143A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018750A1 (en) * 1996-10-30 1998-05-07 Mitsui Chemicals, Inc. Process for preparing aromatic dicarboxylic acids
US6268528B1 (en) 1998-04-11 2001-07-31 Mitsubishi Gas Chemical Company, Inc. Method of producing naphthalenedicarboxylic acid
JP2010514757A (en) * 2006-12-29 2010-05-06 ヒョスン・コーポレーション Purification method and apparatus for high purity 2,6-naphthalenedicarboxylic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018750A1 (en) * 1996-10-30 1998-05-07 Mitsui Chemicals, Inc. Process for preparing aromatic dicarboxylic acids
US5925786A (en) * 1996-10-30 1999-07-20 Mitsui Chemicals, Inc. Process for producing aromatic dicarboxylic acid
US6268528B1 (en) 1998-04-11 2001-07-31 Mitsubishi Gas Chemical Company, Inc. Method of producing naphthalenedicarboxylic acid
JP2010514757A (en) * 2006-12-29 2010-05-06 ヒョスン・コーポレーション Purification method and apparatus for high purity 2,6-naphthalenedicarboxylic acid

Similar Documents

Publication Publication Date Title
EP0111784B1 (en) Process for producing terephthalic acid suitable for use in direct polymerization
US5292934A (en) Method for preparing aromatic carboxylic acids
RU2397158C2 (en) Method of producing dialkyl ether of naphthalene dicarboxylic acid (versions)
EP0601177B1 (en) Method for preparing aromatic carboxylic acids
EP0872470B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JP2002522406A (en) Improved method for producing pure carboxylic acid
EP0204119B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0665143A (en) Production of naphthalendicarboxylic acid
MX2007003417A (en) Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid.
JP3199104B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid and its ester
JPH06293697A (en) Production of naphthalenedicarboxylic acid
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JP4429393B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
EP0329273B1 (en) Process for producing 2,6-naphthalene dicarboxylic acid
JPH03227953A (en) Production of 2,6-naphthalenedicarboxylic acid
JPH05339203A (en) Production of naphthalenedicarboxylic acid
JPH0625077A (en) Production of naphthalenecarboxylic acid excellent in filterability
JP2003342227A (en) Method for producing biphenyltetracarboxylic acid
JPH0529021B2 (en)
JPH1129521A (en) Production of naphthalenedicarboxylic acid
JPH03258748A (en) Production of 2,6-napthalenedicarboxylic acid
JPH03271249A (en) Production of 2,6-naphthalenedicarboxylic acid