JPS60114266A - Production of apatite ceramics for living body - Google Patents

Production of apatite ceramics for living body

Info

Publication number
JPS60114266A
JPS60114266A JP58222735A JP22273583A JPS60114266A JP S60114266 A JPS60114266 A JP S60114266A JP 58222735 A JP58222735 A JP 58222735A JP 22273583 A JP22273583 A JP 22273583A JP S60114266 A JPS60114266 A JP S60114266A
Authority
JP
Japan
Prior art keywords
sintered body
production
living body
molding
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58222735A
Other languages
Japanese (ja)
Other versions
JPH0357783B2 (en
Inventor
宗宮 重行
昌弘 吉村
服部 豪夫
秀希 青木
藤原 周太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwao Jiki Kogyo Co Ltd
Original Assignee
Iwao Jiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwao Jiki Kogyo Co Ltd filed Critical Iwao Jiki Kogyo Co Ltd
Priority to JP58222735A priority Critical patent/JPS60114266A/en
Publication of JPS60114266A publication Critical patent/JPS60114266A/en
Publication of JPH0357783B2 publication Critical patent/JPH0357783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、緻密で面強度の生体用アパタイトセラミック
スの製造方法に係り、特に成形の任詠性に凝れしかもI
l+]易に焼結体を得る製造方法に関するもので必る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing biological apatite ceramics that are dense and have surface strength.
l+] Must be related to a manufacturing method for easily obtaining a sintered body.

現在、骨、崗根などの人工生体材料としては、金属、有
慎−分子材料、セラミックスの一部が用いられているが
、全域や有機間分子材料は生体内での安冗性に問題があ
り、艮期にわたって安全に使用できないため、生体内で
も安定なセラミックス材料が注目式れている。荷に、セ
ラミックス材料の中でも肉や骨め成分と同じで、生体内
で女足で、生体との栽オlI注に凌ルたハイドロキ7ア
パタイトは最も有望視され、−壁材料として臨床試験が
行なわれている段階である。
Currently, metals, modest molecular materials, and some ceramics are used as artificial biomaterials for bone, bone, etc., but whole areas and organic molecular materials have problems with their safety in vivo. However, ceramic materials that are stable in vivo are attracting attention because they cannot be used safely over long periods of time. Among ceramic materials, hydrox7apatite, which is similar to the components of flesh and bone, is thought to be the most promising because it can be grown in vivo and when cultivated with living organisms, and clinical trials have been conducted as a wall material. It is at the stage where it is being developed.

ところが、従来の′に圧m1ti法によるノ・イドロキ
シアノ(タイト焼結体は、生体に適合し、#l[I胞(
繊維芽細胞と骨芽細胞)がA灸人し骨組織と一体となれ
ば強度は大きくなり、さらに生体中の骨同様コラーゲン
絨維と複合体となって、もろさの心配もなぐるもののア
パタイト焼結体1身は相対@度(理論否度6.16に対
する相対密友引が70〜90チであり、曲げ強度は1o
ookf/(2)2以下と人骨の強度1500 kg/
 amzにくらべて小さく、生体埋入時は強度不足であ
る。このため内部に欠陥の入るり能性の少ないホットプ
レス法による焼結も行なわれているがホットプレス法で
は焼結体が板状の塊としてのみ得られ、成形の任意性に
欠け、複雑形状をもつ生体用材料としては諷状物の切シ
出しが心安でらり、又切り出し加工の傷をアニリング処
理が必要であるなどの欠点がβる。又成形性に後れ、し
かも叔密ンこ成形できる成形法として熱11JI Qt
方加圧成形法も考えられるが、熱間等方加圧成形法で稙
蜜な焼結体をイ0るには成形体ガラス管のカプセルに封
入して成形する憾めて複雑な操作を必云とするなどの欠
点があった0そこで本発明者は週常の焼結法の持つ形状
の任意性及び簡便さと、M間等方加圧成形汝の焼結体を
植田化させる重度な涜ml法の利点を易化いめ使に緻V
Bな焼結体を得る方法を発明するにいたった) 即ち、ハイドロキシアパタイト粉末を成形した後、成形
体を900〜1400℃で予備焼成してハイドロキシア
パタイト焼結体となし、該ハイドロキシアパタイト焼結
体を900〜1100℃でしかも100〜500MPa
の圧力下で熱間等方加圧成形することにより緻密な高I
i![1度の焼結体を億めて簡単に得ることができたも
のである。
However, the conventional ``tight sintered body'' produced by the pressure m1ti method is compatible with living organisms, and #l [I cell (
When fibroblasts and osteoblasts) become integrated with human bone tissue, the strength increases, and the apatite sintered structure also becomes a complex with collagen fibers, similar to bone in the living body, alleviating concerns about brittleness. One body has a relative @ degree (relative close pull to the theoretical degree of 6.16 is 70 to 90 degrees, and bending strength is 1 degree)
ookf/(2) 2 or less and the strength of human bone 1500 kg/
It is smaller than amz and lacks strength when implanted in a living body. For this reason, sintering is also carried out by the hot press method, which is less susceptible to internal defects, but with the hot press method, the sintered body is obtained only as a plate-like lump, and it lacks flexibility in shaping and has complex shapes. As a biological material with a 3-dimensional structure, it is not safe to cut out the figurines, and there are disadvantages such as the need to annealing the scratches caused by the cutting process. In addition, heat 11JI Qt is a molding method that is inferior in moldability and can be formed more precisely.
A hot isostatic pressing method is also considered, but in order to produce a fine sintered body using the hot isostatic pressing method, the molded body must be encapsulated in a capsule of a glass tube and then molded, which is a rather complicated operation. Therefore, the present inventor took advantage of the flexibility and simplicity of the shape of the regular sintering method, and the severe problem of isostatically pressurizing your sintered body into a seedling. Detailed explanation of the advantages of the ML method to make it easier
In other words, after molding hydroxyapatite powder, the molded body is pre-fired at 900 to 1400°C to form a hydroxyapatite sintered body, and the hydroxyapatite sintered body is Body at 900-1100℃ and 100-500MPa
By hot isostatic pressing under the pressure of
i! [This was easily obtained by making a single sintered body.

尚、本発明のアパタイト粉末の成形は、金型プレス成形
したシ、あるいは鋳込成形など窯業における通常の成形
法でもよく、ドライバツクによる等法加圧成形してもよ
い。
The apatite powder of the present invention may be molded by a conventional molding method in the ceramic industry, such as mold press molding or cast molding, or isostatic pressure molding using a dry pack.

次に、本発明の詳顯を胆をおって説明する。Next, the details of the present invention will be explained in detail.

実施例1 ハイドロキシアパタイト粗粉をボールミルに入れ、エタ
ノールとともに湿式粉砕する。この#伜#fc貧む泥漿
を減圧乾燥し、更にボールミル中で乾式粉砕して粉体を
つくる〇この粉体金金城で一矢成形し、成形後こO成形
体をゴム袋に入れゴム故内fr、=気した後、2000
 kg7 cm2の圧力で5分間等未加圧成形を行なう
。このようにして出来た成形体を1400℃の上気中で
約2時間焼成する。この焼結体を水swm法による密匣
測足のすると相対街区が90チの焼結体しか得られなか
ったが、この焼結体を熱間等方加圧成形俄のガス′中に
投入し1100℃、500MPaで成形する。ここで得
られたアパタイトセラミックス成形体は相対冨kが96
.8チと非常に―く曲げ強度も2500kg / c 
m Z程鹿となる。
Example 1 Coarse hydroxyapatite powder is placed in a ball mill and wet-milled with ethanol. This slurry is dried under reduced pressure, and then dry-pulverized in a ball mill to create a powder. This powder is molded in Kinkinjo, and after molding, the molded body is placed in a rubber bag and placed in a rubber bag. fr, = after feeling, 2000
Non-pressure molding is performed for 5 minutes at a pressure of kg7 cm2. The molded body thus produced is fired in the upper air at 1400° C. for about 2 hours. When this sintered body was measured in a tight box using the water swm method, a sintered body with a relative block size of only 90 inches was obtained, but this sintered body was put into the gas ' before hot isostatic pressing. and molded at 1100°C and 500MPa. The apatite ceramic molded body obtained here has a relative richness k of 96.
.. Extremely low bending strength of 8 inches and 2500kg/c
m Z becomes deer.

実施例2゜ 実施例1.と同様に成形し、予備焼成したテノ(タイト
セラミックス焼結体(藺 筐就89チ)を900℃、l
DqM、Paで熱間等方加圧成形すれば相対密度は95
%となり、曲げ強度が1200 kg7 cm2となツ
ft、。
Example 2゜Example 1. A teno (tight ceramic sintered body (89 cm), which was molded and pre-fired in the same manner as above, was heated at 900°C.
If hot isostatic pressing is performed at DqM and Pa, the relative density will be 95.
%, and the bending strength is 1200 kg7 cm2.

成上のごとく本発明方法によれば、予備焼給で複雑形状
の、相対密度が70〜90チの焼結体を得、この焼結体
をカプセルに封じることな(熱間等方加圧成形するため
、複雑形状tだもちながら、わずかの寸法収縮のみで高
密度、高強度アIくタイトセラミックスが得られ、生体
用材料として好適なものが得られる。
As described above, according to the method of the present invention, a sintered body with a complicated shape and a relative density of 70 to 90 inches is obtained by preliminary firing, and this sintered body is not sealed in a capsule (hot isostatic pressing). Because of the molding process, a tight ceramic with high density and high strength can be obtained with only a slight dimensional shrinkage, even though it has a complex shape, making it suitable as a biomaterial.

特許出願人 岩尾磁器工莱株式会社 手続補正書(方式) 1、事件の表示 昭和58年特許願第222735号 2、発明の名称 生体用アパタイトセラミックスの製造方法3、補正をす
る者 事件との関係 特許出願人 住所 佐賀県西松浦郡有田町1288番地昭和59年2
月8日 別紙の通り
Patent applicant Iwao Porcelain Korai Co., Ltd. Procedural amendment (method) 1. Indication of the case Patent Application No. 222735 of 1982 2. Name of the invention Method for producing apatite ceramics for biological use 3. Person making the amendment Relationship with the case Patent applicant address: 1288 Arita-cho, Nishimatsuura-gun, Saga Prefecture 1982 2
Monthly 8th as per attached sheet

Claims (1)

【特許請求の範囲】[Claims] ハイドロキシアパタイト粉末を成形した後、成形体を9
00〜1400℃で予’JN焼成してノ・イドロキシア
ノ(タイト焼和体となし、該ハイドロキシアパタイト焼
結体を900〜1100℃でしかも100〜500MP
aの圧力下で熱間等方加圧成形することを特徴とする生
体用アパタイトセラミックスの製造方法
After molding the hydroxyapatite powder, the molded body was
The hydroxyapatite sintered body is pre-fired at 00 to 1400°C to form a tight sintered body, and the hydroxyapatite sintered body is heated to 900 to 1100°C and has a strength of 100 to 500 MP.
A method for producing apatite ceramics for biological use, characterized by hot isostatic pressing under the pressure of a.
JP58222735A 1983-11-25 1983-11-25 Production of apatite ceramics for living body Granted JPS60114266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222735A JPS60114266A (en) 1983-11-25 1983-11-25 Production of apatite ceramics for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222735A JPS60114266A (en) 1983-11-25 1983-11-25 Production of apatite ceramics for living body

Publications (2)

Publication Number Publication Date
JPS60114266A true JPS60114266A (en) 1985-06-20
JPH0357783B2 JPH0357783B2 (en) 1991-09-03

Family

ID=16787075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222735A Granted JPS60114266A (en) 1983-11-25 1983-11-25 Production of apatite ceramics for living body

Country Status (1)

Country Link
JP (1) JPS60114266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260850A (en) * 1986-05-15 1988-10-27 株式会社イナックス Manufacture of high strength hydroxyl apatite sintered body
JPS63282171A (en) * 1987-05-12 1988-11-18 Asahi Optical Co Ltd Production of material based on calcium phosphate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260850A (en) * 1986-05-15 1988-10-27 株式会社イナックス Manufacture of high strength hydroxyl apatite sintered body
JPS63282171A (en) * 1987-05-12 1988-11-18 Asahi Optical Co Ltd Production of material based on calcium phosphate

Also Published As

Publication number Publication date
JPH0357783B2 (en) 1991-09-03

Similar Documents

Publication Publication Date Title
US4794046A (en) Implant material with continuous and two-dimensional pores and process for producing the same
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
GB2210363B (en) Ceramics composites and production process thereof
Carotenuto et al. Macroporous hydroxyapatite as alloplastic material for dental applications
JP2608721B2 (en) Method for producing calcium phosphate-based material
CN108863332A (en) A kind of three-dimensional porous calcium silicates bone bracket and preparation method thereof with micro-nano structure surface
KR101239112B1 (en) Method for Preparing Porous Titanium-Hydroxyapatite Composite
JP2001259017A (en) Calcium phosphate-titanium-based composite material for biomaterial and method of manufacturing the same
JPS60114266A (en) Production of apatite ceramics for living body
RU2190502C2 (en) Method of production of porous material on base of titanium nickelide for medicine
Agrawal et al. Fabrication of hydroxyapatite ceramics by microwave processing
CN111233457B (en) Method for preparing porous magnesium-doped HA-based composite material based on carbon fibers as pore-forming agent and reinforcement
CN113979729A (en) Lithium-silicon compound enhanced bioactive ceramic material and preparation method thereof
CN208693537U (en) A kind of porous bata-tricalcium phosphate drug sustained release system
JP3262233B2 (en) Method for producing calcium phosphate
JP2759147B2 (en) Method for producing porous ceramic body
FI68217B (en) STARKT ISOTROPT SINTRAT TVAOFASIGT KERAMISKT MATERIAL
Wasoontararat et al. Effect of layer thickness on the phosphorization of 3DP gypsum based monolith
JPS6230149B2 (en)
JP2581942B2 (en) Method for producing calcium phosphate ceramic sintered body
JPH0761861A (en) Production of sintered apatite carbonate
JPS62113757A (en) Manufacture of calcium phosphate sintered body
JPH01268560A (en) Preparation of calcium phosphate ceramics implant
Carotenuto Dense/porous layered hydroxylapatite ceramic for orthopedic device coating prepared by tape casting technique
JPH0662347B2 (en) Method for producing inorganic porous material