JPH0333849A - Production of photomask - Google Patents

Production of photomask

Info

Publication number
JPH0333849A
JPH0333849A JP1168820A JP16882089A JPH0333849A JP H0333849 A JPH0333849 A JP H0333849A JP 1168820 A JP1168820 A JP 1168820A JP 16882089 A JP16882089 A JP 16882089A JP H0333849 A JPH0333849 A JP H0333849A
Authority
JP
Japan
Prior art keywords
temperature
temp
film
glass transition
photoresist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1168820A
Other languages
Japanese (ja)
Other versions
JP2808681B2 (en
Inventor
Satoru Nozawa
悟 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16882089A priority Critical patent/JP2808681B2/en
Publication of JPH0333849A publication Critical patent/JPH0333849A/en
Application granted granted Critical
Publication of JP2808681B2 publication Critical patent/JP2808681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To render high intrasurface uniformity to the heat-treated surface of a photoresist film by heat-treating the photoresist film at a temp. above the glass transition temp. of the film and further heat-treating the film at a temp. between room temp. and the glass transition temp. of the film. CONSTITUTION:A photoresist film for patterning a light shielding film formed on the light shielding film on a transparent substrate 1 is heat-treated at a temp. T1 above the glass transition temp. Tg of the photoresist film and further heat-treated at a temp. T2 between room temp. Tr and the glass transition temp. Tg of the photoresist film. Since stepwise cooling is carried out, the lowering of the sensitivity of the photoresist film due to aging at around the glass transition temp. Tg is not caused. Since such stepwise cooling is carried out while keeping heat by heat treatment at the temp. T2, cooling rate in the surface of the transparent substrate can be made uniform and lines in the surface of the substrate can be made uniform in width.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は透明基板上に遮光膜の形成されたフォトマスク
の製造方法に関し、特にそのパターニングのためのレジ
スト膜のブリベーク工程の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a photomask in which a light-shielding film is formed on a transparent substrate, and particularly relates to an improvement in the pre-baking process of a resist film for patterning.

〔発明の概要〕[Summary of the invention]

本発明は、透明基板上に形成された遮光膜をフォトレジ
ストによりパターニングするフォトマスクの製造方法に
おいて、フォトレジスト膜のガラス転移温度よりも高い
温度で熱処理した後、室温よりも高く上記フォトレジス
ト膜のガラス転移温度ヨりも低い温度で熱処理すること
により、熱処理面の高い面内均−性を得るものである。
The present invention provides a method for manufacturing a photomask in which a light-shielding film formed on a transparent substrate is patterned using a photoresist, in which the photoresist film is heated to a temperature higher than room temperature after heat treatment at a temperature higher than the glass transition temperature of the photoresist film. By performing heat treatment at a temperature lower than the glass transition temperature of , high in-plane uniformity of the heat-treated surface can be obtained.

〔従来の技術〕[Conventional technology]

フォトマスクはガラス基板等の透明基板上に遮光性の良
いクロム系膜をパターニングして形成した構造を有して
おり、最近では、電子線技術の発達に伴って、そのクロ
ム系膜のパターニングに電子線レジスト膜によるフォト
リソグラフィが行われている。
A photomask has a structure formed by patterning a chromium-based film with good light-shielding properties on a transparent substrate such as a glass substrate.Recently, with the development of electron beam technology, the patterning of the chromium-based film has been improved. Photolithography using an electron beam resist film is being performed.

このフォトリソグラフィについて簡単に説明すると、ポ
ジ型の電子線レジスト膜例えばP MMA系の電子線レ
ジスト膜を用いる場合には、初めに、クロム系膜上に電
子線レジスト膜が塗布される。
To briefly explain this photolithography, when using a positive type electron beam resist film, for example, a PMMA-based electron beam resist film, the electron beam resist film is first applied on a chromium-based film.

次いで180〜190°C程度の温度でプリベークが行
われる。そのプリベータ後、レジスト膜は基板と共に冷
却され、露光されることになる。
Next, prebaking is performed at a temperature of about 180 to 190°C. After pre-baking, the resist film is cooled together with the substrate and exposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述のPMMA系の電子線レジスト膜をプリ
ベークの後に自然冷却した場合では、基板面内の冷却速
度の不均一性に起因する基板面内の線幅のばらつきが大
きくなる。
By the way, when the above-mentioned PMMA-based electron beam resist film is naturally cooled after prebaking, the variation in line width within the substrate surface increases due to non-uniformity of cooling rate within the substrate surface.

このような自然冷却による基板面内の線幅のばらつきを
防止するために、ガラス転移温度付近でエージングする
ことにより、冷却温度を一定する方法も提案されている
が、この方法は感度の劣化を伴い、電子線描画装置にお
けるスルーブツトの低下につながる。
In order to prevent such variations in line width within the substrate surface due to natural cooling, a method has been proposed in which the cooling temperature is kept constant by aging near the glass transition temperature, but this method does not reduce sensitivity. This results in a reduction in throughput in the electron beam lithography system.

そこで、本発明は上述の技術的な課題に鑑み、フォトレ
ジスト膜の感度の劣化を伴わずに、フォトマスクの基板
面内の線幅のばらつきを小さくするようなフォトマスク
の製造方法を提供することを目的とする。
Therefore, in view of the above-mentioned technical problems, the present invention provides a method for manufacturing a photomask that reduces variations in line width within the substrate surface of the photomask without deteriorating the sensitivity of the photoresist film. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するための本発明のフォトマスクの製
造方法は、第1図に図説するように、透明基板l上の遮
光膜上に形成された該遮光膜をパターニングするための
フォトレジスト膜を、該フォトレジスト膜のガラス転移
温度Tgよりも高い温度T、で熱処理し、続いて室iT
rよりも高く上記フォトレジスト膜のガラス転移温度T
gよりも低い温度Ttで熱処理することを特徴としてい
る。
As illustrated in FIG. 1, the method for manufacturing a photomask of the present invention to achieve the above-mentioned object includes a photoresist film for patterning the light-shielding film formed on the light-shielding film on the transparent substrate l. is heat-treated at a temperature T higher than the glass transition temperature Tg of the photoresist film, and then heated in a chamber iT.
The glass transition temperature T of the photoresist film is higher than r
It is characterized in that the heat treatment is performed at a temperature Tt lower than g.

ここで、透明基Fi、1としてはガラス基板等が挙げら
れ、遮光膜は、例えばクロム若しくはその酸化物の単層
又は多層の膜であるクロム系膜を用いることができる。
Here, the transparent group Fi,1 may be a glass substrate, and the light-shielding film may be, for example, a chromium-based film that is a single layer or multilayer film of chromium or its oxide.

フォトレジスト膜としては、各種のレジスト層を用いる
ことができるが、特に電子線レジスト膜を使用できる。
As the photoresist film, various resist layers can be used, and in particular, an electron beam resist film can be used.

上記熱処理は、所要のベータ装置(ベーク炉)により行
うことができ、例えば第1図に示すように、ホットプレ
ート2を用いて、透明基板lの裏面より直接加熱するタ
イプのものであることが望ましい、このホットプレート
2は、大きな熱容量を有し、熱処理温度の保持特性に優
れることが好ましい。
The above heat treatment can be carried out using a required beta device (bake oven), for example, as shown in FIG. This hot plate 2 desirably has a large heat capacity and preferably has excellent heat treatment temperature retention characteristics.

〔作用〕[Effect]

フォトレジスト膜のガラス転移温度より高い温度T、で
熱処理した後、自然冷却によらず、室温Trよりも高く
フォトレジスト膜のガラス転移温度Tgよりも低い温度
T、で熱処理することで、段階的な冷却が行われること
になり、ガラス転移温度Tg近くでのエージングによる
感度の劣化も生じない。このような段階的な冷却は、温
度T8の熱処理により熱を保持しながら行うため、透明
基板の面内の冷却速度の均一化を図ることができ、その
結果、基板面内の線幅を均一化することができる。
After heat treatment at a temperature T higher than the glass transition temperature of the photoresist film, stepwise heat treatment is performed at a temperature T higher than room temperature Tr and lower than the glass transition temperature Tg of the photoresist film, without using natural cooling. Therefore, the deterioration of sensitivity due to aging near the glass transition temperature Tg does not occur. Since such stepwise cooling is performed while retaining heat through heat treatment at a temperature of T8, it is possible to equalize the cooling rate within the plane of the transparent substrate, and as a result, the line width within the plane of the substrate can be made uniform. can be converted into

〔実施例〕〔Example〕

本発明の好適な実施例を図面を参照しながら説明する。 Preferred embodiments of the present invention will be described with reference to the drawings.

本実施例のフォトマスクの製造方法は、透明基板上にク
ロム系膜を形成した後、そのクロム系膜上に電子線レジ
スト膜を塗布する。この電子線レジスト膜の塗布に先立
って、塗布の前処理工程として基板表面の洗浄、200
°C程度の温度のベーキング等が行われる。塗布すべき
電子線レジスト膜としては、PMMA系の電子線レジス
ト膜例えばE B R−9(2,2,2−)リフルオロ
エチル−αクロロアクリレート;東し株式会社製)が挙
げられる。この電子線レジスト膜はそのガラス転移温度
Tgが約133°Cとされる。
In the photomask manufacturing method of this embodiment, a chromium-based film is formed on a transparent substrate, and then an electron beam resist film is applied on the chromium-based film. Prior to coating this electron beam resist film, the substrate surface is cleaned for 200 mL as a pre-coating process.
Baking, etc. at a temperature of about °C is performed. Examples of the electron beam resist film to be applied include PMMA-based electron beam resist films such as EBR-9 (2,2,2-)lifluoroethyl-α chloroacrylate; manufactured by Toshi Co., Ltd.). This electron beam resist film has a glass transition temperature Tg of about 133°C.

この電子線レジスト膜の塗布工程の後、プリベークが行
われる0本実施例のフォトマスクの製造方法では、この
プリベーク工程が3段の熱処理によって進められる。特
に、このプリベーク工程では、後述するような多段式の
ホットプレートを有するベータ装置を用いることができ
、そのホットプレートの表面温度は、±0.5 ”Cの
範囲で精度良く制御される。
In the photomask manufacturing method of this embodiment in which prebaking is performed after the electron beam resist film coating process, the prebaking process is performed by three stages of heat treatment. Particularly, in this pre-bake process, a Beta apparatus having a multi-stage hot plate as described later can be used, and the surface temperature of the hot plate is controlled with high precision within a range of ±0.5''C.

まず、予熱工程としての熱処理が第1段目のホットプレ
ート上で温度To (!=i70°C)により行われる
First, heat treatment as a preheating step is performed on the first stage hot plate at a temperature To (!=i70° C.).

続いて、ベーキングのための熱処理として、電子線レジ
スト膜のガラス転移温度Tgよりも高い温度T、の熱処
理が行われる。この温度T、は約190℃とされ、次の
2段目のホットプレート上゛で透明基板の裏面から加熱
される。
Subsequently, heat treatment for baking is performed at a temperature T higher than the glass transition temperature Tg of the electron beam resist film. This temperature T is about 190° C., and the transparent substrate is heated from the back side on the next second stage hot plate.

このようなベーキングのための熱処理の後、段階的な冷
却のための熱処理が行われる。この熱処理は、温度Tt
で行われ、電子線レジスト膜のガラス転移温度Tgより
も低く室温Trよりも高い30°C〜110’C程度の
範囲内の成る温度とされる。
After such heat treatment for baking, heat treatment for stepwise cooling is performed. This heat treatment is performed at a temperature of Tt
The temperature is within a range of about 30° C. to 110° C., which is lower than the glass transition temperature Tg of the electron beam resist film and higher than room temperature Tr.

第2図はベーキングのための熱処理とその後の段階的な
冷却工程を示す図であり、縦軸が基板温度であり、横軸
が時間である。ベーキングのための熱処理は温度T+(
′;190°C)で行われ、時刻1.までは一定の温度
T、に維持される。続いて、電子線レジスト膜の塗布さ
れた基板は、時刻1、で2段目のホットプレート上から
空中をアーム等で支持されながら搬送され、時刻L!で
3段目のホットプレート上に!3!置される。このプレ
ート間の移動時間は約6秒であり、そのプレート間の移
動時間中に僅かに基板温度が下がるが、ガラス転移温度
Tgまでは至らない0時刻t、からは、指数関数的に基
板温度が温度T8 (図中約70”C)に収束して行く
が、ガラス転移温度Tgを通過して冷却されて行く時は
、基板が既に第3段目のホットプレート上にあり、冷却
速度が基板面内で均一化されており、従って、電子線レ
ジスト膜の感度のばらつきを抑えることができる。
FIG. 2 is a diagram showing the heat treatment for baking and the subsequent stepwise cooling process, where the vertical axis is the substrate temperature and the horizontal axis is the time. Heat treatment for baking is performed at a temperature of T+ (
'; 190°C), and time 1. The temperature is maintained at a constant temperature T. Subsequently, the substrate coated with the electron beam resist film is transported in the air from above the second hot plate at time 1 while being supported by an arm or the like, and at time L! And on the third hot plate! 3! placed. The transfer time between the plates is about 6 seconds, and the substrate temperature slightly decreases during the transfer time between the plates, but from time 0, t, which does not reach the glass transition temperature Tg, the substrate temperature increases exponentially. converges to temperature T8 (approximately 70"C in the figure), but when it passes the glass transition temperature Tg and is being cooled, the substrate is already on the third stage hot plate, and the cooling rate is slow. It is made uniform within the substrate surface, and therefore variations in sensitivity of the electron beam resist film can be suppressed.

このようなベーキングに続く、段階的な冷却工程として
の温度T2の熱処理の後、電子線描画装置によって選択
的に電子線レジスト膜が露光され、さらに現像、リンス
の後、その電子線レジスト膜を用いたエツチングが行わ
れる。
Following such baking, after heat treatment at temperature T2 as a stepwise cooling step, the electron beam resist film is selectively exposed to light by an electron beam drawing device, and after development and rinsing, the electron beam resist film is Etching is performed.

第3図は段階的な熱処理を行うための多段式ホットプレ
ートを有したベータ装置の平面図である。
FIG. 3 is a plan view of a Beta apparatus with multi-stage hot plates for performing stepwise heat treatment.

このベーク装置には、機器本体11の表面に互いに離間
して5枚のホットプレート10が連設されており、各ホ
ツトプレート上Oは略四角形の形状を有している。この
各ホットプレート10は、高い梢度での温度調節が可能
であり、並んだホ・ントプレート10の一端側がロード
側、他端側かアンロード側とされる。このホットプレー
110列の両側には、基板を搬送するための一対のアー
ム12.12が設けられている。このアーム12,12
は一方が1本の爪で、他方が2本の爪で基板の底部に係
合する。基板の搬送時には、ホツトプレート上Oの両側
の各アーム12.12は全体として、ホットプレート1
0の連設方向に移動し、基板はそのアーム12.12に
よって両側から把持されたままホットプレート間を搬送
されることになる0図示の如き5段のホットプレート1
0を有したベーク装置では、3枚のホツトプレート上O
を前述のTo 、T1.Ttの各温度の熱処理用に用い
ることができ、残り2枚のホットプレート10を冷却用
に用いることができる。
In this baking apparatus, five hot plates 10 are arranged in series on the surface of the main body 11 of the apparatus, spaced apart from each other, and each hot plate top O has a substantially rectangular shape. Each of the hot plates 10 is capable of controlling the temperature at a high degree of temperature, and one end of the hot plates 10 arranged side by side is the load side, and the other end is the unload side. On both sides of this row of hot plates 110, a pair of arms 12.12 for transporting substrates are provided. This arm 12, 12
engages the bottom of the substrate with one claw on one side and two claws on the other. When transporting the substrate, each arm 12.12 on both sides of the hot plate O as a whole moves the hot plate 1
The five-stage hot plate 1 as shown in the figure moves in the continuous direction of 0, and the board is conveyed between the hot plates while being gripped from both sides by the arms 12 and 12.
In a baking device with 0, on three hot plates
to the aforementioned To, T1. It can be used for heat treatment at each temperature of Tt, and the remaining two hot plates 10 can be used for cooling.

次に、本実施例のフォトマスクの製造方法を用いた場合
と、プリベータの後に自然冷却を行った場合の比較実験
の結果について第4図を参照しながら説明する。第4図
の縦軸は基板面内における100mm角での線幅均一度
(3σ値)を示し、横軸は熱処理温度Tを示している。
Next, the results of a comparative experiment using the photomask manufacturing method of this embodiment and a case where natural cooling was performed after pre-beta will be described with reference to FIG. 4. The vertical axis in FIG. 4 shows the line width uniformity (3σ value) in a 100 mm square in the substrate plane, and the horizontal axis shows the heat treatment temperature T.

まず、本実施例のフォトマスクの製造方法を用いて、ガ
ラス転移温度Tgより高い温度T、から室温Trよりも
高くガラス転移温度Tgよりも低い温度T工に段階的に
冷却した場合では、第4図中0で示すような実験結果が
得られている。各Oは温度T2を換えた時のデータ値で
あり、30°C〜110 ”Cの範囲に亘って、線幅均
一度が0.10〜0.07μm程度の範囲に収まってい
ることが判る。特に段階的な冷却温度が50°Cになる
ように行った時では、最もばらつきの小さい0.07μ
m程度の値が得られており、他のデータに関しても概ね
o、 i oμm以下で安定したデータとなっている。
First, when using the photomask manufacturing method of this example and cooling stepwise from a temperature T higher than the glass transition temperature Tg to a temperature T higher than room temperature Tr and lower than the glass transition temperature Tg, Experimental results as shown by 0 in Figure 4 have been obtained. Each O is the data value when changing the temperature T2, and it can be seen that the line width uniformity is within the range of about 0.10 to 0.07 μm over the range of 30°C to 110''C. .Especially when the stepwise cooling temperature was set to 50°C, the smallest variation was 0.07μ.
A value of approximately m is obtained, and other data are generally stable at less than o and ioμm.

これに対して、比較例として、プリベークの後に室温T
rまで自然冷却を行った場合では、第4図中・で示すデ
ータが得られており、その線幅均一度は0.15μm程
度である。この・のデータは、○で示す段階的な冷却を
行った本実施例のフォトマスクの製造方法に比べて、ば
らつきが大きいことを示しており、その段階的な熱処理
によって、冷却速度が基板面内で均一化され、電子線レ
ジスト膜の感度のばらつきが抑えられたことが十分に説
明されることになる。
On the other hand, as a comparative example, after prebaking, room temperature T
In the case of natural cooling to r, data shown in FIG. 4 is obtained, and the line width uniformity is about 0.15 μm. This data indicates that there is greater variation compared to the photomask manufacturing method of this example in which stepwise cooling is performed as indicated by ○, and the stepwise heat treatment increases the cooling rate of the substrate surface. It is fully explained that the variation in sensitivity of the electron beam resist film was suppressed.

〔発明の効果〕〔Effect of the invention〕

本発明のフォトマスクの製造方法トよ、フォトレジスト
膜のガラス転移温度より高い温度で熱処理した後、自然
冷却によらず、室温よりも高くフォトレジスト膜のガラ
ス転移温度よりも低い温度で熱処理することで、面内の
均一な冷却速度による段階的な冷却が行われる。このた
めガラス転移温度近くでのエージングによる感度の劣化
も抑制され、基板面内の線幅均一性を高めることが可能
となる。
Method for manufacturing a photomask of the present invention. After heat treatment at a temperature higher than the glass transition temperature of the photoresist film, heat treatment is performed at a temperature higher than room temperature and lower than the glass transition temperature of the photoresist film without natural cooling. In this way, stepwise cooling is performed with a uniform cooling rate within the plane. Therefore, deterioration in sensitivity due to aging near the glass transition temperature is also suppressed, making it possible to improve line width uniformity within the substrate surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフォトマスクの製造方法の原理説明図
、第2図は本発明のフォトマスクの製造方法の一例にお
ける時間と基板温度の変化の関係を示す図、第3図は本
発明のフォトマスクの製造方法に用いられるベーク装置
を一部破断して示す要部平面図、第4図は本発明のフォ
トマスクの製造方法に関して行った比較実験の結果を説
明するための線幅均一度と熱処理温度の関係を示す図で
ある。 1・・・透明基板 2.10・・・ホットプレート
FIG. 1 is a diagram explaining the principle of the photomask manufacturing method of the present invention, FIG. 2 is a diagram showing the relationship between time and substrate temperature change in an example of the photomask manufacturing method of the present invention, and FIG. FIG. 4 is a partially cutaway plan view of the main part of the baking device used in the photomask manufacturing method of the present invention, and FIG. It is a figure showing the relationship between once and heat treatment temperature. 1...Transparent substrate 2.10...Hot plate

Claims (1)

【特許請求の範囲】[Claims] 透明基板上の遮光膜上に形成された該遮光膜をパターニ
ングするためのフォトレジスト膜を、該フォトレジスト
膜のガラス転移温度よりも高い温度で熱処理し、続いて
室温よりも高く上記フォトレジスト膜のガラス転移温度
よりも低い温度で熱処理することを特徴とするフォトマ
スクの製造方法。
A photoresist film for patterning the light shielding film formed on the light shielding film on the transparent substrate is heat-treated at a temperature higher than the glass transition temperature of the photoresist film, and then the photoresist film is heated to a temperature higher than room temperature. A method for producing a photomask, characterized by heat treatment at a temperature lower than the glass transition temperature of the photomask.
JP16882089A 1989-06-30 1989-06-30 Photomask manufacturing method Expired - Fee Related JP2808681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16882089A JP2808681B2 (en) 1989-06-30 1989-06-30 Photomask manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16882089A JP2808681B2 (en) 1989-06-30 1989-06-30 Photomask manufacturing method

Publications (2)

Publication Number Publication Date
JPH0333849A true JPH0333849A (en) 1991-02-14
JP2808681B2 JP2808681B2 (en) 1998-10-08

Family

ID=15875115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16882089A Expired - Fee Related JP2808681B2 (en) 1989-06-30 1989-06-30 Photomask manufacturing method

Country Status (1)

Country Link
JP (1) JP2808681B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1779773A2 (en) 2005-11-01 2007-05-02 Omron Healthcare Co., Ltd. Electronic blood pressure monitor which calculates an evaluation quantity related to cardiovascular risks
US7223945B2 (en) 2002-03-04 2007-05-29 Tokyo Electron Limited Substrate heating method, substrate heating system, and applying developing system
JP2011222834A (en) * 2010-04-12 2011-11-04 Hoya Corp Baking apparatus, method for forming resist pattern, method for manufacturing photo mask, and method for manufacturing mold for nanoimprint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999436A (en) * 1982-11-30 1984-06-08 Toshiba Corp Manufacture of mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999436A (en) * 1982-11-30 1984-06-08 Toshiba Corp Manufacture of mask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223945B2 (en) 2002-03-04 2007-05-29 Tokyo Electron Limited Substrate heating method, substrate heating system, and applying developing system
EP1779773A2 (en) 2005-11-01 2007-05-02 Omron Healthcare Co., Ltd. Electronic blood pressure monitor which calculates an evaluation quantity related to cardiovascular risks
JP2011222834A (en) * 2010-04-12 2011-11-04 Hoya Corp Baking apparatus, method for forming resist pattern, method for manufacturing photo mask, and method for manufacturing mold for nanoimprint

Also Published As

Publication number Publication date
JP2808681B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
TWI452608B (en) Photo resist coating/developing apparatus, substrate transfer method and interface apparatus
KR100324440B1 (en) Photomask forming method and heat treatment equipment capable of forming a photomask of high dimensional accuracy
JPH0333849A (en) Production of photomask
JP2006222354A (en) Method for setting temperature of heat treatment plate, equipment for setting temperature of heat treatment, program, and program-recorded computer-readable recording medium
JPH09258247A (en) Production of liquid crystal display device and film forming device
JP2829909B2 (en) Resist processing method and resist processing apparatus
JP3363368B2 (en) Heat treatment equipment
JPH03110822A (en) Formation of resist pattern
JP2009021443A (en) Substrate treatment device, and substrate treatment method
JP2004517493A (en) Hot plate with variable surface for improved baking uniformity of substrate
US4946764A (en) Method of forming resist pattern and resist processing apparatus used in this method
JP2007035706A (en) Conveyance apparatus, exposure device, and method of manufacturing micro device
JPS62193248A (en) Resist coating and baking device
KR102221284B1 (en) Hot plate and apparatus for heat-treating substrate with the hot plate, and fabricating method of the hot plate
JPH09181060A (en) Thin-film formation device
TW591346B (en) Soft baking equipment for photoresist and method for forming a patterned photoresist
JPH0566571A (en) Baking method for resist
JPS63151926A (en) Production of horizontal orientation film for liquid crystal cell
JP2000124096A (en) Heat treatment furnace
JP2002359181A (en) Substrate processing device
JPH05326381A (en) Manufacture of double-sided absorber x-ray mask
JP4121770B2 (en) Baking device for photomask manufacturing
JPS5999436A (en) Manufacture of mask
TW202312239A (en) Processing apparatus, transporting method and article manufacturing method advantageous in improving throughput while suppressing costs
JPS6245113A (en) Semiconductor device manufacturing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees