JPS6179462A - Porous artificial bone material - Google Patents

Porous artificial bone material

Info

Publication number
JPS6179462A
JPS6179462A JP59200129A JP20012984A JPS6179462A JP S6179462 A JPS6179462 A JP S6179462A JP 59200129 A JP59200129 A JP 59200129A JP 20012984 A JP20012984 A JP 20012984A JP S6179462 A JPS6179462 A JP S6179462A
Authority
JP
Japan
Prior art keywords
artificial bone
bone material
hydroxyapatite
particle size
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59200129A
Other languages
Japanese (ja)
Other versions
JPH0575427B2 (en
Inventor
進 高田
若林 章一
野間 弘康
若月 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59200129A priority Critical patent/JPS6179462A/en
Priority to US06/770,722 priority patent/US4629464A/en
Priority to DE19853531144 priority patent/DE3531144A1/en
Publication of JPS6179462A publication Critical patent/JPS6179462A/en
Publication of JPH0575427B2 publication Critical patent/JPH0575427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、整形外科や口腔外科の治療用として好適な新
規人工骨材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a new artificial bone material suitable for use in orthopedics and oral surgery.

さらに詳しくいえば、本発明は体内に埋入したときに生
体組織と容易に結合し、かつ迅速に溶解吸収されて新生
骨と置換される新規な人工骨材料に関するものである。
More specifically, the present invention relates to a novel artificial bone material that easily binds to living tissue when implanted in the body, and is rapidly dissolved and absorbed to replace new bone.

従来の技術 近年、医療工業の進歩とともに1.交通事故や骨腫瘍の
ような疾患によシ失なわれた骨の補綴用の人工骨材に関
する研究が盛んに行われるようになってきている。とこ
ろで、生体内に人工材料を埋入するに際しては、毒性が
なく、安全で大きい機械的強度を有し、かつ生体組織と
結合しやすい材料金運ぶことが必要とされ、さらにこの
材料は生体内で自然に消失し新生骨と置換されるものが
好ましいとされている。
Conventional technology In recent years, along with advances in the medical industry, 1. Research into artificial bone materials for prosthetics for bones lost due to traffic accidents or diseases such as bone tumors is becoming increasingly popular. By the way, when implanting an artificial material into a living body, it is necessary to transport a material that is non-toxic, safe, has high mechanical strength, and is easily bonded to living tissue. It is said that it is preferable that the bone disappears naturally and is replaced with new bone.

このような要件を満たすものとして、これまでリン酸三
カルンウム、水酸アパタイト又は特殊なアパタイト準結
晶構造リン酸カルシウム化合物の焼結体から成る人工歯
根、人工骨などが提案されている(特開昭56−548
41号公報)。
To meet these requirements, artificial tooth roots and artificial bones made of sintered bodies of tricarium phosphate, hydroxyapatite, or special apatite quasi-crystal structure calcium phosphate compounds have been proposed (Japanese Patent Application Laid-Open No. 1983-1992). -548
Publication No. 41).

ところで、人工骨や人工歯根を体内に埋火したときに生
体組織と結合しやすくするには、これを多孔質のものと
して生体組織が細孔に入り込み、これを固定しうるよう
にすることが必要であり、この目的を達成するために、
孔径0.03〜1.2.程度の気孔を有する多孔質リン
酸カルシウム系焼結体を用いることも知られている(特
開昭56−149389号公報、特開昭57−7856
号公報)。
By the way, in order to make it easier for artificial bone or tooth roots to bond with living tissue when implanted in the body, it is necessary to make them porous so that the living tissue can enter the pores and fix them. necessary and to achieve this purpose,
Pore diameter 0.03-1.2. It is also known to use a porous calcium phosphate sintered body having a certain degree of pores (Japanese Patent Application Laid-Open Nos. 56-149389, 1982-7856).
Publication No.).

しかしながら、リン酸カルシウム系焼結体を多孔質にす
ると、機械的強度の著しい低下をきたし、人工骨として
の所要の強度が得られなくなるため、特に大規模な骨欠
損部の治療には利用することがでキス、従来は、チタン
、ステンレス鋼、アルミナなどの代謝しない材料を用い
たり、あるいは患者自身の他の部分の骨の移植などの手
段をとらざるを得なかった。
However, if calcium phosphate-based sintered bodies are made porous, their mechanical strength will be significantly reduced, making it impossible to obtain the strength required for artificial bone, so they cannot be used particularly for the treatment of large-scale bone defects. Traditionally, this has required the use of non-metabolizable materials such as titanium, stainless steel, and alumina, or the use of bone grafts from other parts of the patient's own body.

発明が解決しようとする問題点 従来のチタン、ステンレス鋼、アルミナなどの代謝不能
の材料を人工骨として用いた場合には、完全治癒後回手
術してこれを除去するか、あるいはそのまま異物として
体内に放置しなければならないし、また患者自身の他の
部分の骨の移植を行うには、患部以外の場所をさらに手
術しなければならないなど人体に無用の負担をかけるこ
とになる。
Problems to be Solved by the Invention When conventional non-metabolizable materials such as titanium, stainless steel, and alumina are used as artificial bones, they must be removed through surgery after they have completely healed, or they can be left in the body as a foreign body. In addition, transplanting bone from other parts of the patient's body would require additional surgery on areas other than the affected area, which would place an unnecessary burden on the human body.

したがって、本発明の目的は、生体内に人工材料を埋入
したとき、大規模な骨欠損部の補綴にも十分に耐えうる
大きな機械的強度を有し、かつ生体組織と容易に結合し
、生体内で自然に消失して新生骨と置換されることがで
き、したがって再手術等の人体に対する無用の負担をか
けることのない新規人工骨材を提供することである。
Therefore, an object of the present invention is to have an artificial material that, when implanted in a living body, has a high mechanical strength that can sufficiently withstand prosthesis of a large-scale bone defect, and that can be easily bonded to living tissue. It is an object of the present invention to provide a new artificial bone material that can naturally disappear in a living body and be replaced with new bone, and therefore does not impose unnecessary burdens on the human body such as reoperation.

問題点を解決するだめの手段 本発明者らは、先に人工骨材として好適な、孔径10〜
100μmの連続気孔を有し、少なくとも100Kf/
iの曲げ強度をもつ水酸アパタイト焼結体を開発したが
(特願昭58−129087号)、さらに研究を重ねた
結果、これを素材として孔径0.1〜2屁の気孔を有す
る多孔質人工骨材料を構成することにより、前記の目的
を達成しうろことを見出し、本発明をなすに至った。
Means to Solve the Problems The present inventors first discovered a material with a pore diameter of 10 to 10, which is suitable as an artificial aggregate.
It has continuous pores of 100μm and at least 100Kf/
We have developed a sintered hydroxyapatite with a bending strength of i (Japanese Patent Application No. 58-129087), but as a result of further research, we have developed a porous material with pores with a pore diameter of 0.1 to 2 farts. The inventors have discovered that the above objects can be achieved by constructing an artificial bone material, and have come to form the present invention.

すなわち、本発明は、リン酸カルシウム系焼結体を素材
とした孔径0.2〜2mm、好ましくは015〜1間の
気孔を有する人工骨材料において、前記リン酸カルシウ
ム系焼結体が孔径20〜100μmの微小気孔を有する
水酸アパタイト焼結体であることを特徴とする多孔質人
工骨材料を提供するものである。
That is, the present invention provides an artificial bone material made of a calcium phosphate-based sintered body and having pores of 0.2 to 2 mm in pore diameter, preferably 0.15 to 1. The present invention provides a porous artificial bone material characterized by being a hydroxyapatite sintered body having pores.

本発明の人工骨材料は、例えば平均粒径0.1〜10μ
mの水酸アパタイト粉末100重量部に対し、平均粒径
20〜100μmの熱分解性物質10〜40重量部及び
平均粒径0.2〜2mmの熱分解性物質10〜40重量
部を加え、所要の形状に成形し900〜1400 ℃の
温度で焼成することにより製造することができる。なお
、焼成は加圧せずに行うこともできるが、例えばホット
プレスを用いて300〜1000 Kp/cdの圧力を
加えて行うのが好ましい。
The artificial bone material of the present invention has an average particle size of 0.1 to 10μ, for example.
Adding 10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 20 to 100 μm and 10 to 40 parts by weight of a thermally decomposable substance with an average particle size of 0.2 to 2 mm to 100 parts by weight of hydroxyapatite powder of m, It can be manufactured by molding into a desired shape and firing at a temperature of 900 to 1400°C. Although the firing can be carried out without applying pressure, it is preferable to carry out the firing by applying a pressure of 300 to 1000 Kp/cd using, for example, a hot press.

この除用いる水酸アパタイトは、乾式法又は湿式法によ
る合成アパタイトでもよいし、各種を椎動物の骨、歯か
ら回収された生体アパタイトでもよい。この原料の水酸
アパタイトはできるだけ微粉状に粉砕したものを用いる
のが望ましいが、粉砕機、分級機等の装置的制限や取扱
い上の問題もあるため、平均粒径0,1〜10pmの範
囲のものが用いられる。
The hydroxyapatite to be removed may be synthetic apatite produced by a dry method or a wet method, or may be a variety of biological apatite recovered from bones and teeth of vertebrates. It is desirable to use this raw material, hydroxyapatite, that has been ground into as fine a powder as possible, but due to limitations in equipment such as grinders and classifiers, and handling problems, the average particle size should be in the range of 0.1 to 10 pm. are used.

次に、熱分解性物質は、水酸アパタイトを焼結する際に
所望の孔径をもつ連続気孔を形成させるために配合させ
るものであるから、平均粒径20〜100μmi有する
ものと平均孔径0.2〜2m+nのものの2種が用いら
れる。この熱分解性物質は、水酸アパタイト粉末100
重量部当pそれぞれ10〜40重景部の割合で加えるこ
とが必要である。
Next, the thermally decomposable substance is mixed in order to form continuous pores with a desired pore size when sintering the hydroxyapatite, so one with an average particle size of 20 to 100 μm and one with an average pore size of 0. Two types of 2 to 2 m+n are used. This thermally decomposable material is hydroxyapatite powder 100%
It is necessary to add 10 to 40 parts by weight per part by weight.

これよシも少ない量では、十分な連続気孔が形成されな
いし、またこれよりも多くなると見掛は密度や機械的強
度の低下を免れない。この熱分解性物質としては、結晶
性セルロースのような有機化合物が好適である。
If the amount is smaller than this, sufficient continuous pores will not be formed, and if the amount is larger than this, the apparent density and mechanical strength will inevitably decrease. As this thermally decomposable substance, an organic compound such as crystalline cellulose is suitable.

水酸アパタイト粉末と結晶性セルロースとの混合は、゛
両者が均一に混合しうるような手段であればどのような
手段を用いてもよい。例えば水酸アパタイト粉末と結晶
性セルロースをそのまま適当な混合機を用いて混合して
もよいし、また水酸アパタイト粉末を、あらかじめ粒径
20〜200μm顆粒状に成形し、これと結晶性セルロ
ースとを混合してもよい。さらに、結晶性セルロースの
表面を水その他の溶媒で湿潤させ、これに水酸アパタイ
トを均一に付着させる方法をとることもできる。
Any means may be used to mix the hydroxyapatite powder and crystalline cellulose as long as they can be mixed uniformly. For example, hydroxyapatite powder and crystalline cellulose may be mixed as is using an appropriate mixer, or hydroxyapatite powder may be formed into granules with a particle size of 20 to 200 μm and then mixed with crystalline cellulose. may be mixed. Furthermore, it is also possible to wet the surface of crystalline cellulose with water or other solvent and apply hydroxyapatite uniformly thereto.

このようにして調製した混合物に、必要に応じてポリビ
ニルアルコールのようなバインダーを加え、所望の形状
に成形し900〜1400℃の温度において焼成する。
A binder such as polyvinyl alcohol is added to the mixture thus prepared, if necessary, and the mixture is molded into a desired shape and fired at a temperature of 900 to 1400°C.

焼成時間は、通常0.5〜3時間である。Firing time is usually 0.5 to 3 hours.

本発明の人工骨材料は、また平均粒径0.1〜10μm
の水酸アパタイト粉末100重量部に対し、平均粒径2
0〜100μmの熱分解性物質10〜40重量部を加え
て顆粒状に成形し、これにさらに平均粒径0.2〜2m
mの熱分解性分質を加えて混合し、必要に応じバインダ
ーを加え、所望の形状に成形し900〜1400℃の温
度において焼成することによって製造することもできる
The artificial bone material of the present invention also has an average particle size of 0.1 to 10 μm.
For 100 parts by weight of hydroxyapatite powder, the average particle size is 2
10 to 40 parts by weight of a thermally decomposable substance with a particle size of 0 to 100 μm is added and formed into granules, and then granules with an average particle size of 0.2 to 2 m are added.
It can also be produced by adding and mixing the thermally decomposable substances of m, adding a binder if necessary, molding into a desired shape, and firing at a temperature of 900 to 1400°C.

このようにして得られる人工骨材料は通常80〜130
 Kp / ctdの曲げ強度、30〜40%の気孔率
、20〜40%の吸水率を有している。
The artificial bone material obtained in this way usually has a molecular weight of 80 to 130
It has a bending strength of Kp/ctd, a porosity of 30-40%, and a water absorption rate of 20-40%.

次に添付図面に従って、本発明の多孔質人工骨材料を説
明する。図面は、多孔質人工骨材料の構造全示す断面拡
大図であって、これは、微小気孔2を有する水酸アパタ
イト焼結体の母地lから成シ、全体にわたって連続気孔
3が形成された構造を有している。前記の微小孔径2は
20〜100μm1好ましくは50〜80μmの孔径を
有するものであり、この程度の孔径にすることにより7
〜10μmの径を有する毛細血管の侵入が可能になシ、
骨肉芽による骨組織の形成及び破骨細胞様多核巨細胞の
出現による水酸アパタイトの吸収が行われる。
Next, the porous artificial bone material of the present invention will be explained according to the accompanying drawings. The drawing is an enlarged cross-sectional view showing the entire structure of the porous artificial bone material, which is made from a matrix of sintered hydroxyapatite having micropores 2, and continuous pores 3 are formed throughout. It has a structure. The aforementioned micropore diameter 2 has a pore diameter of 20 to 100 μm, preferably 50 to 80 μm, and by setting the pore diameter to this level, 7.
Enables the entry of capillaries with a diameter of ~10 μm,
Bone tissue is formed by bone granulation and hydroxyapatite is absorbed by the appearance of osteoclast-like multinucleated giant cells.

発明の効果 本発明の人工骨材料は、孔径20〜100μmの微小気
孔を有し、かつ少なくとも100 Kg / cnlの
曲げ強度をもつ水酸アパタイトから成る素材で構成され
ているので全体としての強度が高い上に、孔径0.1〜
2mmの気孔を有する多孔質体であるので、生体組織と
結合しやすく、まだ本発明の人工骨材料は、生体内にお
いて破骨細胞(50〜100μm)の作用を受けて迅速
に溶解吸収され、骨肉芽により新生骨と置換されるので
、口腔外科、整形外科の治療用として好適である。
Effects of the Invention The artificial bone material of the present invention has micropores with a pore diameter of 20 to 100 μm and is made of hydroxyapatite with a bending strength of at least 100 Kg/cnl, so the overall strength is high. In addition to being expensive, the pore diameter is 0.1~
Since it is a porous body with pores of 2 mm, it easily binds to living tissue, and the artificial bone material of the present invention is rapidly dissolved and absorbed in vivo by the action of osteoclasts (50 to 100 μm). Since it is replaced with new bone by bone granulation, it is suitable for use in oral surgery and orthopedic surgery.

実施列 次に実施例により本発明をさらに詳細に説明する。implementation row Next, the present invention will be explained in more detail with reference to Examples.

列  1 湿式法で合成した水酸アバタイ) i 900℃におい
て1時間仮焼したのち、ボールミルを用いて平均粒径0
.5μmに粉砕した。次いでこれに、バインダーとして
、ポリビニルアルコール2重量%を加え、粒径50〜1
00μmの顆粒に造粒した。
Column 1 Hydroxyl abatai synthesized by wet method) i After calcining at 900°C for 1 hour, the average particle size was 0 using a ball mill.
.. It was ground to 5 μm. Next, 2% by weight of polyvinyl alcohol was added as a binder to this, and the particle size was adjusted to 50 to 1.
It was granulated into 00 μm granules.

次にこのようにして得た顆粒100重量部と平均粒径8
0μmの結晶性セルロース15重量部及び平均粒径0.
2 rrrmの結晶性セルロース15重量部とを混合し
、成形圧500Kf/eraでプレス成形し、1350
℃で1時間焼成した。
Next, 100 parts by weight of the granules thus obtained and an average particle size of 8
15 parts by weight of crystalline cellulose of 0 μm and an average particle size of 0.
2 rrrm of crystalline cellulose was mixed with 15 parts by weight, and press-molded at a molding pressure of 500 Kf/era to obtain 1350
It was baked at ℃ for 1 hour.

このようにして平均孔径50〜80μm及び平均孔径0
.2 ff1mの連続気孔をもつ、気孔率32襲のアパ
タイト焼結体から成る人工骨材料が得られた。
In this way, the average pore size is 50-80 μm and the average pore size is 0.
.. An artificial bone material consisting of an apatite sintered body with a porosity of 32 and having continuous pores of 2 ff 1 m was obtained.

このものの素材部分の曲げ強度は145.5)f /c
rdで全体の曲げ強度は102.8 即/ crdであ
った。
The bending strength of the material part of this item is 145.5) f/c
The overall bending strength at rd was 102.8 y/crd.

列  2 例1と同じ水酸アパタイト粉末ヲ900℃で1時間仮焼
した後、平均粒径0,5 μmに粉砕し、その100重
量部にポリビニルアルコール2重量部及び平均粒径30
μmの結晶セルロース粉末15重量部を加え、混合した
のち、顆粒状に成形し、さらに平均粒径ITrr!nの
結晶セルロース15重量部を加え、これを成形圧500
に9/crlでプレス成形し、1350 ℃において1
時間焼成した。このようにして例1とほとんど同じ物性
の人工骨材料が得られた。
Row 2 The same hydroxyapatite powder as in Example 1 was calcined at 900°C for 1 hour, then ground to an average particle size of 0.5 μm, and 100 parts by weight of the hydroxyapatite powder was mixed with 2 parts by weight of polyvinyl alcohol and an average particle size of 30 μm.
After adding 15 parts by weight of microcrystalline cellulose powder and mixing, it was formed into granules, and the average particle size ITrr! Add 15 parts by weight of crystalline cellulose of
Press molded at 9/crl and 1 at 1350°C.
Baked for an hour. In this way, an artificial bone material having almost the same physical properties as Example 1 was obtained.

適用列 レリ1で得た多孔質アパタイトで小片(3x4x6 t
ran ) k作成し、常法に従って滅菌したのち、体
重2.5〜3時のウサギ5羽の下顎骨に埋め込み、8週
間飼育したところ、いずれもアパタイト焼結体の一部が
吸収され、かつアパタイト焼結体表面と新生骨が完全に
結合した状態となっていた。
A small piece (3x4x6 t
Ran) K was prepared and sterilized according to conventional methods, and then implanted into the mandibles of five rabbits weighing between 2.5 and 3 years old. When reared for 8 weeks, some of the apatite sintered bodies were absorbed and The surface of the apatite sintered body and the new bone were completely combined.

このようにして、本発明の人工骨は顎骨欠損部への補填
材料として臨床的に十分使用しうろことが確認された。
In this way, it was confirmed that the artificial bone of the present invention can be used clinically as a filling material for jaw bone defects.

なお、比較のために、微小気孔の孔径が1〜5μmのも
のを列1と同様にして製造し、同じようにウサギの下顎
骨に埋め込んで試験したところ、アパタイト焼結体の吸
収はほとんど認められなかった。
For comparison, a product with a micropore diameter of 1 to 5 μm was manufactured in the same manner as in row 1, and tested by implanting it in the mandible of a rabbit in the same manner. I couldn't.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の人工骨材料の組織構造を示す断面拡大図
である。図中符号1は水酸アパタイト母地、2は微小気
孔、3は連続気孔である。
The drawing is an enlarged cross-sectional view showing the tissue structure of the artificial bone material of the present invention. In the figure, reference numeral 1 indicates a hydroxyapatite matrix, 2 indicates micropores, and 3 indicates continuous pores.

Claims (1)

【特許請求の範囲】[Claims] 1 リン酸カルシウム系焼結体を素材とした孔径0.2
〜2mmの気孔を有する人工骨材料において、前記リン
酸カルシウム系焼結体が孔径20〜100μmの微小気
孔を有する水酸アパタイト焼結体であることを特徴とす
る多孔質人工骨材料。
1 Pore diameter 0.2 made of calcium phosphate sintered body
A porous artificial bone material having pores of ~2 mm, characterized in that the calcium phosphate-based sintered body is a hydroxyapatite sintered body having micropores with a pore size of 20 to 100 μm.
JP59200129A 1984-09-25 1984-09-25 Porous artificial bone material Granted JPS6179462A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59200129A JPS6179462A (en) 1984-09-25 1984-09-25 Porous artificial bone material
US06/770,722 US4629464A (en) 1984-09-25 1985-08-29 Porous hydroxyapatite material for artificial bone substitute
DE19853531144 DE3531144A1 (en) 1984-09-25 1985-08-30 POROESES HYDROXYAPATITE MATERIAL AND ITS USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200129A JPS6179462A (en) 1984-09-25 1984-09-25 Porous artificial bone material

Publications (2)

Publication Number Publication Date
JPS6179462A true JPS6179462A (en) 1986-04-23
JPH0575427B2 JPH0575427B2 (en) 1993-10-20

Family

ID=16419290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200129A Granted JPS6179462A (en) 1984-09-25 1984-09-25 Porous artificial bone material

Country Status (1)

Country Link
JP (1) JPS6179462A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125259A (en) * 1986-11-14 1988-05-28 旭光学工業株式会社 Calcium phosphate type porous bone filler
JPH0440961A (en) * 1990-06-06 1992-02-12 Mitsubishi Materials Corp Filler for bone omission part, bone cavity part, and bone absorption part
JPH04164456A (en) * 1990-05-10 1992-06-10 Torao Otsuka Hydroxyl-apatite porous living organism filler and its manufacture
JP2005505311A (en) * 2001-03-02 2005-02-24 ストライカー コーポレイション Porous β-tricalcium phosphate granules and method for producing the same
WO2008087798A1 (en) * 2007-01-17 2008-07-24 Olympus Terumo Biomaterials Corp. Method for producing body tissue substitute material
WO2019163122A1 (en) * 2018-02-26 2019-08-29 オリンパス株式会社 Bone graft material and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166843A (en) * 1980-05-28 1981-12-22 Mitsubishi Mining & Cement Co Filler for bone broken section and void section

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166843A (en) * 1980-05-28 1981-12-22 Mitsubishi Mining & Cement Co Filler for bone broken section and void section

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125259A (en) * 1986-11-14 1988-05-28 旭光学工業株式会社 Calcium phosphate type porous bone filler
JPH0149501B2 (en) * 1986-11-14 1989-10-25 Asahi Optical Co Ltd
JPH04164456A (en) * 1990-05-10 1992-06-10 Torao Otsuka Hydroxyl-apatite porous living organism filler and its manufacture
JPH0440961A (en) * 1990-06-06 1992-02-12 Mitsubishi Materials Corp Filler for bone omission part, bone cavity part, and bone absorption part
JPH0534021B2 (en) * 1990-06-06 1993-05-21 Mitsubishi Materials Corp
JP2005505311A (en) * 2001-03-02 2005-02-24 ストライカー コーポレイション Porous β-tricalcium phosphate granules and method for producing the same
WO2008087798A1 (en) * 2007-01-17 2008-07-24 Olympus Terumo Biomaterials Corp. Method for producing body tissue substitute material
WO2019163122A1 (en) * 2018-02-26 2019-08-29 オリンパス株式会社 Bone graft material and method of manufacturing same

Also Published As

Publication number Publication date
JPH0575427B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
US4629464A (en) Porous hydroxyapatite material for artificial bone substitute
JP4815102B2 (en) Calcium phosphate bone substitute material implant preformed by machining
US5525148A (en) Self-setting calcium phosphate cements and methods for preparing and using them
JP3658172B2 (en) A storage stable formulation for calcium phosphate minerals prepared in situ
JPS6021763A (en) Artificial bone material
JP2003513711A (en) Resorbable bone implant material and method for producing the same
JPH0222113A (en) Production of calcium phosphate mineral
JPH08510713A (en) Calcium phosphate hydroxyapatite precursor and method of making and using the same
JPS6330020B2 (en)
JPS5941946B2 (en) porcelain
JPH0359703B2 (en)
JPH04164456A (en) Hydroxyl-apatite porous living organism filler and its manufacture
JPS6179462A (en) Porous artificial bone material
JPS6179464A (en) Composition for artificial bone material
TW202112404A (en) Collagen matrix or granulate blend of bone substitute material
JPS6179463A (en) Composite apatite artificial bone material
JPH03165773A (en) Composition for living body and material for living body
JPS6212680A (en) Block-form apatite sintered body
JPH0588623B2 (en)
JPS63294864A (en) Preparation of artificial bone material
FI68216B (en) OPALT ISOTROPISKT OCH POLYKRISTALLINT SINTRAT KERAMISKT MATERIAL OCH DETTA INNEHAOLLANDE PLOMBERINGSKOMPOSITION FOER TAENDER
JPH01293877A (en) Preparation of artificial bone material
JPH0252664A (en) Composite implant material
TW201521699A (en) Intervertebral implant
JPS58121205A (en) China material