JPH0230681A - Production of porous inorganic material - Google Patents

Production of porous inorganic material

Info

Publication number
JPH0230681A
JPH0230681A JP17826288A JP17826288A JPH0230681A JP H0230681 A JPH0230681 A JP H0230681A JP 17826288 A JP17826288 A JP 17826288A JP 17826288 A JP17826288 A JP 17826288A JP H0230681 A JPH0230681 A JP H0230681A
Authority
JP
Japan
Prior art keywords
porous
pores
inorganic material
porous inorganic
pressure medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17826288A
Other languages
Japanese (ja)
Other versions
JPH0662347B2 (en
Inventor
Toichi Takagi
東一 高城
Masahiro Orita
政寛 折田
▲飴▼谷 公兵
Kouhei Ametani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP17826288A priority Critical patent/JPH0662347B2/en
Publication of JPH0230681A publication Critical patent/JPH0230681A/en
Publication of JPH0662347B2 publication Critical patent/JPH0662347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain an excellent porous inorganic material by heat-treating a porous material or a material having porous part under pressure with an isotropic pressure medium, thereby decreasing closed pores while maintaining open pores. CONSTITUTION:A porous inorganic material is heated under pressure in an isotropic pressure medium to decrease the ratio of closed pore. The porous inorganic material is e.g. Al2O3, SiO2, TiO2, Si3N4 or ZrO and the porous material is preferably formed before heating under pressure in the isotropic pressure medium. The conditions of compression and heat-treatment depend upon the composition and pore diameter of the porous inorganic material to be produced and are preferably 5-3,000 atm and 500-2,200 deg.C.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、各種センサー、触媒担体、生体用磁器などに
用いられる無機質多孔体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing an inorganic porous body used for various sensors, catalyst carriers, biological porcelain, and the like.

〈従来技術とその課題〉 従来、無機質多孔体は、表面積が大きいという特徴を生
かして、各種センサー、触媒担体などの用途に用いられ
る他、生体組織との適合性から、人造骨、人工歯等の生
体用磁器としても重要である。
<Prior art and its challenges> Conventionally, inorganic porous materials have been used for various sensors, catalyst carriers, etc. due to their large surface area, and have also been used for artificial bones, artificial teeth, etc. due to their compatibility with living tissues. It is also important as biological porcelain.

生体用磁器には、高密度焼結アルミナなどがある。生体
用磁器の必要特性として、新生骨などの生体組織の成長
を促進させるためには、20〜300μm程度の細孔径
を有する多孔体が有用であるとされている。しかしなが
ら、このような多孔体は機械的強度が劣り、使用中に砕
けやすい欠点がある。触媒担体の場合を説明すると、担
体は、触媒活性種を担持するために表面積が大きく、細
孔容積が大きく。その細孔が外界と通じている細孔、す
なわち開気孔であることが好ましく、外界と通じていな
い細孔、すなわち閉気孔は、反応に関与しない。
Biomedical porcelain includes high-density sintered alumina. As a necessary characteristic of living body porcelain, it is said that a porous body having a pore diameter of about 20 to 300 μm is useful in order to promote the growth of living tissue such as new bone. However, such a porous body has a drawback that it has poor mechanical strength and is easily crushed during use. In the case of a catalyst carrier, the carrier has a large surface area and a large pore volume in order to support catalytically active species. The pores are preferably pores that communicate with the outside world, that is, open pores, and pores that do not communicate with the outside world, ie, closed pores, do not participate in the reaction.

従来、多孔質担体は、無機または有機塩類の加水分解な
どの方法により、担体原料粉末を作り、これを所望の形
状に成形加工した後焼成する方法で製造されている。従
来は担体として有用な開気孔を保持する為に、或いは細
孔径を小さく保持する為にも比較的低い温度での焼成が
なされている。
Conventionally, porous carriers have been manufactured by a method in which carrier raw material powder is prepared by a method such as hydrolysis of inorganic or organic salts, which is molded into a desired shape and then fired. Conventionally, firing has been carried out at a relatively low temperature in order to maintain open pores useful as a carrier or to maintain a small pore diameter.

その為、得られる担体の機械的強度が充分ではないとい
う問題がありた。また、各種センサーエ他の用途に用い
られる無機質多孔体についても同様の問題があった。本
発明はこのような課題を解決し、無機質多孔体の開気孔
を保持したまま閉気孔を減らす方法を提供することを目
的とする。
Therefore, there was a problem that the mechanical strength of the obtained carrier was not sufficient. Similar problems also exist with inorganic porous materials used for various sensor applications and other applications. An object of the present invention is to solve these problems and provide a method for reducing the number of closed pores while maintaining the open pores of an inorganic porous body.

〈課題を解決するための手段〉 本発明者らは、多孔質または、多孔質部分を有する成形
体を等方性圧力媒体にて加圧下熱処理することにより、
開気孔を保持したまま閉気孔を減らすことができ、優れ
た無機質多孔体になることを見出し、本発明にいたった
。すなわち、本発明と は無機質多孔体7等方性圧力媒体中で加圧下加熱するこ
とを特徴とする閉気孔率の低減された無機質多孔体の製
造方法である。
<Means for Solving the Problems> The present inventors have solved the problem by heat-treating a molded article that is porous or has a porous portion under pressure using an isotropic pressure medium.
It was discovered that closed pores can be reduced while maintaining open pores, resulting in an excellent inorganic porous material, leading to the present invention. That is, the present invention is a method for producing an inorganic porous body with reduced closed porosity, which is characterized by heating the inorganic porous body 7 under pressure in an isotropic pressure medium.

以下発明の詳細な説明する。本発明にいう多孔体とは、
開気孔及び閉気孔を有する物体である。
The invention will be explained in detail below. The porous body referred to in the present invention is
It is an object with open and closed pores.

多孔体の具体例としてはAl2O,、5ift、 Ti
O□、 Si:+Ns、、 ZrO,、C,Ca0−P
zOs系、 3CaOP2O5系、10Ca0 3 P
2O3MgO系、 5tO2Zr(h系、 Zr02−
P2O3−H,0系、2Mg0 2AhOz’5SiO
z系、 Na、0−CaO−PzOs  SiO2系、
 SiO□−Alz(h  MgOKzOF  Bz(
h系、 NazOKzOMgOCaOsto、  p2
o、系、 MgO−CaOSing  PtO2系など
である。
Specific examples of porous bodies include Al2O, 5ift, Ti
O□, Si:+Ns,, ZrO,, C, Ca0-P
zOs series, 3CaOP2O5 series, 10Ca0 3 P
2O3MgO system, 5tO2Zr (h system, Zr02-
P2O3-H,0 system, 2Mg0 2AhOz'5SiO
z-based, Na, 0-CaO-PzOs SiO2-based,
SiO□-Alz(h MgOKzOF Bz(
h series, NazOKzOMgOCaOsto, p2
o, MgO-CaOSing PtO2 system, etc.

また、これらの多孔体にさらに有機質物質、金属、無機
質物質などを配合して複合体を形成させたものでもよい
。これらの多孔体は等方性圧力媒体中で加圧下加熱する
前に成形することが好ましい。成形方法としては、粉末
状の無機質物質または、無機物質と有機物質の混合物を
加圧成形または押出し成形すればよい。成形時の熱処理
により除去されるような繊維状、粒子状物質を添加して
おくことにより多孔質の成形体とすることも好ましい。
Further, a composite may be formed by further blending an organic substance, a metal, an inorganic substance, etc. with these porous bodies. These porous bodies are preferably formed before being heated under pressure in an isotropic pressure medium. As a molding method, a powdered inorganic material or a mixture of an inorganic material and an organic material may be pressure molded or extruded. It is also preferable to make a porous molded article by adding fibrous or particulate matter that can be removed by heat treatment during molding.

このようにして得られた多孔質または、多孔質部分を有
する成形体を次に等方性圧力媒体にて加圧下熱処理を行
なう。等方性圧力媒体はアルゴン、窒素などの気体ある
いは液体であり、そのやり方は等方性圧力媒体及び前記
多孔質または、多孔質ス(Hot l5ostatic
 Pressing)の手法である。多孔質または、多
孔質部分を有する成形体を、前記圧力容器内にて製造し
、引続いて等方性圧力媒体にて加圧下熱処理しても良い
。加圧力及び熱処理条件は、製造する無機質多孔体の組
成及び孔径により異なるが、加圧力は、5〜3000気
圧、温度は500〜2200℃の範囲が好ましい。
The porous body or molded body having a porous portion thus obtained is then subjected to heat treatment under pressure using an isotropic pressure medium. The isotropic pressure medium is a gas or liquid such as argon, nitrogen, etc.
Pressing) method. A molded article that is porous or has a porous portion may be produced in the pressure vessel and subsequently heat-treated under pressure in an isotropic pressure medium. The pressure and heat treatment conditions vary depending on the composition and pore diameter of the inorganic porous body to be produced, but the pressure is preferably in the range of 5 to 3000 atm and the temperature is preferably in the range of 500 to 2200°C.

本発明方法の特長は、等方性圧力媒体の加圧により、開
気孔が保持されつつ閉気孔が減少する点にある。すなわ
ち、開気孔に対しては圧力が気孔の内部と外部に作用す
るため、開気孔がつぶれることがなく、閉気孔に対して
は圧力が気孔の外部のみに作用するため、閉気孔がつぶ
れるのである。
The feature of the method of the present invention is that by pressurizing the isotropic pressure medium, open pores are maintained while closed pores are reduced. In other words, for open pores, the pressure acts on the inside and outside of the pore, so the open pores do not collapse, and for closed pores, the pressure acts only on the outside of the pore, so the closed pores collapse. be.

いいかえれば、本発明は、熱間静水圧プレス技術を閉気
孔率の低減された多孔体の製造に有効に応用しようとす
るもので、従来にない新規な発想に基ずくものである。
In other words, the present invention attempts to effectively apply hot isostatic pressing technology to the production of a porous body with reduced closed porosity, and is based on a novel idea that has not existed before.

以下さらに実施例をあげて本発明を説明する。The present invention will be further described below with reference to Examples.

実膳拠 市販の純度99.9%、平均粒径0.5μm程度のAl
z(h粉末に0.5wt%のMgO粉末を添加して、ボ
ールミルを用いて20時間混合して得られた混合粉末を
直径10D高さ20鶴の円筒状に圧力200kg/cr
lにて加圧予備成形した。この際、成形型端部に直径2
0〜100μm、長さ2〜3mlのビニロン繊維を50
〜60本充填した。
Commercially available Al with a purity of 99.9% and an average particle size of about 0.5 μm
z(h) 0.5 wt% MgO powder was added to the powder and mixed for 20 hours using a ball mill.
Pressure preforming was carried out at l. At this time, attach a diameter of 2 mm to the end of the mold.
50 vinylon fibers with a length of 0 to 100 μm and a length of 2 to 3 ml
~60 bottles were filled.

この予備成形体をラバープレスを用いて圧力1500k
g/cdで成形した。この成形体を空気中、温度155
0〜1650℃で2時間予備焼結した。
This preformed body was pressed at 1500k using a rubber press.
Molded at g/cd. This molded body was placed in air at a temperature of 155
Preliminary sintering was performed at 0 to 1650°C for 2 hours.

得られた焼結体の相対密度は93%であり、閉気孔率は
1.1%であった。この焼結体の開気孔率は100−9
3−1.1#6%である。また、この予備焼結体につい
て曲げ強度を測定する為に幅3ml、厚み1鶴、長さ1
2鰭の試験片を切り出し研磨したのち、スパン9flで
3点曲げ強度を測定した結果、52kg/鶴2であった
The relative density of the obtained sintered body was 93%, and the closed porosity was 1.1%. The open porosity of this sintered body is 100-9
3-1.1#6%. In addition, in order to measure the bending strength of this preliminary sintered body, a width of 3 ml, a thickness of 1 crane, and a length of 1
After cutting out and polishing two fin test pieces, the three-point bending strength was measured with a span of 9 fl, and the result was 52 kg/2 cranes.

得られた予備焼結体を温度1400〜1500℃、圧力
1800 kg/cJの条件でアルゴンガスを圧力媒体
として熱間静水圧プレスを行なった。得られた焼結体の
相対密度は94%であった。また、焼結体を水銀圧入法
により、評価したところ開気孔はすべて100μm以下
であり、閉気孔率は、約0.3%であった。この焼結体
の開気孔率は10094−0.3=6%であり、熱間静
水圧プレス前と同じであった。また、この焼結体の3点
曲げ強度は76kg/鶴2であり、熱間静水圧プレス前
より強度が増していた。
The obtained preliminary sintered body was subjected to hot isostatic pressing at a temperature of 1400 to 1500°C and a pressure of 1800 kg/cJ using argon gas as a pressure medium. The relative density of the obtained sintered body was 94%. Further, when the sintered body was evaluated by mercury intrusion method, all open pores were 100 μm or less, and the closed porosity was about 0.3%. The open porosity of this sintered body was 10094-0.3=6%, which was the same as before hot isostatic pressing. Further, the three-point bending strength of this sintered body was 76 kg/Tsuru2, which was higher than before hot isostatic pressing.

なお、閉気孔率は、浸液法等により測定した開気孔部分
を除いた密度と理論密度との差から算出される(文献:
窯業協会セラミックスハンドブック406頁)。また、
試料の相対密度の測定方法は次の通りである。
The closed porosity is calculated from the difference between the density excluding open pores measured by immersion method etc. and the theoretical density (Reference:
Ceramics Association Ceramics Handbook, page 406). Also,
The method for measuring the relative density of a sample is as follows.

試料の体積をvl、試料中の開気孔部の体積の和を■2
、試料中の閉気孔部の体積の和を■3とする。アルミナ
の真比重を81水の比重を1とします。Wlは、試料の
質量であるから次のように書き下ろせる。
The volume of the sample is vl, and the sum of the volumes of open pores in the sample is ■2
, the sum of the volumes of closed pores in the sample is 3. The true specific gravity of alumina is 81 and the specific gravity of water is 1. Since Wl is the mass of the sample, it can be written as follows.

W1=S  (Vl−V2−V3)      (4)
試料を水中におくと、水は開気孔部に侵入し、Vl−■
2の体積の水を排斥する。このため試料は浮力を受け、
W2は W2=W1−1  (Vl−V2)     (5)試
料を水から上げたとき、水は開気孔部を満たしているか
ら、W3は、 W3=W1+1  ・ V 2           
 +61となる。試料の相対密度は次式によって導かれ
る。
W1=S (Vl-V2-V3) (4)
When the sample is placed in water, water enters the open pores and Vl-■
Displace 2 volumes of water. Therefore, the sample is subjected to buoyancy,
W2 is W2 = W1-1 (Vl-V2) (5) When the sample is lifted from water, water fills the open pores, so W3 is: W3 = W1+1 ・V 2
It becomes +61. The relative density of the sample is derived from the following equation.

Sr= (Wl/S・Vl)X100   (71また
(51 f6)式より、 W 3− W 2 = V 1           
(8)+71 (81式より、 5r=W 1 /S ・(W3−W2) X 100 
 (91すると(3)式とから、 全気孔率=100−3r        QO)一般に
、ラバープレスを行うと、アルミナ焼結体の相対密度は
99%程度になる。相対密度が92%以上になると、残
留空孔は全て閉気孔となるので、ラバープレス後の残留
空孔は全て開気孔なる。ところが、実施例においては相
対密度が93%と低くなっている。α〔式から、全気孔
率は7%、内閉気孔率は1%である。これは成形時に、
ビニロン繊維を導入したことによって、開気孔が形成さ
れていることを意味している。
Sr= (Wl/S・Vl)X100 (71 Also, from formula (51 f6), W 3- W 2 = V 1
(8) +71 (From formula 81, 5r=W 1 /S ・(W3-W2) X 100
(91) From equation (3), total porosity = 100-3r QO) Generally, when rubber pressing is performed, the relative density of the alumina sintered body becomes about 99%. When the relative density becomes 92% or more, all the remaining pores become closed pores, so all the pores remaining after rubber pressing become open pores. However, in the example, the relative density was as low as 93%. α [From the formula, the total porosity is 7% and the internal closed porosity is 1%. During molding, this
This means that open pores are formed by introducing vinylon fibers.

閉気孔率はHIPによって0.3%に減少するが、全気
孔率は6%であって、開気孔が保たれたまま、閉気孔が
なくなったことを意味している。
Although the closed porosity was reduced to 0.3% by HIP, the total porosity was 6%, meaning that closed pores were eliminated while open pores were maintained.

〈発明の効果〉 本発明の製造方法によれば、無機質多孔体の開気孔を保
持したまま閉気孔率が低減されるので、生体適合性、反
応担体などの機能を損うことなく機械的強度に優れた無
機質多孔体が得られる。
<Effects of the Invention> According to the production method of the present invention, the closed porosity of the inorganic porous body is reduced while maintaining the open pores, so the mechanical strength can be improved without impairing the functions such as biocompatibility and reaction carrier. An inorganic porous body with excellent properties can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)無機質多孔体を等方性圧力媒体中で加圧下加熱す
ることを特徴とする閉気孔率の低減された無機質多孔体
の製造方法。
(1) A method for producing an inorganic porous body with reduced closed porosity, which comprises heating the inorganic porous body under pressure in an isotropic pressure medium.
JP17826288A 1988-07-19 1988-07-19 Method for producing inorganic porous material Expired - Lifetime JPH0662347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17826288A JPH0662347B2 (en) 1988-07-19 1988-07-19 Method for producing inorganic porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17826288A JPH0662347B2 (en) 1988-07-19 1988-07-19 Method for producing inorganic porous material

Publications (2)

Publication Number Publication Date
JPH0230681A true JPH0230681A (en) 1990-02-01
JPH0662347B2 JPH0662347B2 (en) 1994-08-17

Family

ID=16045416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17826288A Expired - Lifetime JPH0662347B2 (en) 1988-07-19 1988-07-19 Method for producing inorganic porous material

Country Status (1)

Country Link
JP (1) JPH0662347B2 (en)

Also Published As

Publication number Publication date
JPH0662347B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JP3362267B2 (en) Bioimplant material and method for producing the same
Moritz et al. Ice-mould freeze casting of porous ceramic components
JPH04504403A (en) Synthetic ceramic materials and their manufacturing methods
JPS591232B2 (en) Manufacturing method of zirconia sintered body
JPS62202884A (en) Live body substitute ceramic material
CN109534681B (en) Preparation method of lithium disilicate composite bioglass ceramic
JPS63182274A (en) Manufacture of ceramic formed body with particle layer on surface
JPH0230681A (en) Production of porous inorganic material
Lee et al. Shrinkage‐free, alumina–glass dental composites via aluminum oxidation
CN108395237B (en) High-strength calcium silicophosphate biological ceramic material and preparation method thereof
CN108383516B (en) Bioactive ceramic material with mechanical strength and degradability and preparation method thereof
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
RU2743834C1 (en) Method for producing porous bioceramic wollastonite
EP3943467A1 (en) Calcium carbonate sintered body and method for producing same, and bone grafting material
US7387761B2 (en) Method for manufacturing a glass infiltrated metal oxide infrastructure
JPH09268055A (en) Bioceramic and its production
WO1993013030A1 (en) Fiber-reinforced calcium phosphate compound ceramics and process for their production
JPS6410464B2 (en)
KR100446701B1 (en) Bioceramic composition
JPS6214846A (en) Producion of artificial tooth and bone
Novak et al. Large alumina parts from an aqueous suspension: hydrolysis assisted solidification (HAS)
JPS62113757A (en) Manufacture of calcium phosphate sintered body
CN116803952A (en) Medical ceramic material and preparation method thereof
JPH01145064A (en) Preparation of inorganic bio-material
JPH0333088A (en) Porous sintered silicon carbide body and production thereof