JPH0139786B2 - - Google Patents

Info

Publication number
JPH0139786B2
JPH0139786B2 JP61068202A JP6820286A JPH0139786B2 JP H0139786 B2 JPH0139786 B2 JP H0139786B2 JP 61068202 A JP61068202 A JP 61068202A JP 6820286 A JP6820286 A JP 6820286A JP H0139786 B2 JPH0139786 B2 JP H0139786B2
Authority
JP
Japan
Prior art keywords
synthetic hydroxyapatite
bone
repair material
hydroxyapatite
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61068202A
Other languages
Japanese (ja)
Other versions
JPS62224356A (en
Inventor
Naokuni Satogami
Noryuki Nagai
Nobuyuki Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Chemical Industrial Co Ltd
Original Assignee
Taihei Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Chemical Industrial Co Ltd filed Critical Taihei Chemical Industrial Co Ltd
Priority to JP61068202A priority Critical patent/JPS62224356A/en
Publication of JPS62224356A publication Critical patent/JPS62224356A/en
Publication of JPH0139786B2 publication Critical patent/JPH0139786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、たとえば歯科治療において歯槽
骨、顎骨などの生体硬組織の欠損部や抜歯窩を補
修するのに用いられる生体硬組織補修材料および
その製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a living body hard tissue repair material used for repairing a defect in living body hard tissue such as an alveolar bone or a jawbone or a tooth extraction socket in dental treatment, and the production thereof. It is about law.

発明の背景 歯科治療においては、骨腫瘍や骨嚢胞の除去さ
らには歯槽膿漏などによつて歯槽骨や顎骨に欠損
をきたしたり、歯牙そのものを抜歯することによ
つて抜歯窩を形成せしめたりすることがよくあ
る。従来、このような場合は、骨欠損部や抜歯窩
を放置して自然治癒に委ねたり、患者自身の自家
骨の海綿組織を採取してこれで骨欠損部や抜歯窩
を補修するか、または自家骨以外の同種骨ないし
異種骨を移植したり、さらには人工の生体材料を
使用したりする種々の方法が検討されて来たが、
これらはいずれも克服しがたい多くの問題を有し
ており、また適応症が限られていて、現在まだ実
用段階に至つていない。
Background of the Invention In dental treatment, bone tumors and bone cysts are removed, alveolar bone and jawbone are damaged due to alveolar pyorrhea, and tooth extraction sockets are created by extracting the tooth itself. This often happens. Traditionally, in such cases, the bone defect or tooth extraction socket was left alone and allowed to heal naturally, or the patient's own autologous bone cancellous tissue was harvested and used to repair the bone defect or tooth extraction socket. Various methods have been investigated, such as transplanting allogeneic bone or xenogeneic bone other than autologous bone, and even using artificial biomaterials.
All of these have many problems that are difficult to overcome, and their indications are limited, so they have not yet reached the stage of practical use.

近年、示性式Cam(PO4)n(OH) (ただし、1.4<m/n<1.7)で示される合成カ
ルシウムハイドロキシアパタイト(この明細書全
体を通してこれを「合成水酸アパタイト」と称す
る)が生体との親和性に富む点に注目して、これ
を人工骨ないし人工歯根の材料として臨床的に応
用する研究がなされ、多くの論文が発表されてい
る(たとえば株式会社産業技術センター発行「セ
ラミツクス材料技術集成」1030〜1035頁)。
In recent years, synthetic calcium hydroxyapatite (hereinafter referred to as "synthetic hydroxyapatite" throughout this specification) having the formula Cam(PO 4 ) n(OH) (1.4<m/n<1.7) has been developed. Focusing on its high compatibility with living organisms, research has been conducted to clinically apply it as a material for artificial bones and artificial tooth roots, and many papers have been published (for example, "Ceramics" published by Industrial Technology Center Co., Ltd. "Materials Technology Collection" pp. 1030-1035).

人工の生体材料として合成水酸アパタイトを用
いる場合、一般的な生体材料としての条件のほか
に、インプラント後その周囲に骨組織の速やかな
再生を可能ならしめる性質を有することが必要で
ある。骨の速やかな再生のためには、インプラン
トした合成水酸アパタイト製の生体材料の周囲に
骨芽細胞を積極的に分化させて生体材料に誘導し
てやればよく、骨芽細胞の分化促進因子の1つに
単球などの骨髄系細胞から分泌される液性因子が
あり、これらが共同して骨形成に関与しているこ
とが知られている。
When using synthetic hydroxyapatite as an artificial biomaterial, in addition to the requirements for a general biomaterial, it must also have properties that enable rapid regeneration of bone tissue around it after implantation. In order to rapidly regenerate bone, osteoblasts should be actively differentiated around the implanted biomaterial made of synthetic hydroxyapatite and guided to the biomaterial. It is known that humoral factors secreted from myeloid cells such as monocytes are involved in bone formation.

従来技術およびその問題点 これまでの文献によれば、生体材料として合成
水酸アパタイトを用いる従来の研究においては、
生体の異物排除作用を克服するために、合成水酸
アパタイト粒子を高温で焼結して粒子の表面積を
増大させることにより骨芽細胞を豊富に分化させ
て単位時間当りの骨形成率を高めることに主眼が
置かれていた。そして生体硬組織補修材料の多く
は、上記のようにして得られた合成水酸アパタイ
ト粒子の焼結体を主成分とし、ついでこれを成形
後1000〜1300℃の温度範囲で焼成して得られたも
のであつた。
Prior Art and its Problems According to the literature so far, in conventional research using synthetic hydroxyapatite as a biomaterial,
In order to overcome the body's ability to eliminate foreign substances, synthetic hydroxyapatite particles are sintered at high temperatures to increase the surface area of the particles, thereby allowing osteoblasts to differentiate abundantly and increasing the bone formation rate per unit time. The main focus was on. Many of the biological hard tissue repair materials mainly consist of sintered bodies of synthetic hydroxyapatite particles obtained as described above, which are then molded and fired at a temperature range of 1000 to 1300°C. It was warm.

しかしながら、このようにして得られた補修材
料は、合成水酸アパタイト粒子の表面が焼結によ
つてセラミツク化されたものであり、そのため体
液に対する補修材料の溶解性が全くないうえに、
表面積が縮小されていた。したがつてこのように
セラミツク化された合成水酸アパタイト焼結体を
生体硬組織の補修材料として用いると、その周囲
にマクロフアージを誘導することができず、骨芽
細胞の分化も低調であつた。そのため施術後その
周囲に骨組織が再生するまでに数カ月以上もの長
い期間が必要であり、この期間内に同焼結体より
なる補修材料が細菌による疾患の感染や生体側か
らの異物排除作用を受け、新生骨の生成が速やか
に進行しにくい状況があつた。
However, in the repair material obtained in this way, the surface of the synthetic hydroxyapatite particles is made into ceramic by sintering, and therefore, the repair material has no solubility in body fluids, and
The surface area was reduced. Therefore, when this ceramicized synthetic hydroxyapatite sintered body was used as a repair material for biological hard tissue, macrophages could not be induced around it, and osteoblast differentiation was also slow. . Therefore, it takes a long period of several months or more for the bone tissue to regenerate around the area after the treatment, and during this period, the repair material made of the sintered body can prevent bacterial infections and remove foreign substances from the living body. As a result, there were situations in which it was difficult for new bone formation to proceed quickly.

この発明は、上記のような骨芽細胞の分化機構
と合成水酸アパタイトの体液への溶解性の相互作
用を考慮してなされたものであり、生体側の異物
除去作用を惹起することなく周囲に速やかに新生
骨を形成せしめて、生体硬組織と融合一体化する
ことができ、また生体硬組織の如何なる形状の欠
損部や抜歯窩に対しても適用できてこれらを完全
に補修でき、しかも工業的にも容易に生産できて
コスト的にも申し分のない生体硬組織補修材料お
よびその製造法を提供することを目的とする。
This invention was made in consideration of the interaction between the differentiation mechanism of osteoblasts and the solubility of synthetic hydroxyapatite in body fluids, as described above, and allows for the removal of foreign substances from the surrounding body without causing a foreign body removal action on the living body side. It can quickly form new bone and fuse with living hard tissue, and can be applied to any shape of defect or tooth extraction socket in living hard tissue, and can completely repair them. The object of the present invention is to provide a biological hard tissue repair material that can be easily produced industrially and is satisfactory in terms of cost, and a method for producing the same.

問題点の解決手段 この発明による生体硬組織補修材料は、一般式
Cam(PO4)n(OH)(ただし、1.4<m/n<
1.7)なる組成を有する合成水酸アパタイトより
なる粉状物ないしこれから成形した成形物の焼成
体の表面に、Cap(PO4)q(OH)(ただし、1.4
<p/q<1.7)なる組成を有する非焼成の合成
水酸アパタイトよりなる被覆層が形成されている
ことを特徴とする。
Means for Solving Problems The biological hard tissue repair material according to the present invention has the general formula
Cam( PO4 )n(OH)(1.4<m/n<
1.7) Cap (PO 4 ) q (OH) (However, 1.4
<p/q<1.7) A coating layer made of unfired synthetic hydroxyapatite having a composition of <p/q<1.7) is formed.

またこの発明による補修材料の製造法は、一般
式Cam(PO4)n(OH)(ただし、1.4<m/n<
1.7)なる組成を有する合成水酸アパタイトより
なる粉状物ないしこれから成形した成形物の焼成
体に、リン酸基を結合させ、ついでリン酸基にカ
ルシウムイオンを反応させて、上記焼成体の表面
に一般式Cap(PO4)q(OH)(ただし、1.4<
p/q<1.7)なる組成を有する非焼成の合成水
酸アパタイトよりなる被覆層を形成することを特
徴とする。
Furthermore, the method for manufacturing the repair material according to the present invention has the general formula Cam(PO 4 )n(OH) (where 1.4<m/n<
1.7) A phosphoric acid group is bonded to a fired body of a powder or a molded product formed from a powder of synthetic hydroxyapatite having the following composition, and then the phosphoric acid group is reacted with calcium ions to improve the surface of the fired body. is the general formula Cap(PO 4 )q(OH) (where 1.4<
The present invention is characterized by forming a coating layer made of unfired synthetic hydroxyapatite having a composition of (p/q<1.7).

この発明において、焼成体を構成するための合
成水酸アパタイトは、湿式合成法、乾式合成法お
よび水熱合成法のいずれかの方法によつて製造さ
れたものでもよい。
In this invention, the synthetic hydroxyapatite for constituting the fired body may be produced by any one of a wet synthesis method, a dry synthesis method, and a hydrothermal synthesis method.

合成水酸アパタイトよりなる成形物の焼成体
は、圧縮成形機その他の通常の成形装置を用い
て、合成水酸アパタイトの粉状物を常法によつて
顆粒状、円柱ないし角柱状、板状、円錐ないし角
錐状などに成形し、ついで1000〜1300℃の温度範
囲で焼成を行なうことにより得たものである。
The fired body of the molded product made of synthetic hydroxyapatite is produced by molding powdered synthetic hydroxyapatite into granules, cylinders, prisms, and plates by a conventional method using a compression molding machine or other ordinary molding equipment. It is obtained by molding into a cone or pyramid shape, and then firing at a temperature range of 1000 to 1300°C.

合成水酸アパタイトの被覆層は、合成水酸アパ
タイト焼成体をリン酸ないしその塩の溶液で処理
し、ついでカルシウムないしその塩の溶液で処理
し、処理品を100〜400℃、好ましくは約200℃の
温度で乾燥することにより形成したものである。
こうして形成された被覆層は、一般式Cap(PO4
q(OH)なる組成を有する非焼成の合成水酸ア
パタイトである。そしてこの合成水酸アパタイト
はX線回折解析から見て、生体硬組織を構成する
生体水酸アパタイトと同じく、結晶構造的に非品
質のものである。
The coating layer of synthetic hydroxyapatite is formed by treating the fired synthetic hydroxyapatite body with a solution of phosphoric acid or its salt, then with a solution of calcium or its salt, and heating the treated product at 100 to 400°C, preferably about 200°C. It is formed by drying at a temperature of °C.
The coating layer thus formed has the general formula Cap(PO 4 )
It is an uncalcined synthetic hydroxyapatite with the composition q(OH). As seen from X-ray diffraction analysis, this synthetic hydroxyapatite is of poor quality in terms of crystal structure, like the biological hydroxyapatite that constitutes biological hard tissues.

作用および効果 この発明による生体硬組織の補修材料は、合成
水酸アパタイトの粉状物ないし成形物の焼成体で
構成された内部体と、これの表面に形成された非
焼成の合成水酸アパタイトの被覆層とよりなる二
重構造をなすものである。
Actions and Effects The biological hard tissue repair material according to the present invention has an inner body composed of a fired body of powdered or molded synthetic hydroxyapatite, and an unfired synthetic hydroxyapatite formed on the surface of the inner body. It has a double structure consisting of a coating layer.

そして内部の焼成体は、焼成によりセラミツク
化されているためX線造影性を発揮する。したが
つて施術後の状況をX線で確認することができ
る。また焼成セラミツク化によつて充填後の補修
材料の機械的強度を増大することができる。
Since the internal fired body is made into ceramic by firing, it exhibits X-ray contrast properties. Therefore, the situation after the treatment can be confirmed with X-rays. Furthermore, by making it into fired ceramic, the mechanical strength of the repair material after filling can be increased.

他方、被覆層を構成する合成水酸アパタイト
は、生体硬組織を構成する生体水酸アパタイトと
同じく、X線回折解析から見て非晶質であるの
で、骨欠損部や抜歯窩に充填された補修材料は、
体液にやや溶解性を有し、その結果その周囲にマ
クロフアージを誘導し、骨芽細胞の分化を促進さ
せて速やかに新生骨を形成せしめることができ
る。そのためこの発明による補修材料は、生体硬
組織を構成する生体水酸アパタイトと徐々に融合
一体化し、生体側の異物排除作用は全く認められ
ない。
On the other hand, the synthetic hydroxyapatite that makes up the covering layer is amorphous when viewed from X-ray diffraction analysis, just like the biological hydroxyapatite that makes up the hard tissues of living organisms, so it is difficult to fill bone defects or tooth extraction sockets. Repair materials are
It is slightly soluble in body fluids, and as a result, it can induce macrophages around it, promote differentiation of osteoblasts, and rapidly form new bone. Therefore, the repair material according to the present invention gradually fuses and integrates with the biological hydroxyapatite constituting the hard tissues of the living body, and does not have any effect of eliminating foreign substances on the living body side.

またこの発明による補修材料は粉状物ないしこ
れから成形された顆粒状、柱状、板状、錐状など
様々の形状をなすので、生体硬組織の如何なる形
状の欠損部や抜歯窩に対しても、これを適用する
ことができる。
In addition, since the repair material according to the present invention is powder or molded into various shapes such as granules, columns, plates, cones, etc., it can be used for any shape of defective part or tooth extraction socket in biological hard tissue. This can be applied.

さらにこの発明による製造法は、特殊な装置や
特殊な操作を必要としないので、多大な費用およ
び労力を費やす必要がなく、コスト的に有利な製
品を得ることができる。
Furthermore, since the manufacturing method according to the present invention does not require special equipment or special operations, it is not necessary to spend a lot of money and labor, and it is possible to obtain a cost-effective product.

実施例 上記効果を実証するためにこの発明の実施例お
よび使用例を示す。
Examples Examples and usage examples of this invention will be shown to demonstrate the above effects.

実施例 1 (粉状物) (a) 水酸化カルシウム1174gと蒸留水12とより
なる懸濁液を40の撹拌機付きステンレス鋼製
反応タンクに入れ、水を約15追加した。つい
で温度を55℃に保ち、撹拌下に30%リン酸液
3920gを滴下し、撹拌をさらに2時間続けた。
Example 1 (Powder) (a) A suspension consisting of 1174 g of calcium hydroxide and 12 parts of distilled water was placed in a 40 stainless steel reaction tank with a stirrer, and approximately 15 parts of water was added. Then, maintain the temperature at 55℃ and add 30% phosphoric acid solution while stirring.
3920 g was added dropwise and stirring continued for a further 2 hours.

得られた反応生成物を加圧濾過機で脱水処理
し、脱水ケーキをオーブンで温度190℃で2時
間乾燥した後、粉砕機で砕いた。こうして粒径
100μm以下の粉状の合成水酸アパタイト2021
gを得た。
The obtained reaction product was dehydrated using a pressure filter, and the dehydrated cake was dried in an oven at a temperature of 190° C. for 2 hours, and then crushed using a pulverizer. Thus the particle size
Powdered synthetic hydroxyapatite 2021 less than 100μm
I got g.

(b) この粉状合成水酸アパタイトを250g取つて
温度1250℃で2時間焼成し、粒径100μ以下の
粉状の焼成体243gを得た。
(b) 250 g of this powdered synthetic hydroxyapatite was fired at a temperature of 1250° C. for 2 hours to obtain 243 g of a powdered fired body with a particle size of 100 μm or less.

(c) この粉状焼成体を1のガラス製容器に入
れ、2%リン酸液を500gずつ添加して全体を
1時間静置し、粉状焼成体の表面にリン酸基を
結合せしめた。ついで水酸化カルシウムの1%
水懸濁液を加えて、結合リン酸基にカルシウム
イオンを反応させた。ついで脱水処理後、脱水
品を200℃で1時間乾燥した。
(c) This powdered fired product was placed in the glass container from step 1, 500 g of 2% phosphoric acid solution was added and the whole was allowed to stand for 1 hour to bond phosphoric acid groups to the surface of the powdered fired product. . Then 1% of calcium hydroxide
A water suspension was added to react the bound phosphate groups with calcium ions. After dehydration, the dehydrated product was dried at 200° C. for 1 hour.

こうして粉末焼成体の表面に非焼成の合成水
酸アパタイトの被覆層を形成し、粒径100μm
以下の粉状補修材料を得た。
In this way, a coating layer of unfired synthetic hydroxyapatite is formed on the surface of the powder fired body, and the particle size is 100 μm.
The following powdered repair material was obtained.

実施例 2 (成形物) 実施例1の工程(a)で得られた未焼成の粉状水酸
アパタイトを1500g取つて、これに粘結剤として
ポリビニルアルコールの3%水溶液を50g添加し
て混合し、得られた混合物から通常の圧縮成形機
を用いて粒径0.5〜1.0mmの顆粒状成形物250g、
直径2mm長さ12mmの円柱状成形物250g、短辺5
mm長辺15mm厚さ2mmの矩形板状成形物250gおよ
び底面直径5mm高さ10mmの円錐状成形物をそれぞ
れ得た。
Example 2 (Molded product) 1500g of the unfired powdered hydroxyapatite obtained in step (a) of Example 1 was taken, and 50g of a 3% aqueous solution of polyvinyl alcohol was added as a binder and mixed. Then, from the obtained mixture, 250 g of granular molded products with a particle size of 0.5 to 1.0 mm were made using a normal compression molding machine.
250 g of cylindrical molding with a diameter of 2 mm and a length of 12 mm, short side 5
250 g of a rectangular plate-shaped molded product with a long side of 15 mm and a thickness of 2 mm and a conical molded product with a bottom diameter of 5 mm and a height of 10 mm were obtained.

これら4種類の成形物を温度190℃で2時間乾
燥後温度1250℃で2時間焼成し、セラミツク化さ
れた成形焼成体をそれぞれ240g、237g、242g
および240g得た。
These four types of molded products were dried at a temperature of 190°C for 2 hours and then fired at a temperature of 1250°C for 2 hours, resulting in ceramic shaped fired bodies of 240g, 237g, and 242g, respectively.
and 240g were obtained.

こうして得られた成形焼成体についてそれぞれ
実施例1の工程(c)と同じ操作を行ない、各焼成体
の表面に非焼成の合成水酸アパタイトの被覆層を
形成し、顆粒状、円柱状、板状および円錐状の成
形補修材料を得た。
The same operation as in step (c) of Example 1 was performed on each of the shaped and fired bodies obtained in this way, and a coating layer of unfired synthetic hydroxyapatite was formed on the surface of each fired body to form granules, cylinders, and plates. Shaped and conical shaped repair materials were obtained.

分 析 実施例1および2で得られたこの発明による補
修材料について、内部の焼成体と被覆層をなす非
焼成体とをそれぞれ取り、化学分析およびX線回
折解析を行なつた。
Analysis Regarding the repair materials according to the present invention obtained in Examples 1 and 2, the internal fired body and the unfired body forming the coating layer were taken and subjected to chemical analysis and X-ray diffraction analysis.

化学分析では両者とも化学式Co10(PO46
(OH)2で示される化学量論的構造を有する合成
アパタイトであることが確認された。
Chemical analysis shows that both have the chemical formula Co 10 (PO 4 ) 6
It was confirmed that it is a synthetic apatite with a stoichiometric structure represented by (OH) 2 .

またX線回折解析では内部の焼成体は典型的な
アパタイトの回折図形を示し、被覆層はX線回折
解析的に非晶質の回折図形を示した。
Further, in X-ray diffraction analysis, the internal fired body showed a typical apatite diffraction pattern, and the coating layer showed an amorphous diffraction pattern in X-ray diffraction analysis.

使用例 1 実施例1で得られた粒径100μm以下の粉状補
修材料5gと、実施例2で得られた粒径0.5〜1.0
mmの顆粒状補修材料20gとを混合した。混合物を
オーブン内で400℃で6時間加熱し、滅菌処理し
た。
Usage example 1 5 g of powdered repair material with particle size of 100 μm or less obtained in Example 1 and particle size of 0.5 to 1.0 obtained in Example 2
20 g of granular repair material of mm were mixed. The mixture was sterilized by heating in an oven at 400°C for 6 hours.

処理物を体重200gのウイスター系ラツトの顎
骨内に充填し、経時的に観察を行なつた。
The treated product was injected into the jawbone of a Wistar rat weighing 200 g and observed over time.

施術後3日〜1週間経過後、充填された材料の
周囲に新生骨が速やかに生成したことが認めら
れ、4週間経過後には同材料が顎骨と完全に融合
一体化していることが認められた。
Three days to one week after the treatment, it was observed that new bone quickly formed around the filled material, and after four weeks, it was observed that the material had completely fused into the jawbone. Ta.

使用例 2 実施例2で得られた円柱状成形補修材料10gと
板状成形補修材料10gとを混合し、使用例1と同
様に滅菌処理し、処理物を生後2年の成犬の顎骨
内に充填し、経時的に観察を行なつた。
Usage Example 2 10 g of the cylindrical molded repair material obtained in Example 2 and 10 g of the plate-shaped molded repair material were mixed, sterilized in the same manner as in Use Example 1, and the treated material was inserted into the jawbone of a 2-year-old adult dog. were filled and observed over time.

施術後3日〜1週間経過後、充填された材料の
周囲に新生骨が速やかに生成したことが認めら
れ、4週間経過後には同材料が顎骨と完全に融合
一体化していることが認められた。
Three days to one week after the treatment, it was observed that new bone quickly formed around the filled material, and after four weeks, it was observed that the material had completely fused into the jawbone. Ta.

使用例 3 実施例2で得られた円錐状成形補修材料20gを
使用例1と同様に滅菌処理し、処理品を生後2年
の成犬の犬歯の抜歯窩に充填し、経時的に観察を
行なつた。
Usage Example 3 20g of the conical molded repair material obtained in Example 2 was sterilized in the same manner as in Usage Example 1, and the treated product was filled into the extraction socket of a 2-year-old adult dog's canine tooth, and observed over time. I did it.

施術後1〜2週間経過後、充填された材料の周
囲に新生骨が速やかに生成したことが認められ、
15週間経過後には、施術した抜歯窩の周囲の歯槽
骨に何ら変化が起つていないことが認められた。
なお、通常、抜歯後の抜歯窩をそのまま放置して
おくと、抜歯窩の周囲の歯槽骨が体液中に溶出し
て徐々に消滅し、これに伴つて周囲の健全であつ
た骨が萎縮し咬合回復に悪影響が出る。
One to two weeks after the treatment, it was observed that new bone was rapidly generated around the filled material.
After 15 weeks, it was observed that no changes had occurred in the alveolar bone surrounding the treated tooth extraction socket.
Normally, if the tooth extraction socket is left as is after a tooth extraction, the alveolar bone around the tooth extraction socket will elute into the body fluid and gradually disappear, causing the surrounding healthy bone to atrophy. This will have a negative impact on occlusal recovery.

Claims (1)

【特許請求の範囲】 1 一般式Cam(PO4)n(OH) (ただし、1.4<m/n<1.7) なる組成を有する合成水酸アパタイトよりなる粉
状物ないしこれから成形した成形物の焼成体の表
面に、 Cap(PO4)q(OH) (ただし、1.4<p/q<1.7) なる組成を有する非焼成の合成水酸アパタイトよ
りなる被覆層が形成されていることを特徴とする
生体硬組織補修材料。 2 一般式Cam(PO4)n(OH) (ただし、1.4<m/n<1.7) なる組成を有する合成水酸アパタイトよりなる粉
状物ないしこれから成形した成形物の焼成体に、
リン酸基を結合させ、ついでリン酸基にカルシウ
ムイオンを反応させて、上記焼成体の表面に一般
式Cap(PO4)q(OH) (ただし、1.4<p/q<1.7) なる組成を有する非焼成の合成水酸アパタイトよ
りなる被覆層を形成することを特徴とする生体硬
組織補修材料の製造法。
[Claims] 1. Firing of a powder or a molded product made from synthetic hydroxyapatite having the general formula Cam(PO 4 )n(OH) (1.4<m/n<1.7) A coating layer made of unfired synthetic hydroxyapatite having the composition Cap(PO 4 ) q (OH) (1.4<p/q<1.7) is formed on the surface of the body. Biological hard tissue repair material. 2. A fired body of a powder or a molded product formed from synthetic hydroxyapatite having the general formula Cam( PO4 )n(OH) (1.4<m/n<1.7),
By bonding phosphoric acid groups and then reacting calcium ions with the phosphoric acid groups, a composition having the general formula Cap(PO 4 )q(OH) (where 1.4<p/q<1.7) is formed on the surface of the above-mentioned fired body. 1. A method for producing a biological hard tissue repair material, comprising forming a coating layer made of unfired synthetic hydroxyapatite.
JP61068202A 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production Granted JPS62224356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068202A JPS62224356A (en) 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068202A JPS62224356A (en) 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production

Publications (2)

Publication Number Publication Date
JPS62224356A JPS62224356A (en) 1987-10-02
JPH0139786B2 true JPH0139786B2 (en) 1989-08-23

Family

ID=13366971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068202A Granted JPS62224356A (en) 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production

Country Status (1)

Country Link
JP (1) JPS62224356A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158965A (en) * 1987-12-16 1989-06-22 Tokuyama Soda Co Ltd Curable composition
JP2507953B2 (en) * 1990-03-23 1996-06-19 三菱マテリアル株式会社 Granules for filling bone voids and bone resorption parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040298A (en) * 1983-05-05 1985-03-02 ストレイチャン ヘンシャウ マシーナリー リミティド Removable sleeve for printing roll
JPS6117409A (en) * 1984-07-02 1986-01-25 Meishin Toryo Kk Preparation of amorphous calcium phosphate and bio-compatible composition composed mainly thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040298A (en) * 1983-05-05 1985-03-02 ストレイチャン ヘンシャウ マシーナリー リミティド Removable sleeve for printing roll
JPS6117409A (en) * 1984-07-02 1986-01-25 Meishin Toryo Kk Preparation of amorphous calcium phosphate and bio-compatible composition composed mainly thereof

Also Published As

Publication number Publication date
JPS62224356A (en) 1987-10-02

Similar Documents

Publication Publication Date Title
CA2470295C (en) Machinable preformed calcium phosphate bone substitute material implants
JP5792633B2 (en) Bone regeneration material based on monetite and other bioactive calcium composites and silicon compounds
US8715744B2 (en) Inorganic resorbable bone substitute material
NO147873B (en) POLYCRYSTALLIC CERAMIC MATERIALS BASED ON WHITLOCKITT, AND PROCEDURES FOR PRODUCING THEREOF
JPS6343106B2 (en)
JP2002535225A (en) Inorganic green body and method for its production and use
JPS6330020B2 (en)
JP6663608B2 (en) Bone defect reconstruction treatment kit, medical hard tissue reconstruction material, production method of product inorganic compound, and product inorganic compound
JPS62295666A (en) Continuous two-dimensional porous implant material and its production
EP3265046B1 (en) Stabilized calcium phosphate and methods of forming same
KR20170038134A (en) A method for preparing porous bone graft materials
JPS5812649A (en) Filler for bone deficient part and void part
JPH0139786B2 (en)
JPH0575427B2 (en)
PL210026B1 (en) Method of manufacturing the high-porous, bioactive calcium phosphate implant material
JPS6179463A (en) Composite apatite artificial bone material
JPS6314990B2 (en)
JPS63294864A (en) Preparation of artificial bone material
RU2132702C1 (en) Osteoplastic glass ceramic composition material for making porous implants as granules and method of their making
JPS58121205A (en) China material
FI68216B (en) OPALT ISOTROPISKT OCH POLYKRISTALLINT SINTRAT KERAMISKT MATERIAL OCH DETTA INNEHAOLLANDE PLOMBERINGSKOMPOSITION FOER TAENDER
FI68217B (en) STARKT ISOTROPT SINTRAT TVAOFASIGT KERAMISKT MATERIAL
Rao Current Trends in Processing and Shaping of Bioceramics
JPS6217064A (en) Whitlockite sintered body and manufacture
JPH0461864A (en) Filler for bone deficient part and bone lacuna