JPH0335253B2 - - Google Patents

Info

Publication number
JPH0335253B2
JPH0335253B2 JP60255740A JP25574085A JPH0335253B2 JP H0335253 B2 JPH0335253 B2 JP H0335253B2 JP 60255740 A JP60255740 A JP 60255740A JP 25574085 A JP25574085 A JP 25574085A JP H0335253 B2 JPH0335253 B2 JP H0335253B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
dried
calcium
sintered body
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255740A
Other languages
Japanese (ja)
Other versions
JPS62113757A (en
Inventor
Seishiro Nakamura
Katsutoshi Ookami
Masayuki Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP60255740A priority Critical patent/JPS62113757A/en
Publication of JPS62113757A publication Critical patent/JPS62113757A/en
Publication of JPH0335253B2 publication Critical patent/JPH0335253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はヒドロキシアパタイト、第3リン酸カ
ルシウムまたはその混合物からなるリン酸カルシ
ウム焼結体の製造法に関する。リン酸カルシウム
焼結体は生体親和性が大きいため、人工歯根や人
工骨などの生体インプラント材料として利用され
る。 (従来の技術) 緻密なリン酸カルシウム焼結体の製造方法とし
ては、合成したアパタイト沈殿物を通常の脱水方
法(真空・加圧過等)により過ケーキを取り
出し、この過ケーキ体を粉末化せずそのまま乾
燥して焼結させる方法が知られており、かかる一
例は特開昭51−40400号に記載されている。 (発明が解結しようとする問題点) 上記の如き、過ケーキを取り出しこの過ケ
ーキ体を粉末化せずそのまま乾燥して焼結させる
方法で人工歯根を製造する場合、得られた焼結体
は、人口歯根として充分な圧縮強度が得られる
が、靱性がまだ充分でない。したがつて、本発明
の目的は、上記過ケーキを取り出し、この過
ケーキ体を粉末化せずそのまま乾燥して焼結させ
る方法を改良して靱性の大きいリン酸カルシウム
焼結体を得ることにある。 (問題点を解決するための手段) 本発明者らはかかる問題点を解決するため鋭意
検討した結果、以下に述べる本発明に到達した。
本発明はリン酸カルシウムの沈殿物を乾燥して得
られた塊状乾燥体をラバープレス法によりプレス
し、このようにして得られたリン酸カルシウム乾
燥体を900℃以上、1000℃未満の温度で焼成して
リン酸カルシウム焼結体とすることを特徴とする
リン酸カルシウム焼結体の製造法である。 本発明において用いられるゼラチン状のリン酸
カルシウム沈殿物はカルシウムイオンとリン酸イ
オンとを、カルシウムとリンとのモル比が1.4以
上1.7以下にあるように調節し、該カルシウムイ
オンとリン酸イオンとをPH8以上の水性媒質中で
反応させることにより得られる。つぎに、得られ
たゼラチン状のリン酸カルシウムの沈殿物をデカ
ンテーシヨンまたは遠心脱水により洗滌し、然る
後、真空濾過、遠心分離等の方法により溶液から
分離し、これを乾燥することによりラバープレス
装置に供するリン酸カルシウム乾燥体が得られ
る。好ましくは、該リン酸カルシウム乾燥体とし
ては、該ゼラチン状のリン酸カルシウム沈殿物を
洗滌後、水を加えてスラリーとし、これを乾燥焼
結後所望形状の成形体が得られるように形状が調
節された遠沈管に入れ、遠心分離して水を除去
し、乾燥して得られるものが実質的に後加工をす
ることなく所望形状のものが得られるので望まし
い。 遠沈管内でゼラチン状沈殿物を乾燥する場合に
は、ゼラチン状沈殿物を水性媒質中に分散させて
固形分濃度5〜25重量%のスラリーとし、このス
ラリーを遠心管内に注入し、1100G以上の遠心分
離により上澄液層と沈殿層に分け、上澄液層を除
いて、含水率73重量%以下の沈殿層を得ること
が、以後の乾燥過程において沈殿層の収縮変形が
少なく、ひびわれのない型に沿つた所望形状の成
形体を得ることができる点で望ましい。この場
合、乾燥中のひびわれを防止するために、該遠沈
管として、遠沈管の内壁面が疎水性高分子または
金属で平滑に形成された遠沈管を用いることが好
ましい。かかる材料として例えば、ポリオレフイ
ン、ポリスチレン、テフロン、ポリカーボネー
ト、ポリアクリル酸メチル、ポリメタクリル酸メ
チルなどの水分吸収率10%以下の疎水性高分子、
ステンレス、チタン合金、アルミ合金、シンチユ
ウなどの金属が用いられるが、なかでも前者とし
てポリエチレン、ポリプロピレン、テフロン等、
後者としてステンレス、チタン合金等が好まし
い。そして、該リン酸カルシウム沈殿物を乾燥す
る場合、急激な加熱は沈殿物の収縮変化を大きく
し、ひびわれを生じ易くするので好ましくない。
通常は室温〜130℃である。 上記の方法により遠沈管中で水分率5%以下ま
で乾燥して得られたリン酸カルシウム前駆乾燥体
はラバープレス法によりプレスされるが、プレス
圧は通常300Kg/cm2〜5000Kg/cm2好ましくは500
Kg/cm2〜3000Kg/cm2である。プレス圧が300Kg/
cm2以下ではリン酸カルシウム乾燥体を焼成した場
合、緻密な焼結体は得られない。また、プレス圧
が5000Kg/cm2以上では焼成中にリン酸カルシウム
のひびわれがおこる。 ラバープレスがおこなわれたリ酸カルシウム成
形体は900℃以上1000℃未満(好ましくは、980℃
以下)で焼成される。900℃以下では緻密なリン
酸カルシウム焼結体は得られず圧縮強度、靱性と
もに小さい。また1000℃以上では圧縮強度は大き
いが人工歯根にたいし充分な靱性が得られない。 本発明において、前述のようにスラリーを形状
が調節された遠沈管内で乾燥する場合には、さら
に加工を行わないでもリン酸カルシウム焼結体の
所望形状が得られるが、場合によつては焼結後の
成形体にさらに部分的な切削加工を行つて所望形
状としてもよく、あるいは乾燥体を所望形状とす
ることなく、焼結後において切削加工により所望
形状としてもよい。 なお、本発明においてリン酸カルシウムスラリ
ーに他の無機酸化物たとえばシリカ、アルミナ、
チタニア、ジルコニア等を10重量%以下の少量添
化して製造することも可能である。かかる他の無
機酸化物の形態としてはゾル状の無機酸化物が好
ましい。たとえば、シリカゾル、アルミナゾル等
が好適である。また、本発明においてリン酸カル
シウム沈殿物の乾燥時のひびわれを防止するため
に、リン酸カルシウムのスラリーにコラーゲン、
粉末セルローズ、ポリビニルアルコール等の有機
物を添加することもできる。有機物の添加量は5
重量%以下が好ましい。 (効 果) 以上述べたように、本発明により得られたリン
酸カルシウムの焼結体は緻密であり、圧縮強度、
靱性ともに大きい。したがつてこのものは生体イ
ンプラント材料とくに人工歯根の材料として有用
である。 (実施例) 実施例 1 市販硝酸カルシウム〔Ca(NO32・4H2O〕250
gを蒸溜水0.7に溶解し、この溶液に28%アン
モニア水0.08を徐々に加え、さらにこの溶液を
蒸溜水0.3で希釈した。一方、市販リン酸水素
アンモニウム〔(NH42HPO4〕84gを1の蒸
溜水に溶解し、この溶液に28%アンモニア水0.48
と蒸溜水1とを素早く加えた。前者の硝酸カ
ルシウム水溶液中に後者のリン酸水素アンモニウ
ム水溶液を攪拌下に滴々加えた。滴下が終つた
後、攪拌を続けながら上記混合液を加熱し、還流
下に20分保持し、冷却後さらに1昼夜静置した。
続いて該溶液を減圧下にガラスフイルターで濾過
し、この濾過ケーキをさらに蒸溜水で洗滌後ガラ
スフイルターごと80℃の乾燥器中で一昼夜乾燥さ
せた。このようにして得られたリン酸カルシウム
の濾過ケーキ乾燥体を旋盤および歯科用タービン
エンジン(ダイヤモンドジスク、両刃、厚み0.15
mm)を用いて加工し、直径4.0mm、長さ10.0mmの
円柱状成形乾燥体20個を得た。このリン酸カルシ
ウム乾燥成形体をそれぞれポリエチレン製フイル
ムの袋に入れ、真空パツクし、ラバープレスによ
り1200Kg/cm2の圧力でプレスした。このようにし
て得られたプレス後のリン酸カルシウム成形体20
個を電気炉中、室温から950℃まで3時間さらに
950℃で5時間焼成した。焼成後のリン酸カルシ
ウム焼結体(直径3.2mm、長さ81mm)はX線回折
による測定の結果ヒドロキシアパタイトの回折線
と一致した。またこれらのリン酸カルシウム焼結
体について相対密度、圧縮強度、破壊靱性をそれ
ぞれ測定した結果、平均置としてつぎのような値
が得られた。 相対密度 97.1% 圧縮強度 7200Kg/cm2 破壊靱性 1.01MPa・m1/2 なお、これらの測定において、相対密度はアル
キメデス法により、圧縮強度はインストロンを用
いることにより、また破壊靱性値はビツカース硬
度計を用いて次式により、それぞれ求めた。 KIC=0.203 HV・a1/2・(b/a)-3/2 (新原らの
式) HV:ビツカース硬度〔MPa〕 2a:圧痕対角線長さ〔m〕 b:圧痕中心からのクラツク平均長〔m〕 KIC:破壊靱性値〔vMPa・m1/2〕 E:リン酸カルシウム焼結体のヤング率〔Kgf/
mm2〕(超音波エコー法により測定) また、測定の前にリン酸カルシウム焼結体の各
試料は#1500研摩紙および0.3μAl2O3粉末により
研摩仕上げをおこなつた。 比較例 1 実施例1においてリン酸カルシウムの濾過ケー
キ乾燥体を加工して得られた円柱状成形乾燥体を
ラバープレスしないで、電気炉中室温から900℃
まで2時間で昇温し、900℃で30分保持、続いて
900℃より1150℃まで1時間で昇温、さらに1150
℃で3時間保持することによつて焼成した。得ら
れたリン酸カルシウム焼結体は実施例1と同様、
ヒドロキシアパタイトであり、寸法も実施例1と
同様、直径3.2mm、長さ81mmであつた。このよう
にして得られたリン酸カルシウム焼結体の相対密
度、圧縮強度、破壊靱性を実施例1と同様にして
測定した結果、平均値としてつぎのような値が得
られた。 相対密度 98.1% 圧縮強度 6900Kg/cm2 破壊靱性 0.62MPa・m1/2 実施例2および比較例2 市販硝酸カルシウム〔Ca(NO32・4H2O〕300
gを蒸溜水1.5に溶解し、さらにこの溶解に28
%アンモニア水0.64を充分に攪拌しながら加え
た。一方、市販リン酸水素アンモニウム
〔(NH42HPO4〕100gを1の蒸溜水に溶解し
この溶液28%アンモニア水0.60を加えた。前者
の硝酸カルシウム水溶液中に後者のリン酸水素ア
ンモニウムを攪拌下に滴々加えた。滴下が終つた
後、さらに攪拌を続けながら上記混合液を加熱
し、還流下に10分保持し、冷却後さらに3日間静
置した。続いて該溶液をポリプロピレン製濾布
(1000メツシユ)をとりつけた遠心脱水機で脱水
し、さらに蒸溜水でアルカリ性がなくなるまで洗
滌した後、濾過したリン酸カルシウムの沈殿を集
め、これに蒸溜水を加えて19%のスラリーとし
た。続いてポリプロピレン遠沈管(外径×長さ:
16.5×105mm、形状;円柱丸底、容量;10ml)110
本にそれぞれ8mlずつ注入しこれらの遠沈管をス
ウイング型遠心分離機により回転数5000rpm
(5300G)、回転時間15分の条件で遠心分離をおこ
なつた。遠心分離後、遠沈管の上澄液を捨て、リ
ン酸カルシウム沈殿層(含水率65重量%)を含む
上記110本の遠沈管を電気乾燥機中80℃で3日間
乾燥させた。乾燥後のリン酸カルシウム層は全て
の遠心管についてひびわれすることなく遠心管壁
面より剥離し、このようにして円柱状のリン酸カ
ルシウム成形乾燥体110個が得られた。これらを
実施例1として直径5.0mm、長さ10mmの円柱状に
加工し、得られた円柱状成形乾燥体110個を実施
例2と同様にしてラバープレスにより2000Kg/cm2
の圧力でプレスでプレスした。プレス後の円柱状
リン酸カルシウム成形乾燥体を20個ずつ、電気炉
に入れ、種々の温度で各3時間焼成した。それぞ
れの温度で得られたリン酸カルシウム焼結体(実
施例1と同様ヒドロキシアパタイト)の相対密
度、圧縮強度および破壊靱性の各平均値は第1表
のようであつた。
(Industrial Application Field) The present invention relates to a method for producing a calcium phosphate sintered body made of hydroxyapatite, tertiary calcium phosphate, or a mixture thereof. Calcium phosphate sintered bodies have high biocompatibility, so they are used as bioimplant materials for artificial tooth roots, artificial bones, and the like. (Prior art) As a method for producing a dense calcium phosphate sintered body, an overcake is removed from the synthesized apatite precipitate by a normal dehydration method (vacuum, pressurization, etc.), and this overcake is not pulverized. A method of directly drying and sintering is known, and one example of this is described in JP-A-51-40400. (Problems to be Solved by the Invention) When producing an artificial tooth root by the method described above, in which the overcake is taken out and the overcake is dried and sintered as it is without powdering, the obtained sintered body Although it has sufficient compressive strength as an artificial tooth root, its toughness is still insufficient. Therefore, an object of the present invention is to obtain a calcium phosphate sintered body with high toughness by improving the method of removing the above-mentioned overcake, drying and sintering the overcake as it is without pulverizing it. (Means for Solving the Problems) As a result of intensive studies to solve the problems, the present inventors have arrived at the present invention described below.
The present invention produces calcium phosphate by pressing a lumpy dried body obtained by drying a precipitate of calcium phosphate using a rubber press method, and calcining the dried calcium phosphate thus obtained at a temperature of 900°C or higher and lower than 1000°C. This is a method for producing a calcium phosphate sintered body, which is characterized in that it is made into a sintered body. In the gelatinous calcium phosphate precipitate used in the present invention, calcium ions and phosphate ions are adjusted so that the molar ratio of calcium to phosphorus is 1.4 or more and 1.7 or less, and the calcium ions and phosphate ions are adjusted to have a pH of 8 or less. It can be obtained by reacting in the above aqueous medium. Next, the obtained gelatinous calcium phosphate precipitate is washed by decantation or centrifugal dehydration, and then separated from the solution by vacuum filtration, centrifugation, etc., and dried and then rubber pressed. A dried calcium phosphate body to be used in the apparatus is obtained. Preferably, the dried calcium phosphate is a slurry that is prepared by washing the gelatinous calcium phosphate precipitate, adding water to form a slurry, and drying and sintering the slurry to obtain a molded product having a desired shape. This is desirable because the product obtained by placing it in a settling tube, centrifuging to remove water, and drying can be obtained in a desired shape without substantially post-processing. When drying a gelatinous precipitate in a centrifuge tube, the gelatinous precipitate is dispersed in an aqueous medium to form a slurry with a solid content concentration of 5 to 25% by weight, and this slurry is poured into a centrifuge tube and heated at 1100 G or more. It is possible to separate the supernatant liquid layer and the precipitate layer by centrifugation, and remove the supernatant liquid layer to obtain a precipitate layer with a water content of 73% by weight or less.The result is that during the subsequent drying process, the precipitate layer shrinks and deforms less and is free from cracks. This is desirable in that it is possible to obtain a molded article of a desired shape that conforms to the mold without any blemishes. In this case, in order to prevent cracking during drying, it is preferable to use a centrifuge tube whose inner wall surface is made of hydrophobic polymer or metal and has a smooth surface. Examples of such materials include hydrophobic polymers with a water absorption rate of 10% or less, such as polyolefin, polystyrene, Teflon, polycarbonate, polymethyl acrylate, and polymethyl methacrylate;
Metals such as stainless steel, titanium alloys, aluminum alloys, and aluminum alloys are used, but the former include polyethylene, polypropylene, Teflon, etc.
As the latter, stainless steel, titanium alloy, etc. are preferable. When drying the calcium phosphate precipitate, rapid heating is not preferred because it increases shrinkage of the precipitate and makes it more likely to crack.
Usually the temperature is between room temperature and 130°C. The dried calcium phosphate precursor obtained by drying to a moisture content of 5% or less in a centrifuge tube by the above method is pressed by a rubber press method, and the pressing pressure is usually 300 Kg/cm 2 to 5000 Kg/cm 2 Preferably 500 Kg/cm 2
Kg/ cm2 to 3000Kg/ cm2 . Press pressure is 300Kg/
cm 2 or less, a dense sintered body cannot be obtained when a dried calcium phosphate body is fired. Furthermore, if the press pressure is 5000 kg/cm 2 or more, cracks will occur in the calcium phosphate during firing. The rubber-pressed calcium phosphate molded product is heated to a temperature of 900°C or higher and lower than 1000°C (preferably 980°C).
(below). At temperatures below 900°C, a dense calcium phosphate sintered body cannot be obtained and both compressive strength and toughness are low. Moreover, at temperatures above 1000°C, although the compressive strength is high, sufficient toughness cannot be obtained for the artificial tooth root. In the present invention, when the slurry is dried in a centrifuge tube whose shape is adjusted as described above, the desired shape of the calcium phosphate sintered body can be obtained without further processing, but in some cases, sintering The formed body may be further partially cut into the desired shape, or the dried body may be cut into the desired shape after sintering without being shaped into the desired shape. In addition, in the present invention, other inorganic oxides such as silica, alumina, etc. are added to the calcium phosphate slurry.
It is also possible to manufacture by adding titania, zirconia, etc. in small amounts of 10% by weight or less. As for the form of such other inorganic oxides, sol-like inorganic oxides are preferred. For example, silica sol, alumina sol, etc. are suitable. In addition, in the present invention, collagen is added to the calcium phosphate slurry in order to prevent cracking during drying of the calcium phosphate precipitate.
Organic substances such as powdered cellulose and polyvinyl alcohol can also be added. The amount of organic matter added is 5
It is preferably less than % by weight. (Effects) As described above, the sintered body of calcium phosphate obtained by the present invention is dense and has high compressive strength and
It has great toughness. Therefore, this material is useful as a biological implant material, especially as a material for artificial tooth roots. (Example) Example 1 Commercially available calcium nitrate [Ca(NO 3 ) 2・4H 2 O] 250
g was dissolved in 0.7 g of distilled water, 0.08 g of 28% ammonia water was gradually added to this solution, and this solution was further diluted with 0.3 g of distilled water. On the other hand, 84 g of commercially available ammonium hydrogen phosphate [(NH 4 ) 2 HPO 4 ] was dissolved in distilled water from Step 1, and 0.48 g of 28% ammonia water was added to this solution.
and 1 part of distilled water were quickly added. The latter aqueous ammonium hydrogen phosphate solution was added dropwise to the former aqueous calcium nitrate solution while stirring. After the dropwise addition was completed, the mixture was heated while stirring, kept under reflux for 20 minutes, and after cooling, was left standing for another day and night.
Subsequently, the solution was filtered through a glass filter under reduced pressure, and the filter cake was further washed with distilled water, and then dried together with the glass filter in a dryer at 80° C. overnight. The dried filter cake of calcium phosphate obtained in this way was turned into a lathe and a dental turbine engine (diamond disk, double-edged, thickness 0.15
mm) to obtain 20 cylindrical molded dried bodies with a diameter of 4.0 mm and a length of 10.0 mm. Each of the dried calcium phosphate molded bodies was placed in a polyethylene film bag, vacuum packed, and pressed using a rubber press at a pressure of 1200 kg/cm 2 . Calcium phosphate molded body 20 after pressing obtained in this way
Heat the pieces in an electric furnace from room temperature to 950℃ for 3 hours.
It was baked at 950°C for 5 hours. The calcined calcium phosphate sintered body (diameter 3.2 mm, length 81 mm) was measured by X-ray diffraction, and the diffraction lines matched those of hydroxyapatite. Furthermore, the relative density, compressive strength, and fracture toughness of these calcium phosphate sintered bodies were measured, and the following average values were obtained. Relative density 97.1% Compressive strength 7200Kg/cm 2 Fracture toughness 1.01MPa・m 1/2 In these measurements, the relative density was measured using the Archimedes method, the compressive strength was measured using Instron, and the fracture toughness value was measured using the Bitkers hardness. Each was calculated using a meter using the following formula. K IC = 0.203 H V・a 1/2・(b/a) -3/2 (Nihara et al.'s formula) H V : Bitkers hardness [MPa] 2a: Indentation diagonal length [m] b: From the center of the indentation Average crack length [m] K IC : Fracture toughness value [vMPa・m 1/2 ] E: Young's modulus of calcium phosphate sintered body [Kgf/
mm 2 ] (measured by ultrasonic echo method) Furthermore, before measurement, each sample of the calcium phosphate sintered body was polished with #1500 abrasive paper and 0.3μ Al 2 O 3 powder. Comparative Example 1 The cylindrical shaped dried product obtained by processing the dried filter cake of calcium phosphate in Example 1 was heated from room temperature to 900°C in an electric furnace without rubber pressing.
The temperature was raised in 2 hours to 900℃, held at 900℃ for 30 minutes, and then
Temperature rises from 900℃ to 1150℃ in 1 hour, then 1150℃
Calcination was carried out by holding at ℃ for 3 hours. The obtained calcium phosphate sintered body was similar to Example 1,
It was hydroxyapatite, and the dimensions were the same as in Example 1, with a diameter of 3.2 mm and a length of 81 mm. The relative density, compressive strength, and fracture toughness of the calcium phosphate sintered body thus obtained were measured in the same manner as in Example 1, and the following average values were obtained. Relative density 98.1% Compressive strength 6900Kg/cm 2 Fracture toughness 0.62MPa・m 1/2 Example 2 and Comparative Example 2 Commercially available calcium nitrate [Ca(NO 3 ) 2・4H 2 O] 300
Dissolve 1.5 g of distilled water and add 28 g to this dissolution.
0.64% aqueous ammonia was added with sufficient stirring. On the other hand, 100 g of commercially available ammonium hydrogen phosphate [(NH 4 ) 2 HPO 4 ] was dissolved in distilled water from step 1, and 0.60 g of 28% aqueous ammonia was added to this solution. The latter ammonium hydrogen phosphate was added dropwise to the former calcium nitrate aqueous solution while stirring. After the dropwise addition was completed, the mixture was heated while stirring, kept under reflux for 10 minutes, and after cooling, was allowed to stand for an additional 3 days. Next, the solution was dehydrated using a centrifugal dehydrator equipped with a polypropylene filter cloth (1000 mesh), and further washed with distilled water until the alkalinity disappeared.The filtered calcium phosphate precipitate was collected, and distilled water was added to it. It was made into a 19% slurry. Next, add a polypropylene centrifuge tube (outer diameter x length:
16.5 x 105mm, shape: cylindrical round bottom, capacity: 10ml) 110
Pour 8 ml into each tube and spin these centrifuge tubes at 5000 rpm using a swing centrifuge.
(5300G) and a rotation time of 15 minutes. After centrifugation, the supernatant liquid in the centrifuge tubes was discarded, and the 110 centrifuge tubes containing the calcium phosphate precipitate layer (water content 65% by weight) were dried at 80° C. for 3 days in an electric dryer. After drying, the calcium phosphate layer was peeled off from the wall surface of the centrifuge tube without cracking in all the centrifuge tubes, and in this way, 110 cylindrical dried calcium phosphate molded bodies were obtained. These were processed into cylindrical shapes with a diameter of 5.0 mm and a length of 10 mm as Example 1, and 110 of the obtained cylindrical molded dried bodies were pressed in the same manner as in Example 2 to yield 2000 kg/cm 2 using a rubber press.
Pressed with a press at a pressure of Twenty cylindrical dried calcium phosphate molded bodies after pressing were placed in an electric furnace and fired at various temperatures for 3 hours each. The average values of relative density, compressive strength, and fracture toughness of the calcium phosphate sintered bodies (hydroxyapatite as in Example 1) obtained at each temperature were as shown in Table 1.

【表】 比較例 3 実施例1において円柱状に加工した成形乾燥体
をラバープレスしないで電気炉に入れ、種々の温
度で各3時間焼成した。それぞれの温度で得られ
たリン酸カルシウム焼結体の相対密度、圧縮強度
および破壊靱性の各平均値は第2表のようであつ
た。
[Table] Comparative Example 3 The molded dried body processed into a cylindrical shape in Example 1 was placed in an electric furnace without rubber pressing, and fired at various temperatures for 3 hours each. The average values of relative density, compressive strength, and fracture toughness of the calcium phosphate sintered bodies obtained at each temperature were as shown in Table 2.

【表】 実施例3および比較例4 実施例1においてラバープレスの圧を変化させ
た以外は実施例1と同様の方法によりリン酸カル
シウムの焼結体を作製した。実施例1と同様にし
てこれらの相対密度、圧縮強度、および破壊靱性
をそれぞれ測定した結果、平均値として第3表の
ような値が得られた。
[Table] Example 3 and Comparative Example 4 A sintered body of calcium phosphate was produced in the same manner as in Example 1 except that the pressure of the rubber press was changed. As a result of measuring their relative density, compressive strength, and fracture toughness in the same manner as in Example 1, the average values shown in Table 3 were obtained.

【表】 ほとんどひびわれをおこしていた。
実施例 4 市販水酸化カルシウム74gを蒸溜水2に分散
した。これを激しく攪拌し、この溶液中に3.0重
量%のリン酸水溶液1.96を滴下した。滴下が終
つた後、さらに攪拌を続けながら上記の混合液を
60℃まで上昇させ、この後攪拌をとめて60℃の温
度で一時間保持し、冷却後さらに上記の液を3日
間静置した。このようにして得られたリン酸カル
シウムの沈殿物から実施例2と同様の方法により
リン酸カルシウム焼結体を作製した。実施例1と
同様にしてこれらの相対密度、圧縮強度、および
破壊靱性をそれぞれ測定した結果、平均値として
つぎのような値が得られた。 相対密度 97.5% 圧縮強度 6900Kg/cm2 破壊靱性 1.15MPa・m1/2 なお、得られたリン酸カルシウム焼結体は、X
線回折による測定の結果、実施例1と同様にヒド
ロキシアパタイトの回折線と一致した。 実施例 5 市販水酸化カルシウム88gを蒸溜水2に溶解
した。これを室温下で激しく攪拌し、この溶液中
に3.9%のリン酸水溶液2.0を滴下した。溶液の
PHは5%アンモニア水により8〜9に保つた。滴
下が終つた後さらに3時間攪拌を続けた。このよ
うにして得られた沈殿物を、970℃で焼成した以
外は実施例1と同様の方法によりリン酸カルシウ
ム焼結体を作製した。実施例1と同様にしてこれ
らの相対密度、圧縮強度、および破壊靱性をそれ
ぞれ測定した結果平均値としてつぎの値が得られ
た。 相対密度 97.2% 圧縮強度 7200Kg/cm2 破壊靱性 1.25MPa・m1/2 なお、得られたリン酸カルシウム焼結体はX線
回折による測定の結果β−リン酸カルシウムの回
折線と一致した。
[Table] Almost all cracks were caused.
Example 4 74 g of commercially available calcium hydroxide was dispersed in 2 parts of distilled water. This was stirred vigorously, and 1.96% of a 3.0% by weight phosphoric acid aqueous solution was added dropwise into this solution. After the addition is complete, add the above mixture while continuing to stir.
The temperature was raised to 60°C, after which stirring was stopped and the temperature was maintained at 60°C for 1 hour. After cooling, the above liquid was further left to stand for 3 days. A calcium phosphate sintered body was produced from the calcium phosphate precipitate thus obtained in the same manner as in Example 2. The relative density, compressive strength, and fracture toughness were measured in the same manner as in Example 1, and the following average values were obtained. Relative density 97.5% Compressive strength 6900Kg/ cm2 Fracture toughness 1.15MPa・m 1/2The obtained calcium phosphate sintered body is
As a result of measurement by line diffraction, as in Example 1, the diffraction line coincided with that of hydroxyapatite. Example 5 88 g of commercially available calcium hydroxide was dissolved in 2 parts of distilled water. This was vigorously stirred at room temperature, and 2.0% of a 3.9% aqueous phosphoric acid solution was added dropwise into this solution. of solution
The pH was maintained at 8-9 with 5% aqueous ammonia. After the addition was completed, stirring was continued for an additional 3 hours. A calcium phosphate sintered body was produced in the same manner as in Example 1, except that the precipitate thus obtained was fired at 970°C. The relative density, compressive strength, and fracture toughness were measured in the same manner as in Example 1, and the following average values were obtained. Relative density: 97.2% Compressive strength: 7200 Kg/cm 2 Fracture toughness: 1.25 MPa·m 1/2 The obtained calcium phosphate sintered body was measured by X-ray diffraction, and the diffraction lines matched those of β-calcium phosphate.

Claims (1)

【特許請求の範囲】 1 カルシウムイオンとリン酸イオンとを、PH8
以上の水性媒質中でカルシウムとリンとのモル比
1.4以上、1.7以下で反応させ、得られたカルシウ
ムホスフエートのゼラチン状沈殿物を塊のまま乾
燥し、ついで塊状の乾燥体をラバープレス法によ
りプレスし、しかる後900℃以上、1000℃未満の
温度で焼結することを特徴とするリン酸カルシウ
ム焼結体の製造法。 2 該ラバープレス法によるプレス圧力が300
Kg/cm2以上、5000Kg/cm2以下である特許請求の範
囲第1項記載の製造法。 3 該焼結する温度が980℃以下である特許請求
の範囲第1項記載の製造法。
[Claims] 1. Calcium ions and phosphate ions at pH 8
The molar ratio of calcium to phosphorus in an aqueous medium of
The gelatinous precipitate of calcium phosphate obtained is dried as a lump, and the dried lump is then pressed by a rubber press method, and then heated at a temperature of 900°C or more and less than 1000°C. A method for producing a calcium phosphate sintered body characterized by sintering at a high temperature. 2 The press pressure by the rubber press method is 300
The manufacturing method according to claim 1, wherein the production method is at least Kg/cm 2 and at most 5000 Kg/cm 2 . 3. The manufacturing method according to claim 1, wherein the sintering temperature is 980°C or lower.
JP60255740A 1985-11-13 1985-11-13 Manufacture of calcium phosphate sintered body Granted JPS62113757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255740A JPS62113757A (en) 1985-11-13 1985-11-13 Manufacture of calcium phosphate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255740A JPS62113757A (en) 1985-11-13 1985-11-13 Manufacture of calcium phosphate sintered body

Publications (2)

Publication Number Publication Date
JPS62113757A JPS62113757A (en) 1987-05-25
JPH0335253B2 true JPH0335253B2 (en) 1991-05-27

Family

ID=17282971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255740A Granted JPS62113757A (en) 1985-11-13 1985-11-13 Manufacture of calcium phosphate sintered body

Country Status (1)

Country Link
JP (1) JPS62113757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286073A (en) * 2002-03-28 2003-10-07 Pentax Corp Method of producing sintered compact and sintered compact

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111763A (en) * 1987-10-27 1989-04-28 Jgc Corp Calcium phosphate compound sintered compact and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142707A (en) * 1976-05-24 1977-11-28 Asahi Chemical Co Hydro oxy apatite sintered articles
JPS5941946A (en) * 1982-08-31 1984-03-08 Sharp Corp Data transmission controller of local network system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142707A (en) * 1976-05-24 1977-11-28 Asahi Chemical Co Hydro oxy apatite sintered articles
JPS5941946A (en) * 1982-08-31 1984-03-08 Sharp Corp Data transmission controller of local network system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286073A (en) * 2002-03-28 2003-10-07 Pentax Corp Method of producing sintered compact and sintered compact

Also Published As

Publication number Publication date
JPS62113757A (en) 1987-05-25

Similar Documents

Publication Publication Date Title
NO147873B (en) POLYCRYSTALLIC CERAMIC MATERIALS BASED ON WHITLOCKITT, AND PROCEDURES FOR PRODUCING THEREOF
FI64131B (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYKRISTALLINT SINTRAT KERAMISKT MATERIAL
JPH0328197A (en) Manufacture of octocalcium phosphate mono crystal and polycrystal structures as well as compound containing these structures
DK168738B1 (en) Ceramic binder, manufacture and use thereof
DK172348B1 (en) Preparation method for the production of polycrystalline alpha-aluminum materials
WO1995023775A1 (en) TYPE α TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
JPS62295666A (en) Continuous two-dimensional porous implant material and its production
EP0291016B1 (en) Method for producing calcium phosphate-based material
EP0177727B1 (en) Process for forming calcium phosphate ceramic articles
JPH0335253B2 (en)
JPH0357063B2 (en)
JP2849676B2 (en) Method for producing carbonated hydroxyapatite whiskers
US4772573A (en) High-strength sintered article of calcium phosphate compound, raw material for production of said sintered article, and method for production of said sintered article
JP3262233B2 (en) Method for producing calcium phosphate
JPH034506B2 (en)
EP0239789A2 (en) Method of manufacturing bodies of boron carbide
JPH0627025B2 (en) Hydroxyapatite filter cake dried product
FR2804103A1 (en) Treating aqueous soda waste solutions, especially radioactive solutions from nuclear reactor coolant, by adding a defined amount of metakaolin powder, molding, drying and fritting
JPS621733B2 (en)
FI68217C (en) STARKT ISOTROPT SINTRAT TVAOFASIGT KERAMISKT MATERIAL
JPH0139786B2 (en)
JPH0230681A (en) Production of porous inorganic material
JPS60114266A (en) Production of apatite ceramics for living body
JP3096930B2 (en) Method for producing porous calcium phosphate ceramics
JP2003062061A (en) Implant material for living body and method for producing it