JPS62224356A - Living body hard tissue prosthetic material and its production - Google Patents

Living body hard tissue prosthetic material and its production

Info

Publication number
JPS62224356A
JPS62224356A JP61068202A JP6820286A JPS62224356A JP S62224356 A JPS62224356 A JP S62224356A JP 61068202 A JP61068202 A JP 61068202A JP 6820286 A JP6820286 A JP 6820286A JP S62224356 A JPS62224356 A JP S62224356A
Authority
JP
Japan
Prior art keywords
hard tissue
synthetic hydroxyapatite
bone
repair material
hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068202A
Other languages
Japanese (ja)
Other versions
JPH0139786B2 (en
Inventor
里神 尚邦
永井 教之
信之 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Chemical Industrial Co Ltd
Original Assignee
Taihei Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Chemical Industrial Co Ltd filed Critical Taihei Chemical Industrial Co Ltd
Priority to JP61068202A priority Critical patent/JPS62224356A/en
Publication of JPS62224356A publication Critical patent/JPS62224356A/en
Publication of JPH0139786B2 publication Critical patent/JPH0139786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、たとえば歯科治療において歯槽骨、顎骨な
どの生体硬組織の欠損部や抜歯窩を補修するのに用いら
れる生体硬組織補修材料およびその製造法に関するもの
である°。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a living body hard tissue repair material used for repairing a defect in living body hard tissue such as an alveolar bone or a jawbone or a tooth extraction socket in dental treatment, and the production thereof. ° It is about the law.

発明の背景 歯科治療においては、骨腫瘍や骨覇胞の除去さらには歯
槽膿漏などによって歯槽骨や顎骨に欠損をきたしたり、
歯牙そのものを抜歯することによって抜歯窩を形成せし
めたりすることがよくある。従来、このような場合は、
骨欠損部や抜歯窩を放置して自然治癒に委ねたり、患者
自身の自家骨の海綿組織を採取してこれで骨欠損部や抜
歯窩を補修するか、または自家前以外の同種骨ないし異
種骨を移植したり、さらには人工の生体材料を使用した
りする種々の方法が検討されて来たが、これらはいずれ
も克服しがたい多くの問題を有しており、また適応症が
限られていて、現在まだ実用段階に至っていない。
BACKGROUND OF THE INVENTION In dental treatment, removal of bone tumors and bone cysts, as well as defects in the alveolar bone and jawbone due to alveolar pyorrhea, etc.
Often, an extraction socket is created by extracting the tooth itself. Traditionally, in such cases,
Either the bone defect or tooth extraction socket is left alone and allowed to heal naturally, the cancellous tissue of the patient's own autologous bone is harvested and used to repair the bone defect or tooth extraction socket, or allogeneic bone other than autologous or xenogeneic bone is used. Various methods of bone grafting and even the use of artificial biomaterials have been investigated, but these all have many problems that are difficult to overcome and have limited indications. However, it has not yet reached the practical stage.

近年、示性式Cam  (PO4)n  (OH)(た
だし、1.4<m/n<1.7)で示される合成カルシ
ウムハイドロキシアパタイト(この明細書全体を通して
これを「合成水酸アパタイト」と称する)が生体との親
和性に富む点に注目して、これを人工骨ないし人工歯根
の材料として臨床的に応用する研究がなされ、多くの論
文が発表されている(たとえば株式会社産業技術センタ
ー発行「セラミックス材料技術集成」1030〜103
5頁)。
In recent years, synthetic calcium hydroxyapatite (hereinafter referred to as "synthetic hydroxyapatite" throughout this specification) has the formula Cam (PO4)n (OH) (1.4<m/n<1.7). Focusing on its high compatibility with living organisms, research has been conducted on the clinical application of this material as a material for artificial bones or artificial tooth roots, and many papers have been published. Published "Ceramics Materials Technology Collection" 1030-103
(page 5).

人工の生体材料として合成水酸アパタイトを用いる場合
、一般的な生体材料としての条件のほかに、インブラン
ト後その周囲に骨組織の速やかな再生を可能ならしめる
性質を有することが必要である。骨の速やかな再生のた
めには、インブラントした合成水酸アパタイト製の生体
材料の周囲に骨芽細胞を積極的に分化させて生体材料に
誘導してやればよく、骨芽細胞の分化促進因子の1つに
単球などの骨髄系細胞から分泌される液性因子があり、
これらが共同して骨形成に関与していることが知られて
いる。
When using synthetic hydroxyapatite as an artificial biomaterial, in addition to the requirements for a general biomaterial, it must also have properties that enable rapid regeneration of bone tissue around it after implantation. In order to rapidly regenerate bone, it is sufficient to actively differentiate osteoblasts around the imbued biomaterial made of synthetic hydroxyapatite and guide them to the biomaterial. One type of factor is humoral factors secreted from myeloid cells such as monocytes.
It is known that these are jointly involved in bone formation.

従来技術およびその問題点 これまでの文献によれば、生体材料として合成水酸アパ
タイトを用いる従来の研究においては、生体の異物排除
作用を克服するために、合成水酸アパタイト粒子を高温
で焼結して粒子の表面積を増大させることにより骨芽細
胞を豊富に分化させて単位時間当りの骨形成率を高める
ことに主眼が置かれていた。そして生体硬組織補修材料
の多くは、上記のようにして得られた合成水酸アパタイ
ト粒子の焼結体を主成分とし、ついでこれを成形後10
00〜1300℃の温度範囲で焼成して得られたもので
あった。
Prior art and its problemsAccording to previous literature, in conventional research using synthetic hydroxyapatite as a biomaterial, synthetic hydroxyapatite particles were sintered at high temperatures in order to overcome the biological body's ability to eliminate foreign substances. The main focus has been on increasing the bone formation rate per unit time by increasing the surface area of the particles, thereby enriching the differentiation of osteoblasts. Many of the biological hard tissue repair materials mainly contain sintered bodies of synthetic hydroxyapatite particles obtained as described above, which are then molded for 10 minutes.
It was obtained by firing at a temperature range of 00 to 1300°C.

しかしながら、このようにして得られた補修材料は、合
成水酸アパタイト粒子の表面が焼結によってセラミック
化されたものであり、そのため体液に対する補修材料の
溶解性が全くないうえに、表面積が縮小されていた。し
たがってこのようにセラミック化された合成水酸アパタ
イト焼結体を生体硬組織の補修材料として用いると、そ
の周囲にマクロファージを誘導するとかできず、骨芽細
胞の分化も低調であった。そのため施術後その周囲に骨
組織が再生するまでに数カ月以上もの長い期間が必要で
あり、この期間内に同焼結体よりなる補修材料が細菌に
にる疾患の感染や生体側からの異物排除作用を受け、新
生骨の生成が速やかに進行しにくい状況があった。
However, in the repair material obtained in this way, the surface of the synthetic hydroxyapatite particles is made into a ceramic by sintering, so the repair material has no solubility in body fluids and has a reduced surface area. was. Therefore, when the ceramized synthetic hydroxyapatite sintered body was used as a repair material for biological hard tissue, macrophages could not be induced around it, and osteoblast differentiation was also slow. Therefore, after the procedure, a long period of several months or more is required for the bone tissue to regenerate around the area, and during this period, the repair material made of the sintered body can become infected with bacteria and eliminate foreign substances from the living body. In some cases, it was difficult for the generation of new bone to progress rapidly due to the effects of the drug.

この発明は、上記のような骨芽細胞の分化機構と合成水
酸アパタイトの体液への溶解性の相互作用を考慮してな
されたものであり、生体側の異物除去作用を惹起するこ
となく周囲に速やかに新生骨を形成せしめて、生体硬組
織と融合一体化することができ、また生体硬組織の如何
なる形状の欠損部や@歯高に対しても適用できてこれら
を完全に補修でき、しかも工業的にも容易に生産できて
コスト的にも申し分のない生体硬組織補修材料およびそ
の製造法を提供することを目的とする。
This invention was made in consideration of the interaction between the differentiation mechanism of osteoblasts and the solubility of synthetic hydroxyapatite in body fluids, as described above, and allows for the removal of foreign substances from the surrounding body without causing a foreign body removal action on the living body side. It can quickly form new bone and integrate it with living hard tissue, and it can also be applied to any shape of defect in living hard tissue or tooth height, and can completely repair them. Moreover, it is an object of the present invention to provide a biological hard tissue repair material that can be easily produced industrially and is satisfactory in terms of cost, and a method for manufacturing the same.

問題点の解決手段 この発明による生体硬組織補修材料は、一般式〇am(
PO4)n (OH)(ただし、1゜4<m/n<1.
7)なる組成を有する合成水酸アパタイトよりなる粉状
物ないしこれから成形した成形物の焼成体の表面に、C
ap  (PO4)Q  (OH)(ただし、1.4<
I)/(1<1゜7)なる組成を有する非焼成の合成水
酸アパタイトよりなる被覆層が形成されていることを特
徴とする。
Means for Solving the Problems The biological hard tissue repair material according to the present invention has the general formula 〇am(
PO4)n (OH) (1°4<m/n<1.
C.
ap (PO4)Q (OH) (However, 1.4<
A coating layer made of unfired synthetic hydroxyapatite having a composition of I)/(1<1°7) is formed.

またこの発明による補修材料の製造法は、一般式〇am
  (PO4)n  (OH)(ただし、1゜4<m/
n<1.7)なる組成を有する合成水酸アパタイトより
なる粉状物ないしこれから成形した成形物の焼成体に、
リン酸基を結合させ、ついでリン酸基にカルシウムイオ
ンを反応させて、上記焼成体の表面に一般式〇at)(
PO4)Q(OH)(ただし、1.4<I)/Q <1
.7>なる組成を有する非焼成の合成水酸アパタイトよ
りなる被覆層を形成することを特徴とする。
Furthermore, the method for manufacturing the repair material according to the present invention is based on the general formula 〇am
(PO4)n (OH) (However, 1゜4<m/
n < 1.7), to the fired body of a powder or a molded product formed from the powder,
By bonding phosphoric acid groups and then reacting calcium ions with the phosphoric acid groups, the general formula 〇at)(
PO4)Q(OH) (1.4<I)/Q<1
.. The present invention is characterized in that a coating layer made of unfired synthetic hydroxyapatite having a composition of 7> is formed.

この発明において、焼成体を構成するための合成水酸ア
パタイトは、湿式合成法、乾式合成法および水熱合成法
のいずれの方法によって製造されたものでもよい。
In this invention, the synthetic hydroxyapatite for constituting the fired body may be produced by any of the wet synthesis method, dry synthesis method, and hydrothermal synthesis method.

合成水酸アパタイトよりなる成形物の焼成体は、圧縮成
形機その他の通常の成形装置を用いて、合成水酸アパタ
イトの粉状物を常法によって顆粒状、円柱ないし角柱状
、板状、円錐ないし角錐状などに成形し、ついで100
0〜1300℃の温度範囲で焼成を行なうことにより得
たものである。
The fired body of the molded product made of synthetic hydroxyapatite is produced by converting powdered synthetic hydroxyapatite into granules, cylinders or prisms, plates, or cones by a conventional method using a compression molding machine or other ordinary molding equipment. It is formed into a shape such as a pyramid or a pyramid, and then 100%
It was obtained by firing at a temperature range of 0 to 1300°C.

合成水酸アパタイトの被覆層は、合成水酸アパタイト焼
成体をリン酸ないしその塩の溶液で処理し、ついでカル
シウムないしその塩の溶液で処理し、処理品を100〜
400℃、好ましくは約200℃の温度で乾燥すること
により形成したものである。こうして形成された被覆層
は、一般式Cap (PO4)Q  (OH)なる組織
を有する非焼成の合成水酸アパタイトである。
The coating layer of synthetic hydroxyapatite is obtained by treating the fired synthetic hydroxyapatite body with a solution of phosphoric acid or its salt, and then treating it with a solution of calcium or its salt, so that the treated product has a
It is formed by drying at a temperature of 400°C, preferably about 200°C. The coating layer thus formed is an unfired synthetic hydroxyapatite having a structure of the general formula Cap (PO4)Q (OH).

そしてこの合成水酸アパタイトはX線回折解析から見て
、生体硬組織を構成する生体水酸アパタイトと同じく、
結晶構造的に非晶質のものである。
As seen from X-ray diffraction analysis, this synthetic hydroxyapatite is similar to biological hydroxyapatite that constitutes biological hard tissue.
It has an amorphous crystal structure.

作用および効果 この発明による生体硬組織の補修材料は、合成水酸アパ
タイトの粉状物ないし成形物の焼成体で構成された内部
体と、これの表面に形成された非焼成の合成水酸アパタ
イトの被覆層とよりなる二重構造をなすものである。
Actions and Effects The biological hard tissue repair material according to the present invention has an inner body composed of a fired body of powdered or molded synthetic hydroxyapatite, and an unfired synthetic hydroxyapatite formed on the surface of the inner body. It has a double structure consisting of a coating layer.

そして内部の焼成体は、焼成によりセラミック化されて
いるためX線造影性を発揮する。したがって施術後の状
況をX線で確認することができる。また焼成セラミック
化によって充填後の補修材料の機械的強度を増大するこ
とができる。
The internal fired body exhibits X-ray contrast properties because it is made into a ceramic by firing. Therefore, the situation after the treatment can be confirmed with X-rays. Furthermore, the mechanical strength of the repair material after filling can be increased by making it into a fired ceramic.

他方、被覆層を構成する合成水酸アパタイトは、生体硬
組織を構成する生体水酸アパタイトと同じく、X線回折
解析から見て非晶質であるので、骨欠損部や抜歯窩に充
填された補修材料は、体液にやや溶解性を有し、その結
果その周囲にマクロファージを誘導し、骨芽細胞の分化
を促進させて速やかに新生骨を形成せしめることができ
る。そのためこの発明による補修材料は、生体硬組織を
構成する生体水酸アパタイトと徐々に融合一体化し、生
体側の異物排除作用は全く認められない。
On the other hand, the synthetic hydroxyapatite that makes up the covering layer is amorphous when viewed from X-ray diffraction analysis, just like the biological hydroxyapatite that makes up the hard tissues of living organisms, so it is difficult to fill bone defects or tooth extraction sockets. The repair material is slightly soluble in body fluids, and as a result, it can induce macrophages around it, promote differentiation of osteoblasts, and rapidly form new bone. Therefore, the repair material according to the present invention gradually fuses and integrates with the biological hydroxyapatite constituting the hard tissues of the living body, and does not have any effect of eliminating foreign substances on the living body side.

またこの発明による補修材料は粉状物ないしこれから成
形された顆粒状、柱状、板状、錐状など様々の形状をな
すので、生体硬組織の如何なる形状の欠損部や抜歯窩に
対しても、これを適用することができる。
In addition, since the repair material according to the present invention is powder or molded into various shapes such as granules, columns, plates, cones, etc., it can be used for any shape of defective part or tooth extraction socket in biological hard tissue. This can be applied.

さらにこの発明による製造法は、特殊な装置や特殊な操
作を必要としないので、多大な費用および労力を費やす
必要がなく、コスト的に有利な製品を得ることができる
Furthermore, since the manufacturing method according to the present invention does not require special equipment or special operations, it is not necessary to spend a lot of money and labor, and it is possible to obtain a cost-effective product.

実  施  例 上記効果を実証するためにこの発明の実施例および使用
例を示す。
Examples Examples and usage examples of this invention will be shown to demonstrate the above effects.

実施例1(粉状物) a) 水酸化カルシウム1174gと蒸留水121とよ
りなる懸濁液を401の撹拌機付きステンレス鋼製反応
タンクに入れ、水を約15/追加した。ついで温度を5
5℃に保ち、撹拌下に30%リン酸液392(EJを滴
下し、撹拌をさらに2時間続けた。
Example 1 (Powder) a) A suspension consisting of 1174 g of calcium hydroxide and 121 g of distilled water was placed in a 401 stainless steel reaction tank equipped with a stirrer, and approximately 15 g of water was added. Then set the temperature to 5
While maintaining the temperature at 5°C, 30% phosphoric acid solution 392 (EJ) was added dropwise while stirring, and stirring was continued for an additional 2 hours.

得られた反応生成物を加圧濾過機で脱水処理し、脱水ケ
ーキをオーブンで温度190℃で2時間乾燥した後、粉
砕機で砕いた。こうして粒径100μm以下の粉状の合
成水酸アパタイト20120を得た。
The obtained reaction product was dehydrated using a pressure filter, and the dehydrated cake was dried in an oven at a temperature of 190° C. for 2 hours, and then crushed using a pulverizer. In this way, powdered synthetic hydroxyapatite 20120 with a particle size of 100 μm or less was obtained.

b) この粉状合成水酸アパタイトを250g取って温
度1250℃で2時間焼成し、粒径100μ以下の粉状
の焼成体243gを得た。
b) 250 g of this powdered synthetic hydroxyapatite was fired at a temperature of 1250° C. for 2 hours to obtain 243 g of a powdered fired body with a particle size of 100 μm or less.

C) この粉状焼成体を11のガラス製容器に入れ、2
%リン酸液を500gずつ添加して全体を1時間静置し
、粉状焼成体の表面にリン酸基を結合せしめた。ついで
水酸化カルシウムの1%水懸濁液を加えて、結合リンF
11にカルシウムイオンを反応させた。ついで脱水処理
後、脱水量を200℃で1時間乾燥した。
C) Place this powdered fired body in a glass container of 11,
% phosphoric acid solution was added at a time of 500 g and the whole was allowed to stand for 1 hour to bond phosphoric acid groups to the surface of the powdered fired product. Then, a 1% aqueous suspension of calcium hydroxide was added to dissolve the bound phosphorus F.
11 was reacted with calcium ions. After the dehydration treatment, the dehydrated product was dried at 200° C. for 1 hour.

こうして粉末焼成体の表面に非焼成の合成水酸アパタイ
トの被覆層を形成し、粒径100μm以下の粉状補修材
料を得た。
In this way, a coating layer of unfired synthetic hydroxyapatite was formed on the surface of the powder fired body to obtain a powdered repair material with a particle size of 100 μm or less.

実施例2(成形物) 実施例1の工程a)で得られた未焼成の粉状水酸アパタ
イトを1500(J取って、これに粘結剤としてポリビ
ニルアルコールの3%水溶液を50o添加して混合し、
得られた混合物から通常の圧縮成形機を用いて粒径0.
5〜1.0mll1の顆粒状成形物250g、直径2m
m長さ12mmの円柱状成形物2500、短辺5+++
n+長辺15mm厚さ2mmの矩形板状成形物250g
および底面直径5mm高さ10111!lの円錐状成形
物をそれぞれ得た。
Example 2 (Molded product) 1500 (J) of unfired powdered hydroxyapatite obtained in step a) of Example 1 was taken, and 50O of a 3% aqueous solution of polyvinyl alcohol was added as a binder. mix,
The resulting mixture was molded using a conventional compression molding machine to obtain particles with a particle size of 0.
250g of 5-1.0ml1 granular molding, diameter 2m
m Cylindrical molding 2500 with a length of 12 mm, short side 5+++
250 g of rectangular plate-shaped molded product with n+ long side 15 mm and thickness 2 mm
And bottom diameter 5mm height 10111! 1 of conical moldings were obtained in each case.

これら4種類の成形物を温度190℃で2時間乾燥復温
度127℃で2時間焼成し、セラミック化された成形焼
成体をそれぞれ24001237(J 、242gおよ
び240g得た。
These four types of molded products were dried at a temperature of 190° C. for 2 hours and fired at a temperature of 127° C. for 2 hours to obtain 24001237 (J), 242 g and 240 g of ceramicized molded and fired bodies, respectively.

こうして得られた成形焼成体についてそれぞれ実施例1
の工程C)と同じ操作を行ない、各焼成体の表面に非焼
成の合成水酸アパタイトの被覆層を形成し、顆粒状、円
柱状、板状および円錐状の成形補修材料を得た。
Example 1 for each shaped and fired body thus obtained
The same operation as in step C) was performed to form a coating layer of unfired synthetic hydroxyapatite on the surface of each fired body to obtain granular, cylindrical, plate-like, and conical shaped repair materials.

分析 実施例1および2で得られたこの発明による補修材料に
ついて、内部の焼成体と被覆層をなす非焼成体とをそれ
ぞれ取り、化学分析およびX線回折解析を行なった。
Regarding the repair materials according to the present invention obtained in Analysis Examples 1 and 2, the internal fired body and the unfired body forming the coating layer were taken and subjected to chemical analysis and X-ray diffraction analysis.

化学分析では両者とも化学式CO1o (P O4)a
  (OH)2で示される化学量論的構造を有する合成
アパタイトであることが確認された。
In chemical analysis, both have the chemical formula CO1o (P O4)a
It was confirmed that it is a synthetic apatite having a stoichiometric structure represented by (OH)2.

またX線回折解析では内部の焼成体は典型的なアパタイ
トの回折図形を示し、被覆層はX線回折解析的に非晶質
の回折図形を示した。
Further, in X-ray diffraction analysis, the internal fired body showed a typical apatite diffraction pattern, and the coating layer showed an amorphous diffraction pattern in X-ray diffraction analysis.

使用例1 実施例1で得られた粒径100μm以下の粉状補修材料
5gと、実施例2で得られた粒径0゜5〜1.Qmmの
顆粒状補修材料20(]とを混合した。混合物をオーブ
ン内で400℃で6時間加熱し、滅菌処理した。
Use Example 1 5 g of the powdered repair material with a particle size of 100 μm or less obtained in Example 1 and 5 g of a particle size of 0°5 to 1.0 μm obtained in Example 2. Qmm granular repair material 20 () was mixed. The mixture was heated in an oven at 400° C. for 6 hours and sterilized.

処理物を体重200gのウィスター系ラットの顎骨内に
充填し、経時的に観察を行なった。
The treated product was filled into the jawbone of a Wistar rat weighing 200 g and observed over time.

施術後3日〜1週間経過後、充填された材料の周囲に新
生骨が速やかに生成したことが認められ、4週間経過後
には同材料が顎骨と完全に融合一体化していることが認
められた。
Three days to one week after the treatment, it was observed that new bone quickly formed around the filled material, and after four weeks, it was observed that the material had completely fused into the jawbone. Ta.

使用例2 実施例2で得られた円柱状成形補修材料109と板状成
形補修材料100とを混合し、使用例1と同様に滅菌処
理し、処理物を生、後2年の成人の顎骨内に充填し、経
時的に観察を行なった。
Use Example 2 The cylindrical molded repair material 109 obtained in Example 2 and the plate-shaped molded repair material 100 were mixed, sterilized in the same manner as in Use Example 1, and the treated material was prepared into a 2-year-old adult jawbone. The cells were filled with water and observed over time.

施術後3日〜1!i4間経過後、充填された材料の周囲
に新生骨が速やかに生成したことが認められ、4週間経
過後には同材料が顎骨と完全に融合一体化していること
が認められた。
3 days to 1 after treatment! After 4 weeks, it was observed that new bone was rapidly generated around the filled material, and after 4 weeks, it was observed that the material was completely fused and integrated with the jawbone.

使用例3 実施例2で得られた円錐状成形補修材料20gを使用例
1と同様に滅菌処理し、処理品を生後2年の成人の犬歯
の抜歯窩に充填し、経時的に観察を行なった。
Use Example 3 20 g of the conical molded repair material obtained in Example 2 was sterilized in the same manner as in Use Example 1, and the treated product was filled into the extraction socket of a 2-year-old adult canine tooth, and observed over time. Ta.

施術後1〜2週間経過後、充填された材料の周囲に新生
骨が速やかに生成したことが認められ、151A間経過
後には、施術した抜歯窩の周囲の歯槽骨に何ら変化が起
っていないことが認められた。なお、通常、抜歯後の抜
歯窩をそのまま放置しておくと、抜歯窩の周囲の歯槽骨
が体液中に溶出して徐々に消滅し、これに伴って周囲の
健全であった骨が萎縮し咬合回復に悪影響が出る。
One to two weeks after the treatment, it was observed that new bone was rapidly generated around the filled material, and after 151A, no changes had occurred in the alveolar bone around the treated tooth extraction socket. It was acknowledged that there was no. Normally, if the tooth extraction socket is left as is after a tooth extraction, the alveolar bone around the tooth extraction socket will elute into body fluids and gradually disappear, causing the surrounding healthy bone to atrophy. This will have a negative impact on occlusal recovery.

以上 特許出願人  太平化学産業株式会社 手続補正型 4°3・〕 昭和61年4月2P日that's all Patent applicant: Taihei Kagaku Sangyo Co., Ltd. procedural amendment type 4°3・] April 2nd, 1986

Claims (2)

【特許請求の範囲】[Claims] (1)一般式Cam(PO_4)n(OH)(ただし、
1.4<m/n<1.7) なる組成を有する合成水酸アパタイトよりなる粉状物な
いしこれから成形した成形物の焼成体の表面に、 Cap(PO_4)q(OH) (ただし、1.4<p/q<1.7) なる組成を有する非焼成の合成水酸アパタイトよりなる
被覆層が形成されていることを特徴とする生体硬組織補
修材料。
(1) General formula Cam(PO_4)n(OH) (however,
1.4<m/n<1.7) Cap(PO_4)q(OH) (However, 1 .4<p/q<1.7) A biological hard tissue repair material comprising a coating layer made of unfired synthetic hydroxyapatite having the following composition.
(2)一般式Cam(PO_4)n(OH)(ただし、
1.4<m/n<1.7) なる組成を有する合成水酸アパタイトよりなる粉状物な
いしこれから成形した成形物の焼成体に、リン酸基を結
合させ、ついでリン酸基にカルシウムイオンを反応させ
て、上記焼成体の表面に一般式Cap(PO_4)q(
OH) (ただし、1.4<p/q<1.7) なる組成を有する非焼成の合成水酸アパタイトよりなる
被覆層を形成することを特徴とする生体硬組織補修材料
の製造法。
(2) General formula Cam(PO_4)n(OH) (however,
1.4<m/n<1.7) A phosphoric acid group is bonded to a powder or a molded product formed from the powder made of synthetic hydroxyapatite having the following composition, and then calcium ions are attached to the phosphoric acid group. is reacted, and the general formula Cap(PO_4)q(
OH) (where 1.4<p/q<1.7) A method for producing a biological hard tissue repair material, comprising forming a coating layer made of unfired synthetic hydroxyapatite having the following composition.
JP61068202A 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production Granted JPS62224356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068202A JPS62224356A (en) 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068202A JPS62224356A (en) 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production

Publications (2)

Publication Number Publication Date
JPS62224356A true JPS62224356A (en) 1987-10-02
JPH0139786B2 JPH0139786B2 (en) 1989-08-23

Family

ID=13366971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068202A Granted JPS62224356A (en) 1986-03-26 1986-03-26 Living body hard tissue prosthetic material and its production

Country Status (1)

Country Link
JP (1) JPS62224356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158965A (en) * 1987-12-16 1989-06-22 Tokuyama Soda Co Ltd Curable composition
JPH03272769A (en) * 1990-03-23 1991-12-04 Mitsubishi Materials Corp Granules for filling bone cavity and bone absorbent part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040298A (en) * 1983-05-05 1985-03-02 ストレイチャン ヘンシャウ マシーナリー リミティド Removable sleeve for printing roll
JPS6117409A (en) * 1984-07-02 1986-01-25 Meishin Toryo Kk Preparation of amorphous calcium phosphate and bio-compatible composition composed mainly thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040298A (en) * 1983-05-05 1985-03-02 ストレイチャン ヘンシャウ マシーナリー リミティド Removable sleeve for printing roll
JPS6117409A (en) * 1984-07-02 1986-01-25 Meishin Toryo Kk Preparation of amorphous calcium phosphate and bio-compatible composition composed mainly thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158965A (en) * 1987-12-16 1989-06-22 Tokuyama Soda Co Ltd Curable composition
JPH0588623B2 (en) * 1987-12-16 1993-12-22 Tokuyama Soda Kk
JPH03272769A (en) * 1990-03-23 1991-12-04 Mitsubishi Materials Corp Granules for filling bone cavity and bone absorbent part

Also Published As

Publication number Publication date
JPH0139786B2 (en) 1989-08-23

Similar Documents

Publication Publication Date Title
JP5792633B2 (en) Bone regeneration material based on monetite and other bioactive calcium composites and silicon compounds
RU2354408C2 (en) Inorganic resorbing material for bone replacement
JP5759370B2 (en) Three-dimensional matrix of monetite with structured porosity for tissue engineering and bone regeneration, and method for preparing the three-dimensional matrix
JPS6343106B2 (en)
JP2002535225A (en) Inorganic green body and method for its production and use
JPS62295666A (en) Continuous two-dimensional porous implant material and its production
JPS5941946B2 (en) porcelain
JP6663608B2 (en) Bone defect reconstruction treatment kit, medical hard tissue reconstruction material, production method of product inorganic compound, and product inorganic compound
US11116701B2 (en) Stabilized calcium phosphate
JP5578499B2 (en) Calcium phosphate / biodegradable polymer hybrid material, its production method and implant using the hybrid material
KR20010106090A (en) A synthetic biomaterial compound
JPS62224356A (en) Living body hard tissue prosthetic material and its production
JPH0411215B2 (en)
RU2743834C1 (en) Method for producing porous bioceramic wollastonite
JPH0575427B2 (en)
Lee et al. Novel calcium phosphate glass for hard-tissue regeneration
JPS6314990B2 (en)
RU2132702C1 (en) Osteoplastic glass ceramic composition material for making porous implants as granules and method of their making
JPH0325181B2 (en)
JPS58121205A (en) China material
Ku et al. The Effect of Whitlockite as an Osteoconductive Synthetic Bone Substitute Material in Animal Bony Defect Model. Materials 2022, 15, 1921
FI68216B (en) OPALT ISOTROPISKT OCH POLYKRISTALLINT SINTRAT KERAMISKT MATERIAL OCH DETTA INNEHAOLLANDE PLOMBERINGSKOMPOSITION FOER TAENDER
KR810002115B1 (en) Dental and surgical implant material composition containing novel polycrystalline sintered ceramic
KR810002117B1 (en) Dental restorative composition containing novel polycrystalline sintered ceramic
KR830001124B1 (en) Manufacturing method of artificial tooth root