JPH0149501B2 - - Google Patents

Info

Publication number
JPH0149501B2
JPH0149501B2 JP61271059A JP27105986A JPH0149501B2 JP H0149501 B2 JPH0149501 B2 JP H0149501B2 JP 61271059 A JP61271059 A JP 61271059A JP 27105986 A JP27105986 A JP 27105986A JP H0149501 B2 JPH0149501 B2 JP H0149501B2
Authority
JP
Japan
Prior art keywords
bone
calcium phosphate
pores
bone grafting
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61271059A
Other languages
Japanese (ja)
Other versions
JPS63125259A (en
Inventor
Kenji Ichizuka
Akihiko Yokoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP61271059A priority Critical patent/JPS63125259A/en
Priority to EP87116795A priority patent/EP0267624A3/en
Publication of JPS63125259A publication Critical patent/JPS63125259A/en
Publication of JPH0149501B2 publication Critical patent/JPH0149501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「技術分野」 本発明は、歯科、口腔外科、整形外科、耳鼻咽
喉科等において、事故による骨折、骨腫瘍、歯槽
膿漏などの疾病の手術により生じた骨の欠損部を
埋めるために使用されるリン酸カルシウム系多孔
質骨補填材に関するものである。 「従来技術およびその問題点」 欠損した生体硬組織を代替、補填するために古
来より数多くの研究開発がなされてきた。これら
の補填材を材料の面から分類すると天然骨を使つ
た補填材と人工材料を使つた補填材とに大別され
る。 天然骨を使つた補填材としては、患者本人の正
常部位の骨を利用する自家骨、近親者の正常部位
の骨あるいは死者の冷凍保存骨を利用する同種
骨、さらに、ウシ、ブタなどの骨を利用する異種
骨がある。しかしながら、自家骨は、移植後の拒
絶反応は生じないものの患者本人の正常部位より
の骨組織の採取を必要とするので患者に対する負
担は大きなものであり、かつ十分な量の骨組織を
採取できるとは限らず、また比較的拒絶反応の少
ない近親者の骨を利用する場合も、骨組織の採取
のために別の生体に対する手術が必要であるため
にその負担は減少するものではなく拒絶反応も避
け得ないものである。さらに死者の保存骨、ある
いはタンパク質を除去した子ウシの骨などの異種
骨は、生体内での異物反応が強いという致命的な
欠点があつた。 一方、人工材料を使つた補填材としては、コバ
ルト−クロム、チタン、ステンレスなどの金属
や、アルミナ、ジルコニア、三リン酸カルシウ
ム、ハイドロオキシアパタイト、リン酸カルシウ
ム系ガラスなどのセラミツクスや、シリコン樹脂
などの高分子材料や、カーボンなどが用いられて
いる。 これらの中でもセラミツクスは生体内において
安定しており、かつ生体適合性にも優れることか
ら、近年特に医用材料への応用が試みられ実用化
している。セラミツクスを医用材料、特に骨補填
材としてさらに分類すると、生体不活性
(bioinert)なものと生体活性(bioactive)なも
のに分けられる。生体不活性とは、埋入された医
用材料が周囲硬組織と何の反応も起こさないこと
であり、生体活性とは埋入された医用材料が新生
骨と直接的な結合をすることである。生体不活性
な材料としては、アルミナ、ジルコニア等が挙げ
られ、一方生体活性な材料としては、三リン酸カ
ルシウム、ハイドロオキシアパタイト、リン酸カ
ルシウム系ガラス等のリン酸カルシウム系材料が
挙げられている。 最近、この生体活性なセラミツクスであるリン
酸カルシウム焼結体、特にハイドロオキシアパタ
イト焼結体は、その優れた生体親和性を評価され
て、人工歯根等として製品化されている。さらに
ハイドロオキシアパタイト焼結体を多孔質構造と
し、体液循環性を高めて気孔内に石灰化を起こさ
せ、新生骨との複合化をはかつた骨補填材もすで
に開発されている。このリン酸カルシウム系多孔
質骨補填材は、現在骨補填材として最も注目され
ているものの1つであり、その気孔形態に特徴を
有する種々の多孔質焼結体が提唱されている(特
開昭60−16879号、特開昭60−21763号等)。 ここで、これら従来の多孔質焼結体の気孔形態
等は、周囲骨との親和性や機械的強度を高めるこ
とに視点をおいたものであり、これらの点におい
てはかなりの評価を与えることのできるものであ
るが、骨補填材として多孔質焼結体を考えた場
合、その加工性も重要な要素の1つであり、この
点においては、さらに改良の余地のあるものであ
つた。すなわち、骨補填材のインプラント手術に
際しては、術前、術中における細部のトリミング
は必須のものであり、リン酸カルシウム系セラミ
ツクスはセラミツクスの中では比較的加工しやす
い材料で、ダイアモンドバー、ダイアモンドデイ
スク等を用いれば研削、切断加工は可能であるも
のの、大きな領域のトリミングに関しては、その
困難さはいなめないという問題点が生じていた。 「発明の目的」 本発明の目的は、生体親和性に優れ、かつ、よ
り加工性に優れたリン酸カルシウム系多孔質骨補
填材を提供することにある。 「発明の構成」 上記の目的は、平均孔径0.01〜2000μmの連通
気孔を有し、かつ、平均孔径0.01〜30μmの独立
気孔を有することを特徴とするリン酸カルシウム
系多孔質骨補填材により達成される。 本発明者らは、先に、生体内に埋入された骨補
填材に対する異物反応の1つであるカプセル反応
は、骨補填材に付着したマクロフアージや破骨細
胞などの貧食細胞がこれを異物と判断するために
生じるものであり、貧食細胞が付着している部位
において体液が流通している場合には貧食細胞に
よつて異物と判断されることがないという知見か
ら、カプセル反応を起こさず新生骨の石灰化を促
進する優れた骨補填材として、連通気孔、特に
0.01〜50μmの連通気孔を有する骨補填材を見出
した。さて、このような連通気孔を有する骨補填
材に関し、さらに術時のトリミングなどの加工性
を考慮した場合、連通気孔の気孔率を上げること
によつて機械的強度を下げて加工性を高めること
が可能であるが、同時に気孔径も大きくなつてし
まい加工面における骨補填材の連続性が少なくな
りもろくくずれやすくなり、骨補填材として不適
なものとなつてしまう。そこで本発明者らはさら
に鋭意研究の結果、上記のごとき連通気孔を有す
る骨補填材に、細かい独立気孔をさらに付与する
ことによつて、骨補填材の連続性を維持し、平均
気孔径を上げることなく加工性のみを改善できる
ことを見出し、本発明を完成するに至つたもので
ある。 なお、本発明の骨補填材において、連通気孔の
平均孔径は、カプセル反応を防止するのに効果的
であるとして上記した0.01〜50μmの範囲に限定
されるものではない。すなわち、このような範囲
の孔径は、骨補填材が顆粒等の比較的小さなもの
である場合には特に好ましいものであるが、体積
の大きな骨補填材においては、このような範囲の
孔径を有する連通気孔があつても体液の流通性は
悪く、また骨形成の場もあまりなく新生骨との複
合化も遅れることになることが判明し、一般的に
は、平均孔径が0.01〜2000μmの範囲の連続気孔
であれば骨形成の場を提供すると同時にカプセル
反応防止も達成されることが明らかになつたもの
である。 本発明の骨補填材において、独立気孔の平均孔
径は、0.01〜30μm、より望ましくは0.01〜20μm
とされる。すなわち、0.01μm未満の孔径は、不
連続な独立気孔として形成することが困難であ
り、一方30μmを超える孔径では強度が低下する
虞れがあるためである。 本発明の好ましい態様においては、連通気孔と
独立気孔とを合せた全体の気孔率は、5〜75%と
することが好ましい。全体の気孔率が5%未満で
は加工性が低下し、全体の気孔率が75%を超える
と強度が低下してくずれやすくなるためである。 また、全体の気孔に対する連通気孔の割合は、
10.0〜99.6%とすることが好ましい。連通気孔の
割合が10.0%よりも少ない場合には体液の流通が
充分になされず、連通気孔の割合が99.6%を超え
ると独立気孔の効果がほとんどあらわれない。 本発明の骨充填材を達成するリン酸カルシウム
系材料としては、公知の各種のものが使用可能で
あるが、特にハイドロオキシアパタイト、三リン
酸カルシウムなどが好ましい。 本発明の骨補填材を製造するには、連通気孔を
有する骨補填材の製造方法として公知である方法
に若干の変更を加えて行なえばよい。連通気孔を
有する骨補填材の製造方法としては、代表的に
は、以下の4つの方法がある。すなわち第1の方
法としてはリン酸カルシウム系原料スラリーに過
酸化水素や卵白アルブミン等の発泡剤を加え発
泡、乾燥させて、900〜1400℃で焼成する方法、
第2の方法としては、連通気孔を有する熱分解性
物質にリン酸カルシウム系原料スラリーを付着さ
せて900〜1400℃で焼成する方法、第3の方法と
してはリン酸カルシウム系原料粉末に熱分解性物
質のビーズを加えプレス等で成形し900〜1400℃
で焼成する方法、さらに第4の方法としては、リ
ン酸カルシウム系原料粉末を転動造粒機等で造粒
し、得られた造粒体をポリビニルアルコール等の
有機バインダーで結合し、必要に応じて900〜
1400℃で焼成する方法が挙げられる。 本発明の骨補填材における独立気孔は、上記の
4つの方法で製造するどの骨補填材にも適用でき
るが、製造コストや生産性を考慮すると第1の方
法、すなわちリン酸カルシウム系原料スラリーを
発泡・乾燥して得られる骨補填材に付与すること
が好ましい。この第1の方法において、不連続気
孔を付与するための一態様を挙げると、発泡剤に
より発泡されるリン酸カルシウム系スラリーに熱
分解性物質のビーズを添加することである。例え
ばリン酸カルシウム系原料を含有するスラリー
に、リン酸カルシウム系原料に対して0.1〜30重
量%の量の平均粒径0.02〜40μm、より好ましく
は0.02〜30μmの熱分解性ビーズを添加し、この
混合スラリーに過酸化水素水、卵白アルブミン等
の発泡剤を加え発泡、乾燥、焼成することにより
連通気孔と独立気孔をあわせもつ所望の骨補填材
を得ることができる。なお、添加する熱分解性物
質の量が、リン酸カルシウム系原料に対して0.1
重量%未満では、得られる骨補填材の加工性を改
善することはできず、一方、30重量%を超えると
得られる骨補填材の強度が低下して実用性がなく
なつてしまう。また、添加する熱分解性物質とし
ては、ポリスチレン、ポリビニルアルコール、ポ
リプロピレンなどの合成樹脂性ビーズや、セルロ
ース、動植物繊維などを細かく切断したものなど
が採用できる。さらに、焼成条件は、特に限定さ
れないが、例えば室温から600℃程度まで2〜50
℃/時間で昇温して熱分解性物質を焼失させた
後、さらに900〜1400℃まで100〜200℃/時間で
昇温し、昇温後その温度で3〜8時間程度保持す
ることにより、目的とするリン酸カルシウム系多
孔質該骨補填材を得ることができる。 本発明による骨補填材を使用するに際しては、
例えばオートクレーブ処理等により滅菌した後、
純水あるいは生理食塩水の注水下で滅菌済のダイ
アモンドバー等で加工を施して所定形状となし、
骨欠損部に充填すればよい。 「発明の実施例」 実施例 1 公知の方法で湿式合成した粒径1〜20μmのハ
イドロオキシアパタイト粒末100g、平均孔径6μ
mのポリスチレンビーズ(住友化学(株)製、フアイ
ンパール)5g、過酸化水素水(和光純薬(株)製、
濃度30%)5gおよび純水160gをポリエチレン
袋に入れ、手でよく混合した。得られたスラリー
を200c.c.のガラスビーカーに移し、次に循環式恒
温乾燥機内に入れ、110℃で24時間放置し、発泡、
乾燥させた。この後、乾燥体をビーカーから取出
して電気炉内に移し、室温から600℃まで50℃/
時間で昇温し、続いて600℃から1200℃まで100
℃/時間で昇温し、さらに1200℃で3時間保持し
たのち炉冷にて室温まで降温した。得られたハイ
ドロキシアパタイトの多孔質焼結体を直方体に切
出し目的とする骨補填材を得た。得られた骨補填
材の特性を第1表に示す。
"Technical Field" The present invention is used in dentistry, oral surgery, orthopedics, otorhinolaryngology, etc. to fill in bone defects caused by surgery for diseases such as accidental fractures, bone tumors, and alveolar pyorrhea. The present invention relates to a calcium phosphate-based porous bone filling material. "Prior Art and its Problems" Many research and developments have been conducted since ancient times to replace and compensate for missing biological hard tissues. Classifying these prosthetic materials from the viewpoint of materials, they are broadly divided into those using natural bone and those using artificial materials. Substitute materials using natural bone include autologous bone that uses the patient's normal bone, allogeneic bone that uses the normal bone of a close relative or cryopreserved bone of a deceased person, and bone from cows, pigs, etc. There are different types of bones that utilize However, although autologous bone does not cause rejection after transplantation, it requires harvesting bone tissue from the patient's normal site, which places a heavy burden on the patient, and it is not possible to harvest a sufficient amount of bone tissue. However, even when using the bone of a close relative who is less likely to experience rejection, the burden is not reduced because surgery on another living body is required to harvest the bone tissue, and there is a risk of rejection. is also unavoidable. Furthermore, preserved bones of deceased persons or foreign bones such as calf bones from which proteins have been removed have the fatal drawback of strong foreign body reactions in vivo. On the other hand, artificial filling materials include metals such as cobalt-chromium, titanium, and stainless steel, ceramics such as alumina, zirconia, tricalcium phosphate, hydroxyapatite, and calcium phosphate glass, and polymer materials such as silicone resin. , carbon, etc. are used. Among these, ceramics are stable in vivo and have excellent biocompatibility, so their application as medical materials has been attempted and put into practical use in recent years. Ceramics can be further classified as medical materials, especially bone filling materials, into bioinert and bioactive materials. Bioinertness means that the implanted medical material does not cause any reaction with the surrounding hard tissue, and bioactivity means that the implanted medical material has a direct bond with new bone. . Examples of bioinert materials include alumina and zirconia, while examples of bioactive materials include calcium phosphate materials such as calcium triphosphate, hydroxyapatite, and calcium phosphate glasses. Recently, calcium phosphate sintered bodies, especially hydroxyapatite sintered bodies, which are bioactive ceramics, have been evaluated for their excellent biocompatibility and have been commercialized as artificial tooth roots. Furthermore, bone grafting materials have already been developed in which hydroxyapatite sintered bodies have a porous structure, improve body fluid circulation, cause calcification in the pores, and combine with new bone. This calcium phosphate-based porous bone grafting material is one of the materials that is currently attracting the most attention as a bone grafting material, and various porous sintered bodies with characteristics in their pore morphology have been proposed (Japanese Patent Laid-Open No. 1989-1999). -16879, JP-A-60-21763, etc.). Here, the pore morphology, etc. of these conventional porous sintered bodies was designed with the aim of increasing compatibility with surrounding bone and mechanical strength, and in these respects, considerable evaluation cannot be given. However, when considering a porous sintered body as a bone grafting material, its workability is one of the important factors, and there is still room for further improvement in this respect. In other words, when performing bone graft implant surgery, detailed trimming is essential before and during surgery, and calcium phosphate ceramics are relatively easy to process among ceramics, and diamond burs, diamond disks, etc. are used to process them. Although grinding and cutting are possible, the difficulty of trimming large areas has arisen. "Object of the Invention" An object of the present invention is to provide a calcium phosphate-based porous bone grafting material that has excellent biocompatibility and better processability. "Structure of the Invention" The above object is achieved by a calcium phosphate-based porous bone substitute material characterized by having continuous pores with an average pore diameter of 0.01 to 2000 μm and independent pores with an average pore diameter of 0.01 to 30 μm. . The present inventors previously discovered that the capsule reaction, which is one of the foreign body reactions to bone grafting materials implanted in living bodies, is caused by macrophages and phagocytic cells such as osteoclasts attached to bone grafting materials. Capsule reaction As an excellent bone substitute material that promotes mineralization of new bone without causing
We have found a bone grafting material that has continuous pores of 0.01 to 50 μm. Now, regarding a bone graft material having such a continuous hole, when considering workability such as trimming during surgery, it is possible to increase the porosity of the continuous hole to lower mechanical strength and improve workability. However, at the same time, the pore diameter becomes large and the continuity of the bone grafting material on the machined surface decreases, making it brittle and easily crumbling, making it unsuitable as a bone grafting material. Therefore, as a result of further intensive research, the present inventors have found that by adding fine independent pores to the bone grafting material having continuous pores as described above, the continuity of the bone grafting material can be maintained and the average pore diameter can be increased. It was discovered that only the processability could be improved without increasing the processability, and the present invention was completed. In addition, in the bone grafting material of the present invention, the average pore diameter of the continuous pores is not limited to the range of 0.01 to 50 μm described above as being effective in preventing capsule reactions. In other words, a pore size in this range is particularly preferable when the bone grafting material is relatively small such as granules, but a bone grafting material with a large volume has a pore size in this range. It has been found that even if there are communicating pores, the circulation of body fluids is poor, and there is not much space for bone formation, and the synthesis with new bone is delayed.In general, the average pore diameter is in the range of 0.01 to 2000 μm. It has become clear that continuous pores provide a site for bone formation and at the same time prevent capsule reaction. In the bone grafting material of the present invention, the average pore diameter of the closed pores is 0.01 to 30 μm, more preferably 0.01 to 20 μm.
It is said that That is, if the pore size is less than 0.01 μm, it is difficult to form discontinuous independent pores, whereas if the pore size is more than 30 μm, the strength may decrease. In a preferred embodiment of the present invention, the total porosity of the continuous pores and independent pores is preferably 5 to 75%. This is because if the total porosity is less than 5%, the workability will decrease, and if the total porosity exceeds 75%, the strength will decrease and it will be easy to collapse. In addition, the ratio of continuous pores to the total pores is
It is preferably 10.0 to 99.6%. If the proportion of continuous pores is less than 10.0%, sufficient circulation of body fluids will not be achieved, and if the proportion of continuous pores exceeds 99.6%, the effect of independent pores will hardly appear. As the calcium phosphate material for achieving the bone filling material of the present invention, various known materials can be used, but hydroxyapatite, calcium triphosphate, etc. are particularly preferred. In order to manufacture the bone grafting material of the present invention, a known method for manufacturing a bone grafting material having communicating holes may be carried out with some modifications. There are typically the following four methods for manufacturing bone grafting materials having continuous holes. That is, the first method is a method in which a foaming agent such as hydrogen peroxide or egg albumin is added to a calcium phosphate-based raw material slurry, foamed, dried, and baked at 900 to 1400 ° C.
The second method is to attach a calcium phosphate-based raw material slurry to a thermally decomposable material having interconnected pores and fire it at 900 to 1400°C.The third method is to attach beads of a thermally decomposable material to a calcium phosphate-based raw material powder. and molded with a press etc. at 900~1400℃
A fourth method is to granulate the calcium phosphate-based raw material powder using a rolling granulator, bind the resulting granules with an organic binder such as polyvinyl alcohol, and granulate as necessary. 900~
One example is a method of firing at 1400°C. The closed pores in the bone grafting material of the present invention can be applied to any of the bone grafting materials produced by the above four methods, but in consideration of manufacturing cost and productivity, the first method is used, that is, by foaming a calcium phosphate-based raw material slurry. It is preferable to apply it to a bone grafting material obtained by drying. In this first method, one embodiment for providing discontinuous pores is to add beads of a pyrolyzable material to a calcium phosphate slurry foamed by a foaming agent. For example, pyrolyzable beads with an average particle diameter of 0.02 to 40 μm, more preferably 0.02 to 30 μm, in an amount of 0.1 to 30% by weight based on the calcium phosphate raw material are added to a slurry containing a calcium phosphate raw material, and this mixed slurry is By adding a foaming agent such as hydrogen peroxide or egg albumin, foaming, drying, and baking, a desired bone grafting material having both open and closed pores can be obtained. In addition, the amount of thermally decomposable substance added is 0.1
If it is less than 30% by weight, the processability of the resulting bone grafting material cannot be improved, while if it exceeds 30% by weight, the strength of the resulting bone grafting material will decrease, making it impractical. Further, as the thermally decomposable substance to be added, synthetic resin beads such as polystyrene, polyvinyl alcohol, and polypropylene, finely cut pieces of cellulose, animal and vegetable fibers, etc. can be used. Furthermore, the firing conditions are not particularly limited, but for example, from room temperature to about 600°C for 2 to 50°C.
By increasing the temperature at a rate of ℃/hour to burn out the pyrolyzable substances, then further increasing the temperature to 900 to 1400℃ at a rate of 100 to 200℃/hour, and then holding the temperature at that temperature for about 3 to 8 hours. , the desired porous calcium phosphate bone grafting material can be obtained. When using the bone substitute material according to the present invention,
For example, after sterilization by autoclaving,
Process it with a sterilized diamond bur or the like while pouring pure water or physiological saline into the desired shape.
All you have to do is fill the bone defect. "Embodiments of the Invention" Example 1 100 g of hydroxyapatite particles with a particle size of 1 to 20 μm, wet-synthesized by a known method, and an average pore size of 6 μm.
5 g of polystyrene beads (manufactured by Sumitomo Chemical Co., Ltd., Fine Pearl), hydrogen peroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.,
(30% concentration) and 160 g of pure water were placed in a polyethylene bag and mixed well by hand. The obtained slurry was transferred to a 200c.c. glass beaker, then placed in a circulating constant temperature dryer and left at 110℃ for 24 hours to foam and
Dry. After this, the dried body was taken out from the beaker and transferred to an electric furnace, and heated at 50°C/100°C from room temperature to 600°C.
Temperature rises in 100 ℃, followed by 100 ℃ from 600℃ to 1200℃
The temperature was raised at a rate of 1,200°C/hour, and then held at 1200°C for 3 hours, and then cooled down to room temperature by furnace cooling. The obtained porous sintered body of hydroxyapatite was cut into a rectangular parallelepiped to obtain a bone grafting material. Table 1 shows the properties of the obtained bone grafting material.

【表】 「発明の効果」 以上説明したように、本発明によれば、平均孔
径0.01〜2000μmの連通気孔を有し、かつ、平均
孔径0.01〜30μmの独立気孔を有するリン酸カル
シウム系多孔質骨補填材からなるので、必要な機
械的強度を有しながらもインプラント手術に際し
て術前、術中におけるトリミング加工が容易に行
なえ、また、骨欠損部に補填され生体内に埋入さ
れても、マクロフアージ等の貧食細胞が付着した
部位における体液流通がなされるゆえ、貧食細胞
による異物判断が起こらずカプセル反応を効果的
に防止できると同時に、効果的に骨形成の場を提
供して新生骨との複合化を進めることのできるも
のであり、優れた加工性と生体適合性を兼ね備え
た骨補填材を提供することができる。
[Table] "Effects of the Invention" As explained above, according to the present invention, a calcium phosphate-based porous bone substitute having continuous pores with an average pore diameter of 0.01 to 2000 μm and independent pores with an average pore diameter of 0.01 to 30 μm Because it is made of a material that has the necessary mechanical strength, it can be easily trimmed before and during implant surgery, and even if it is inserted into a living body after filling in a bone defect, it will not cause macrophages, etc. Because body fluids circulate at the site where the oligophages have attached, the capsule reaction can be effectively prevented without causing the oligophages to judge the foreign body. It is possible to proceed with compounding, and it is possible to provide a bone substitute material that has both excellent processability and biocompatibility.

【特許請求の範囲】[Claims]

1 炭素0.08%以下、ケイ素1.00%以下、マンガ
ン2.00%以下、リン0.04%以下、硫黄0.03%以下、
ニツケル13%から15%、クロム15%から17%の各
成分を含む特殊鋼を用いた非磁性を特徴とする金
属製カシメキヤツプ。
1 Carbon 0.08% or less, silicon 1.00% or less, manganese 2.00% or less, phosphorus 0.04% or less, sulfur 0.03% or less,
A non-magnetic metal cap made of special steel containing 13% to 15% nickel and 15% to 17% chromium.

JP61271059A 1986-11-14 1986-11-14 Calcium phosphate type porous bone filler Granted JPS63125259A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61271059A JPS63125259A (en) 1986-11-14 1986-11-14 Calcium phosphate type porous bone filler
EP87116795A EP0267624A3 (en) 1986-11-14 1987-11-13 Porous calcium phosphate based bone prosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271059A JPS63125259A (en) 1986-11-14 1986-11-14 Calcium phosphate type porous bone filler

Publications (2)

Publication Number Publication Date
JPS63125259A JPS63125259A (en) 1988-05-28
JPH0149501B2 true JPH0149501B2 (en) 1989-10-25

Family

ID=17494828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271059A Granted JPS63125259A (en) 1986-11-14 1986-11-14 Calcium phosphate type porous bone filler

Country Status (2)

Country Link
EP (1) EP0267624A3 (en)
JP (1) JPS63125259A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706467B2 (en) * 1988-05-27 1998-01-28 住友大阪セメント株式会社 Artificial bone structure for bone transplantation
JP2510044B2 (en) * 1989-12-28 1996-06-26 東芝セラミックス株式会社 Ceramic porous body
JPH0440961A (en) * 1990-06-06 1992-02-12 Mitsubishi Materials Corp Filler for bone omission part, bone cavity part, and bone absorption part
SE469653B (en) * 1992-01-13 1993-08-16 Lucocer Ab POROEST IMPLANT
WO1995032008A1 (en) * 1994-05-24 1995-11-30 Implico B.V. A biomaterial and bone implant for bone repair and replacement
AU766735B2 (en) 1998-09-15 2003-10-23 Isotis N.V. Osteoinduction
SE515227C2 (en) 1999-04-28 2001-07-02 Bruce Medical Ab Body for providing and growing bone and / or connective tissue and methods for making the body
US7094282B2 (en) 2000-07-13 2006-08-22 Calcitec, Inc. Calcium phosphate cement, use and preparation thereof
JP4358374B2 (en) 1999-08-10 2009-11-04 日本特殊陶業株式会社 Method for producing biological implant material
CA2387580A1 (en) * 1999-10-15 2001-04-26 Mount Sinai Hospital Synthetic substrate for tissue formation
JP2001129073A (en) * 1999-11-02 2001-05-15 Olympus Optical Co Ltd Bone prosthesis material and tool for implanting bone prosthesis material
DE29922585U1 (en) * 1999-12-22 2000-07-20 Biovision Gmbh Temporary bone defect filler
US6949251B2 (en) 2001-03-02 2005-09-27 Stryker Corporation Porous β-tricalcium phosphate granules for regeneration of bone tissue
EP1727570A1 (en) * 2004-02-19 2006-12-06 Calcitec, Inc. Methods for preparing medical implants from calcium phosphate cement and medical implants
EP1829564A1 (en) * 2006-02-17 2007-09-05 Progentix B.V. i.o. Osteoinductive calcium phosphate
JP5201510B2 (en) 2006-02-17 2013-06-05 プロゲンティクス オーソバイオロジー ビー.ブイ. Osteoinducible calcium phosphate
JP4854024B2 (en) * 2006-04-04 2012-01-11 コバレントマテリアル株式会社 Porous material
CA2798710C (en) 2010-05-11 2019-08-27 Venkat R. Garigapati Organophosphorous, multivalent metal compounds, & polymer adhesive interpenetrating network compositions & methods
WO2012158527A2 (en) 2011-05-13 2012-11-22 Howmedica Osteonics Organophosphorous & multivalent metal compound compositions & methods
EP2529764A1 (en) 2011-05-31 2012-12-05 Curasan AG Biodegradable composite material
US9272072B1 (en) 2012-10-19 2016-03-01 Nuvasive, Inc. Osteoinductive bone graft substitute

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911845A (en) * 1982-07-14 1984-01-21 科学技術庁無機材質研究所長 Production of implant material for artificial tooth and bone
JPS6016879A (en) * 1983-07-09 1985-01-28 住友セメント株式会社 Porous ceramic material
JPS6018174A (en) * 1983-07-09 1985-01-30 住友セメント株式会社 New bone inducing method and ceramic material
JPS6179462A (en) * 1984-09-25 1986-04-23 ティーディーケイ株式会社 Porous artificial bone material
JPS61170471A (en) * 1985-01-25 1986-08-01 住友大阪セメント株式会社 Bone prosthetic molded body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929971A (en) * 1973-03-30 1975-12-30 Research Corp Porous biomaterials and method of making same
AT352867B (en) * 1976-05-12 1979-10-10 Battelle Institut E V BONE REPLACEMENT, BONE COMPOUND OR PROSTHESIS ANCHORING MATERIAL AND PROCESS FOR ITS PRODUCTION
JPS56166843A (en) * 1980-05-28 1981-12-22 Mitsubishi Mining & Cement Co Filler for bone broken section and void section
JPS577859A (en) * 1980-06-13 1982-01-16 Mitsubishi Mining & Cement Co Manufacture of calcium phosphate porous body
DK154260C (en) * 1981-02-20 1989-05-22 Mundipharma Gmbh PROCEDURE FOR THE MANUFACTURING OF A BONE IMPLANT OF FURNISHED TRICAL CUMPHOSPHATE, SPECIFICALLY FOR FILLING OF SPACES OR FOR COMPOSITION OF BONE PARTS AFTER FRACTURE.
NL8402158A (en) * 1983-07-09 1985-02-01 Sumitomo Cement Co POROUS CERAMIC MATERIAL AND METHOD FOR THE PREPARATION THEREOF.
US4629464A (en) * 1984-09-25 1986-12-16 Tdk Corporation Porous hydroxyapatite material for artificial bone substitute

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911845A (en) * 1982-07-14 1984-01-21 科学技術庁無機材質研究所長 Production of implant material for artificial tooth and bone
JPS6016879A (en) * 1983-07-09 1985-01-28 住友セメント株式会社 Porous ceramic material
JPS6018174A (en) * 1983-07-09 1985-01-30 住友セメント株式会社 New bone inducing method and ceramic material
JPS6179462A (en) * 1984-09-25 1986-04-23 ティーディーケイ株式会社 Porous artificial bone material
JPS61170471A (en) * 1985-01-25 1986-08-01 住友大阪セメント株式会社 Bone prosthetic molded body

Also Published As

Publication number Publication date
JPS63125259A (en) 1988-05-28
EP0267624A3 (en) 1989-08-30
EP0267624A2 (en) 1988-05-18

Similar Documents

Publication Publication Date Title
JPH0149501B2 (en)
Baino Bioactive glasses–when glass science and technology meet regenerative medicine
EP0987032B1 (en) Ceramic material for osteoinduction comprising micropores in the surface of macropores
Haugen et al. Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model
Costantino et al. Hydroxyapatite cement: I. Basic chemistry and histologic properties
Hanker et al. Biomaterials and biomedical devices
KR100974781B1 (en) Composite Surgical Implant Made from Macroporous Synthetic Resin and Bioglass Particles
JPS6330020B2 (en)
JPH0156777B2 (en)
ES2608043T3 (en) Cortical Wall Scaffolding
JP2007508075A (en) Composite biomaterials for bone grafts
Sa et al. Bone response to porous poly (methyl methacrylate) cement loaded with hydroxyapatite particles in a rabbit mandibular model
Hoornaert et al. Vertical bone regeneration with synthetic biomimetic calcium phosphate onto the calvaria of rats
KR101379894B1 (en) Bone graft materials using transgenic pig bone, method of preparing the same, and ceramic materials for biomedical application comprising the same, and
RU2349289C1 (en) Composition, bioactive microporous material imitating natural osseous structures, and method of manufacturing
JPS6179464A (en) Composition for artificial bone material
Li et al. Reaction of hydroxyapatite-sol in bone marrow
JPH0575427B2 (en)
CN104815352A (en) Magnesium sodium phosphate composite material and preparation method and application thereof
Swain et al. Bioceramic coating for tissue engineering applications
JPS6179463A (en) Composite apatite artificial bone material
JPH047227B2 (en)
JPS63294864A (en) Preparation of artificial bone material
JPH0414584B2 (en)
WO2005023325A1 (en) Structural body constituted of biocompatible material impregnated with fine bone dust and process for producing the same