JPH0575427B2 - - Google Patents

Info

Publication number
JPH0575427B2
JPH0575427B2 JP59200129A JP20012984A JPH0575427B2 JP H0575427 B2 JPH0575427 B2 JP H0575427B2 JP 59200129 A JP59200129 A JP 59200129A JP 20012984 A JP20012984 A JP 20012984A JP H0575427 B2 JPH0575427 B2 JP H0575427B2
Authority
JP
Japan
Prior art keywords
particle size
weight
hydroxyapatite
parts
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59200129A
Other languages
Japanese (ja)
Other versions
JPS6179462A (en
Inventor
Susumu Takada
Shoichi Wakabayashi
Hiroyasu Noma
Tatsuya Wakatsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59200129A priority Critical patent/JPS6179462A/en
Priority to US06/770,722 priority patent/US4629464A/en
Priority to DE19853531144 priority patent/DE3531144A1/en
Publication of JPS6179462A publication Critical patent/JPS6179462A/en
Publication of JPH0575427B2 publication Critical patent/JPH0575427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、整形外科や口腔外科の治療用として
好適な新規人工骨材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel artificial bone material suitable for use in orthopedics and oral surgery.

さらに詳しくいえば、本発明は体内に埋入した
ときに生体組織と容易に結合し、かつ迅速に同化
して新生骨と置換される新規な人工骨材料に関す
るものである。
More specifically, the present invention relates to a novel artificial bone material that, when implanted in the body, easily combines with living tissue and is rapidly assimilated to replace new bone.

従来の技術 近年、医療工業の進歩とともに、交通事故や骨
腫瘍のような疾患により失なわれた骨の補綴用の
人工骨材に関する研究が盛んに行われるようにな
つてきている。ところで、生体内に人工材料を埋
入するに際しては、毒性がなく、安全で大きい機
械的強度を有し、かつ生体組織と結合しやすい材
料を選ぶことが必要とされ、さらにこの材料は生
体内で自然に消失し新生骨と置換されるものが好
ましいとされている。
BACKGROUND OF THE INVENTION In recent years, along with advances in the medical industry, research has been actively conducted on artificial bone materials for prosthesis of bones lost due to traffic accidents or diseases such as bone tumors. By the way, when implanting an artificial material into a living body, it is necessary to select a material that is non-toxic, safe, has high mechanical strength, and is easily bonded to living tissue. It is said that it is preferable that the bone disappears naturally and is replaced with new bone.

このような要件を満たすものとして、これまで
リン酸三カルシウム、水酸アパタイト又は特殊な
アパタイト型結晶構造リン酸カルシウム化合物の
焼結体から成る骨欠損部充てん用材料などが提案
されている(特開昭56−54841号公報)。
To meet these requirements, materials for filling bone defects made of sintered bodies of tricalcium phosphate, hydroxyapatite, or calcium phosphate compounds with a special apatite-type crystal structure have been proposed (Japanese Patent Application Laid-Open No. 56-54841).

ところで、人工骨や人工歯根を体内に埋入した
ときに生体組織と結合しやすくするには、これを
多孔質のものとして生体組織が細孔に入り込み、
これを固定しうるようにすることが必要であり、
この目的を達成するために、孔径0.03〜1.2mm程
度の気孔を有する多孔質リン酸カルシウム系焼結
体を用いることも知られている(特開昭56−
149389号公報、特開昭57−7856号公報)。
By the way, in order to make it easier for artificial bones and tooth roots to bond with living tissue when implanted in the body, it is necessary to make them porous so that the living tissue can enter the pores.
It is necessary to be able to fix this,
In order to achieve this purpose, it is also known to use a porous calcium phosphate sintered body having pores with a pore diameter of approximately 0.03 to 1.2 mm (Japanese Patent Application Laid-Open No. 1983-1979-1).
149389, Japanese Unexamined Patent Publication No. 1987-7856).

しかしながら、リン酸カルシウム系焼結体を多
孔質にすると、機械的強度の著しい低下をきた
し、人工骨として所要の強度が得られなくなるた
め、特に大規模な骨欠損部の治療には利要するこ
とができず、従来は、チタン、ステンレス鋼、ア
ルミナなどの代謝しない材料を用いたり、あるい
は患者自身の他の部分の骨の移植などの手段をと
らざるを得なかつた。
However, if calcium phosphate-based sintered bodies are made porous, their mechanical strength will drop significantly, making it impossible to obtain the strength required for artificial bones, so they cannot be used particularly for the treatment of large-scale bone defects. Conventionally, it has been necessary to use non-metabolizable materials such as titanium, stainless steel, or alumina, or to graft bone from other parts of the patient's own body.

発明が解決しようとする問題点 従来のチタン、ステンレス鋼、アルミナなどの
代謝不能の材料を人工骨として用いた場合には、
完全治癒後再手術してこれを除去するか、あるい
はそのまま異物として体内に配置しなければなら
ないし、また患者自身の他の部分の骨の移植を行
うには、患部以外の場所をさらに手術しなければ
ならないなど人体に無用の負担をかけることにな
る。
Problems to be solved by the invention When conventional non-metabolizable materials such as titanium, stainless steel, and alumina are used as artificial bones,
After complete healing, the patient must undergo another surgery to remove it, or it must be placed inside the body as a foreign body.Additionally, in order to graft bone from other parts of the patient's body, further surgery is required to remove it from the affected area. This puts an unnecessary burden on the human body.

したがつて、本発明の目的は、生体内に人工材
料を埋入したとき、大規模な骨欠損部の補綴にも
十分に耐えうる大きな機械的強度を有し、かつ生
体組織と容易に結合し、生体内で自然に消失して
新生骨と置換されることができ、したがつて再手
術等の人体に対する無用の負担をかけることのな
い新規人工骨材を提供することである。
Therefore, an object of the present invention is to have an artificial material that, when implanted in a living body, has a high mechanical strength that can sufficiently withstand prosthesis of a large-scale bone defect, and that can be easily bonded to living tissue. However, it is an object of the present invention to provide a new artificial bone material that can naturally disappear in vivo and be replaced with new bone, and therefore does not impose unnecessary burdens on the human body such as reoperation.

問題点を解決するための手段 本発明者らは、先に人工骨材として好適な、孔
径10〜100μmの連続気孔を有し、少なくとも100
Kg/cm2の曲げ強度をもつ水酸アパタイト焼結体を
開発したが(特願昭58−129087号)、さらに研究
を重ねた結果、これを素材として孔径0.1〜2mm
の気孔を有する多孔質人工骨材料を構成すること
により、前記の目的を達成しうることを見出し、
本発明をなすに至つた。
Means for Solving the Problems The present inventors have previously found that the material has continuous pores with a pore diameter of 10 to 100 μm, and has at least 100
We have developed a hydroxyapatite sintered body with a bending strength of Kg/cm 2 (Japanese Patent Application No. 129087/1987), but as a result of further research, we have developed a sintered body of hydroxyapatite with a pore diameter of 0.1 to 2 mm using this material as a material.
It has been discovered that the above object can be achieved by constructing a porous artificial bone material having pores of
The present invention has now been accomplished.

すなわち、本発明は、リン酸カルシウム系焼結
体を素材とした孔径0.2〜2mm、好ましくは0.5〜
1mmの気孔を有する人工骨材料において、前記リ
ン酸カルシウム径焼結体が孔径20〜100μmの微
小気孔を有し、少なくとも100Kg/cm2の曲げ強度
を持つ水酸アパタイト焼結体であることを特徴と
する多孔質人工骨材料を提供するものである。
That is, the present invention uses a calcium phosphate sintered body with a pore diameter of 0.2 to 2 mm, preferably 0.5 to 2 mm.
An artificial bone material having pores of 1 mm, characterized in that the calcium phosphate sintered body is a hydroxyapatite sintered body having micropores with a pore diameter of 20 to 100 μm and a bending strength of at least 100 Kg/cm 2 . The present invention provides a porous artificial bone material.

本発明の人工骨材料は、例えば平均粒径0.1〜
10μmの水酸アパタイト粉末100重量部に対し、
平均粒径20〜100μmの熱分解性物質10〜40重量
部及び平均粒径0.2〜2mmの熱分解性物質10〜40
重量部を加え、所要の形状に形成し900〜1400℃
の温度で焼成することにより製造することができ
る。なお、焼成は加圧せずに行うこともできる
が、例えばホツトプレスを用いて300〜1000Kg/
cm2の加圧を加えて行うのが好ましい。
The artificial bone material of the present invention has an average particle size of, for example, 0.1 to
For 100 parts by weight of 10 μm hydroxyapatite powder,
10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 20 to 100 μm and 10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 0.2 to 2 mm.
Add weight part, form into desired shape and heat at 900 to 1400℃
It can be manufactured by firing at a temperature of . Incidentally, firing can be performed without applying pressure, but for example, using a hot press to produce a 300 to 1000 kg/
Preferably, this is carried out by applying a pressure of cm 2 .

この際用いる水酸アパタイトは、乾式法又は湿
式法による合成アパタイトでもよいし、各種脊椎
動物の骨、歯から回収された生体アパタイトでも
よい。この原料の水酸アパタイトはできるだけ微
粉状に粉砕したものを用いるのが望ましいが、粉
砕機、分級機等の装置的制限や取扱い上の問題も
あるため、平均粒径0.1〜10μmの範囲のものが用
いられる。
The hydroxyapatite used at this time may be apatite synthesized by a dry method or a wet method, or may be a living body apatite recovered from the bones and teeth of various vertebrates. It is desirable to use this raw material, hydroxyapatite, that has been ground into as fine a powder as possible, but since there are equipment limitations such as grinders and classifiers, and handling problems, it is preferable to use hydroxyapatite with an average particle size in the range of 0.1 to 10 μm. is used.

次に、熱分解性物質は、水酸アパタイトを焼結
する際に所望の所望の孔径をもつ連続気孔を形成
させるために配合させるものであるから、平均粒
径20〜100μmを有するものと平均孔径0.2〜2mm
のものの2種が用いられる。この熱分解性物質
は、水酸アパタイト粉末100重量部当りそれぞれ
10〜40重量部の割合で加えることが必要である。
これよりも少ない量では、十分な連続気孔が形成
されないし、またこれよりも多くなると見掛け密
度や機械的強度の低下を免れない。この熱分解性
物質としては、結晶性セルロースのような有機化
合物が好適である。
Next, since the pyrolyzable substance is mixed in order to form continuous pores with a desired pore size when sintering hydroxyapatite, it is necessary to have an average particle size of 20 to 100 μm. Hole diameter 0.2~2mm
Two types are used. This thermally decomposable substance is
It is necessary to add it in a proportion of 10 to 40 parts by weight.
If the amount is less than this, sufficient continuous pores will not be formed, and if the amount is more than this, the apparent density and mechanical strength will inevitably decrease. As this thermally decomposable substance, an organic compound such as crystalline cellulose is suitable.

水酸アパタイト粉末と結晶性セルロースとの混
合は、両者が均一に混合しうるような手段であれ
ばどのような手段を用いてもよい。例えば水酸ア
パタイト粉末と結晶性セルロースをそのまま適当
な混合機を用いて混合してもよいし、また水酸ア
パタイト粉末を、あらかじめ粒径20〜200μm顆
粒状に成形し、これと結晶性セルロースとを混合
してもよい。さらに、結晶性セルロースの表面を
水その他の溶媒で湿潤させ、これに水酸アパタイ
トを均一に付着させる方法をとることもできる。
Any means may be used to mix the hydroxyapatite powder and crystalline cellulose as long as they can be mixed uniformly. For example, hydroxyapatite powder and crystalline cellulose may be mixed as is using an appropriate mixer, or hydroxyapatite powder may be formed into granules with a particle size of 20 to 200 μm and then mixed with crystalline cellulose. may be mixed. Furthermore, it is also possible to wet the surface of crystalline cellulose with water or other solvent and apply hydroxyapatite uniformly thereto.

このようにして調製した混合物に、必要に応じ
てポリビニルアルコールのようなバインダーを加
え、所望の形状に成形し900〜1400℃の温度にお
いて焼成する。焼成時間は、通常0.5〜3時間で
ある。
A binder such as polyvinyl alcohol is added to the mixture thus prepared, if necessary, and the mixture is molded into a desired shape and fired at a temperature of 900 to 1400°C. Firing time is usually 0.5 to 3 hours.

本発明の人工骨材料は、また平均粒径0.1〜10μ
mの水酸アパタイト粉末100重量部に対し、平均
粒径20〜100μmの熱分解性物質10〜40重量部を
加えて顆粒状に成形し、これにさらに平均粒径
0.2〜2mmの熱分解性物質を加えて混合し、必要
に応じバインダーを加え、所望の形状に成形し
900〜1400℃の温度において焼成することによつ
て製造することもできる。
The artificial bone material of the present invention also has an average particle size of 0.1 to 10μ
10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 20 to 100 μm is added to 100 parts by weight of hydroxyapatite powder of 100 μm, and the mixture is formed into granules.
Add 0.2 to 2 mm of pyrolyzable material and mix, add binder if necessary, and mold into desired shape.
It can also be produced by firing at a temperature of 900 to 1400°C.

このようにして得られる人工骨材料は通常80〜
130Kg/cm2の曲げ強度、30〜40%の気孔率、20〜
40%の吸水率を有している。
The artificial bone material obtained in this way usually has a
Flexural strength of 130Kg/ cm2 , porosity of 30~40%, 20~
It has a water absorption rate of 40%.

次に添付図面に従つて、本発明に多孔質人工骨
材料を説明する。図面は、多孔質人工骨材料の構
造を示す断面拡大図であつて、これは、微小気孔
2を有する水酸アパタイト焼結体の母地1から成
り、全体にわたつて連続気孔3が形成された構造
を有している。前記の微小孔径2は20〜100μm、
好ましくは50〜80μmの孔径を有するものであ
り、この程度の孔径にすることにより7〜10μm
の径を有する毛細血管の侵入が可能になり、骨芽
細胞による骨組織の形成及び破骨細胞様多核巨細
胞の出現による水酸アパタイトの吸収が行われ
る。
Next, the porous artificial bone material according to the present invention will be explained with reference to the accompanying drawings. The drawing is an enlarged cross-sectional view showing the structure of a porous artificial bone material, which consists of a matrix 1 of a sintered hydroxyapatite body having micropores 2, with continuous pores 3 formed throughout. It has a similar structure. The above-mentioned micropore diameter 2 is 20 to 100 μm,
Preferably, it has a pore diameter of 50 to 80 μm, and by setting the pore diameter to this level, the diameter of the pore is 7 to 10 μm.
It becomes possible for capillaries with a diameter of .

発明の効果 本発明の人工骨材料は、孔径20〜100μmの微
小気孔を有し、かつ少なくとも100Kg/cm2の曲げ
強度をもつ水酸アパタイトから成る素材で構成さ
れているので全体としての強度が高い上に、孔径
0.2〜2mmの気孔を有する多孔質体であるので、
大きい孔径の気孔には栄養血管が、小さい孔径の
気孔には毛細血管がそれぞれ侵入することがで
き、生体組織と結合しやすく、また本発明の人工
骨材料は、生体内において破骨細胞(50〜100μ
m)の作用を受けて迅速に同化し、骨芽細胞によ
る新生骨の形成を促進するので、口腔外科、整形
外科の治療用として好適である。
Effects of the Invention The artificial bone material of the present invention has micropores with a pore diameter of 20 to 100 μm and is made of hydroxyapatite with a bending strength of at least 100 Kg/cm 2 , so the overall strength is high. High and pore size
Since it is a porous body with pores of 0.2 to 2 mm,
Nutrient blood vessels can enter the pores with large pores, and capillaries can enter the pores with small pores, making it easy to combine with living tissues. ~100μ
It is rapidly assimilated by the action of m) and promotes the formation of new bone by osteoblasts, so it is suitable for use in oral surgery and orthopedic surgery.

実施例 次に実施例により本発明をさらに詳細に説明す
る。
Examples Next, the present invention will be explained in more detail with reference to Examples.

例 1 湿式法で合成した水酸アパタイトを900℃にお
いて1時間仮焼したのち、ボールミルを用いて平
均粒径0.5μmに粉砕した。次いでこれに、バイン
ダーとして、ポリビニルアルコール2重量%を加
え、粒径50〜100μmの顆粒に造粒した。
Example 1 Hydroxyapatite synthesized by a wet method was calcined at 900°C for 1 hour, and then ground to an average particle size of 0.5 μm using a ball mill. Next, 2% by weight of polyvinyl alcohol was added as a binder to this, and the mixture was granulated into granules having a particle size of 50 to 100 μm.

次にこのようにして得た顆粒100重量部と平均
粒径80μmの結晶性セルロース15重量部及び平均
粒径0.2mmの結晶性セルロース15重量部とを混合
し、成形圧500Kg/cm2でプレス成形し、1350℃で
1時間焼成した。
Next, 100 parts by weight of the granules thus obtained were mixed with 15 parts by weight of crystalline cellulose with an average particle size of 80 μm and 15 parts by weight of crystalline cellulose with an average particle size of 0.2 mm, and pressed at a molding pressure of 500 kg/cm 2 It was molded and baked at 1350°C for 1 hour.

このようにして平均孔径50〜80μm及び平均孔
径0.2mmの連続気孔をもつ、気効率32%のアパタ
イト焼結体から成る人工骨材料が得られた。この
ものの素材部分の曲げ強度は145.5Kg/cm2で全体
の曲げ強度は102.8Kg/cm2であつた。
In this way, an artificial bone material consisting of an apatite sintered body having an average pore diameter of 50 to 80 μm and continuous pores with an average pore diameter of 0.2 mm and an air efficiency of 32% was obtained. The bending strength of the material part of this product was 145.5Kg/cm 2 and the overall bending strength was 102.8Kg/cm 2 .

例 2 例1と同じ水酸アパタイト粉末を900℃で1時
間仮焼した後、平均粒径0.5μmに粉砕し、その
100重量部にポリビニルアルコール2重量部及び
平均粒径30μmの結晶セルロース粉末15重量部を
加え、混合したのち、顆粒状に成形し、さらに平
均粒径1mmの結晶セルロース15重量部を加え、こ
れを成形圧500Kg/cm2でプレス成形し、1350℃に
おいて1時間焼成した。このようにして例1とほ
とんど同じ物性の人工骨材料が得られた。
Example 2 The same hydroxyapatite powder as in Example 1 was calcined at 900℃ for 1 hour, then ground to an average particle size of 0.5 μm.
To 100 parts by weight, 2 parts by weight of polyvinyl alcohol and 15 parts by weight of crystalline cellulose powder with an average particle size of 30 μm were added, mixed, and formed into granules. It was press-molded at a molding pressure of 500 kg/cm 2 and fired at 1350°C for 1 hour. In this way, an artificial bone material having almost the same physical properties as Example 1 was obtained.

適用例 例1で得た多孔質アパタイトで小片(3×4×
6mm)を作成し、定法に従つて滅菌したのち、体
重2.5〜3Kgのウサギ5羽の下顎骨に埋め込み、
8週間飼育したところ、いずれもアパタイト焼結
体の一部が吸収され、かつアパタイト焼結体表面
と新生骨が完全に結合した状態となつていた。
Application example A small piece (3×4×
6 mm), sterilized according to standard methods, and implanted into the mandibles of five rabbits weighing 2.5 to 3 kg.
After being reared for 8 weeks, a part of the apatite sintered body was absorbed in each case, and the surface of the apatite sintered body and new bone were completely bonded.

このようにして、本発明の人工骨は顎骨欠損部
への補填材料として臨床的に十分使用しうること
が確認された。
In this way, it was confirmed that the artificial bone of the present invention can be satisfactorily used clinically as a filling material for jawbone defects.

なお、比較のために、微小気孔の孔径が1〜
5μmのものを例1と同様にして製造し、同じよ
うにウサギの下顎骨に受け込んで試験したとこ
ろ、アパタイト焼結体を吸収はほとんど認められ
なかつた。
For comparison, the pore diameter of the micropores is 1 to 1.
When a 5 μm sample was manufactured in the same manner as in Example 1 and tested by inserting it into the mandible of a rabbit, almost no absorption of the apatite sintered body was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の人工骨材料の組織構造を示す断
面拡大図である。図中符号1は水酸アパタイト母
地、2は微小気孔、3は連続気孔である。
The drawing is an enlarged cross-sectional view showing the tissue structure of the artificial bone material of the present invention. In the figure, reference numeral 1 indicates a hydroxyapatite matrix, 2 indicates micropores, and 3 indicates continuous pores.

Claims (1)

【特許請求の範囲】 1 リン酸カルシウム系焼結体を素材とした孔径
0.2〜2mmの気孔を有する人工骨材料において、
前記リン酸カルシウム系焼結体が孔径20〜100μ
mの微小気孔を有し、少なくとも100Kg/cm2の曲
げ強度を持つ水酸アパタイト焼結体であることを
特徴とする多孔質人工骨材料。 2 平均粒径0.1〜10μmの水酸アパタイト粉末
100重量部に対し、平均粒径20〜100μmの熱分解
性物質10〜40重量部及び平均粒径0.2〜2mmの熱
分解性物質10〜40重量部を加え、所要の形状に成
形し、900〜1400℃の温度で焼成することを特徴
とする人工骨材料の製造方法。 3 焼成を300〜1000Kg/cm2の圧力下で行う特許
請求の範囲第2項の方法。
[Claims] 1. Pore size made from calcium phosphate sintered body
In artificial bone materials with pores of 0.2 to 2 mm,
The calcium phosphate sintered body has a pore diameter of 20 to 100μ.
A porous artificial bone material characterized in that it is a hydroxyapatite sintered body having micropores of m and a bending strength of at least 100 Kg/cm 2 . 2 Hydroxyapatite powder with an average particle size of 0.1 to 10 μm
To 100 parts by weight, add 10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 20 to 100 μm and 10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 0.2 to 2 mm, mold it into the desired shape, and A method for producing an artificial bone material, characterized by firing at a temperature of ~1400°C. 3. The method according to claim 2, wherein the firing is performed under a pressure of 300 to 1000 kg/cm 2 .
JP59200129A 1984-09-25 1984-09-25 Porous artificial bone material Granted JPS6179462A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59200129A JPS6179462A (en) 1984-09-25 1984-09-25 Porous artificial bone material
US06/770,722 US4629464A (en) 1984-09-25 1985-08-29 Porous hydroxyapatite material for artificial bone substitute
DE19853531144 DE3531144A1 (en) 1984-09-25 1985-08-30 POROESES HYDROXYAPATITE MATERIAL AND ITS USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200129A JPS6179462A (en) 1984-09-25 1984-09-25 Porous artificial bone material

Publications (2)

Publication Number Publication Date
JPS6179462A JPS6179462A (en) 1986-04-23
JPH0575427B2 true JPH0575427B2 (en) 1993-10-20

Family

ID=16419290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200129A Granted JPS6179462A (en) 1984-09-25 1984-09-25 Porous artificial bone material

Country Status (1)

Country Link
JP (1) JPS6179462A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125259A (en) * 1986-11-14 1988-05-28 旭光学工業株式会社 Calcium phosphate type porous bone filler
JP2657847B2 (en) * 1990-05-10 1997-09-30 寅雄 大塚 Hydroxyapatite porous biofill material and method for producing the same
JPH0440961A (en) * 1990-06-06 1992-02-12 Mitsubishi Materials Corp Filler for bone omission part, bone cavity part, and bone absorption part
US6949251B2 (en) * 2001-03-02 2005-09-27 Stryker Corporation Porous β-tricalcium phosphate granules for regeneration of bone tissue
JP2008173238A (en) * 2007-01-17 2008-07-31 Olympus Terumo Biomaterials Corp Production method of biotissue supplementary material
WO2019163122A1 (en) * 2018-02-26 2019-08-29 オリンパス株式会社 Bone graft material and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166843A (en) * 1980-05-28 1981-12-22 Mitsubishi Mining & Cement Co Filler for bone broken section and void section

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166843A (en) * 1980-05-28 1981-12-22 Mitsubishi Mining & Cement Co Filler for bone broken section and void section

Also Published As

Publication number Publication date
JPS6179462A (en) 1986-04-23

Similar Documents

Publication Publication Date Title
JP4815102B2 (en) Calcium phosphate bone substitute material implant preformed by machining
US4629464A (en) Porous hydroxyapatite material for artificial bone substitute
KR910001352B1 (en) Porous ceramic material and method for producing thereof
JP3035316B2 (en) Coated biological material and method for producing the biological material
JPS6222632B2 (en)
JPH0156777B2 (en)
JPH0222113A (en) Production of calcium phosphate mineral
KR100807108B1 (en) Preparation method of porous ?-tricalcium phosphate granules
JPH03174311A (en) Storage-stable compound for on-site prepared calcium phosphate ore
JPS5941946B2 (en) porcelain
JPS63125259A (en) Calcium phosphate type porous bone filler
JPH0359703B2 (en)
KR101762580B1 (en) A method for preparing porous bone graft materials
Mao et al. Preparation and properties of α-calcium sulphate hemihydrate and β-tricalcium phosphate bone substitute
JPH0575427B2 (en)
JPS6179464A (en) Composition for artificial bone material
TW202112404A (en) Collagen matrix or granulate blend of bone substitute material
RU28608U1 (en) CERAMIC ENDOPROTHESIS
JPS6179463A (en) Composite apatite artificial bone material
JPH0561231B2 (en)
CN104815352A (en) Magnesium sodium phosphate composite material and preparation method and application thereof
JPH0588623B2 (en)
KR102473250B1 (en) A POROUS SCAFFOLD COMPRISING A β-TRICALCIUM PHOSPHATE AND A POLYCARPROLACTON FOR REGENERATING THE PERIODONTAL COMPLEX HAVING IMPROVED TENSILE STRENGTH CHARACTERISTICS, AND METHOD FOR PREPARING THE SAME
JPS63294864A (en) Preparation of artificial bone material
US20240025800A1 (en) Glass-ceramic composite material