JPH0333823A - Electrode structure for waveguide type optical device - Google Patents

Electrode structure for waveguide type optical device

Info

Publication number
JPH0333823A
JPH0333823A JP16692589A JP16692589A JPH0333823A JP H0333823 A JPH0333823 A JP H0333823A JP 16692589 A JP16692589 A JP 16692589A JP 16692589 A JP16692589 A JP 16692589A JP H0333823 A JPH0333823 A JP H0333823A
Authority
JP
Japan
Prior art keywords
resistance film
electrode
low
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16692589A
Other languages
Japanese (ja)
Other versions
JPH0833529B2 (en
Inventor
Masahisa Tanizawa
谷澤 端久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16692589A priority Critical patent/JPH0833529B2/en
Publication of JPH0333823A publication Critical patent/JPH0333823A/en
Publication of JPH0833529B2 publication Critical patent/JPH0833529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the effect of discharging the charge of a desired low- resistance film over entire part of a substrate without increasing the operating voltage of the optical device by constructing electrode films in such a manner that the films overlap on the low-resistance film in the outer peripheral part of electrode patterns and the other parts come into direct contact with a buffer layer. CONSTITUTION:After the low-resistance film 4 consisting of Si is formed, metallic films are so formed as to constitute the electrode patterns and the electrodes 3 are provided. The waveguide width of optical waveguides 2 is 7mum and the width of the electrodes 3 is confined to 11mum in the upper part of the optical waveguides in order to impress electric fields to the optical waveguides 2. The low-resistance film 4 consisting of the Si is so formed as to extend respectively 2mum inner than the patterns of the electrodes 3 on both sides. The low-resistance film 4 and the electrodes 3 are, therefore, overlapped respectively 2mum on both sides so that the electrodes 3 are eventually in direct contact with the buffer layer 5 of SiO2 by 7mum. The effect of discharging the charge of the desired low-resistance film over the entire part of the substrate is obtd. without increasing the operating voltage of the optical device in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導波路型光デバイスの電極構造に関し、特に
、光導波路基板上に形成された電極の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode structure of a waveguide type optical device, and particularly to the structure of an electrode formed on an optical waveguide substrate.

[従来の技術] スイッチングや変調機能をもつ導波路型光デバイスに、
  L i Mb OiやL L T a O1等の電
気光学効果を有する基板を用いた導波路型光デバイスが
ある。この光デバイスは基板にTi拡散やプロトン交換
等を用いて基板表面に基板よりもわずかに屈折率の高い
部分を形成し、これを光導波路とし、この光導波路の上
部、または近傍に電極を設け、これに電圧を印加し、光
導波路に電界を生じさせ、基板のもつ電気光学効果によ
り光導波路の屈折率を変化させ、スイッチングや変調を
行うものである。
[Conventional technology] Waveguide type optical devices with switching and modulation functions,
There are waveguide type optical devices using substrates having an electro-optic effect such as L i Mb Oi and L L T a O1. This optical device uses Ti diffusion, proton exchange, etc. to form a part on the substrate surface with a slightly higher refractive index than the substrate, and this is used as an optical waveguide, and an electrode is provided above or near the optical waveguide. By applying a voltage to this, an electric field is generated in the optical waveguide, and the refractive index of the optical waveguide is changed by the electro-optic effect of the substrate, thereby performing switching and modulation.

ここで、LiNbO5やLiTaO3などの強誘電体を
光導波路基板として用いた場合、デバイス周囲に温度変
化が生じると、基板自体の焦電効果により基板内に電位
差を生じ、基板表面に形成された光導波路とその上部ま
たは近傍に設けられた電極付近で不要電界が発生し、特
性が不安定になってしまう。
Here, when a ferroelectric material such as LiNbO5 or LiTaO3 is used as an optical waveguide substrate, when a temperature change occurs around the device, a potential difference is generated within the substrate due to the pyroelectric effect of the substrate itself, and the optical waveguide formed on the surface of the substrate An unnecessary electric field is generated near the wave path and the electrodes provided above or near the wave path, making the characteristics unstable.

こうした、基板の温度変化による特性が不安定となる要
因をなくすため、従来技術として2例えば第2図に示す
とおり、電子情報通信技術報告0QE86−44 rS
 LコーティングによるZ−CUもLiNbO3導波路
デバイスの温度特性改善」のように、光導波路基板1の
表面に形成された電極3の上から、基板1全体に低抵抗
膜4を被膜したり、あるいは第3図に示すとおり、昭和
63年電子情報通信学会春季全国大会C−489rTi
:L f N b 03マツハツエンダ型変調器の温度
特性改善」のように光導波路基板1の表面全体に抵抗膜
4を被膜し、その上に電極3を形成するという方法がと
られていた。
In order to eliminate such factors that cause the characteristics of the substrate to become unstable due to temperature changes, as a conventional technology 2, for example, as shown in Figure 2, Electronic Information and Communication Technology Report 0QE86-44 rS
Z-CU by L coating also improves the temperature characteristics of LiNbO3 waveguide devices by coating the entire substrate 1 with a low resistance film 4 from above the electrode 3 formed on the surface of the optical waveguide substrate 1, or As shown in Figure 3, the 1988 Institute of Electronics, Information and Communication Engineers Spring National Conference C-489rTi
: L f N b 03 Improving Temperature Characteristics of Matsuhatsu Enda Modulator", a method was used in which the entire surface of the optical waveguide substrate 1 was coated with a resistive film 4 and the electrodes 3 were formed thereon.

これらはいずれも、光導波路基板に所望の抵抗値を有す
る低抵抗膜(この抵抗値が低すぎると電極間に電圧を印
加した時に電流が流れ、光導波路に電界を生じさせられ
ない。また、高すぎると電荷をディスチャージする効果
がなくなってしまう。
All of these require a low resistance film having a desired resistance value on the optical waveguide substrate (if this resistance value is too low, current will flow when a voltage is applied between the electrodes, making it impossible to generate an electric field in the optical waveguide. If it is too high, the effect of discharging the charge will be lost.

通常は、電極の端子間の抵抗値が1〜IOMΩ程度にな
るような膜が用いられる。)を被膜することにより、電
極付近など基板表面の局所電荷を表面全体にディスチャ
ージさせるものである。
Usually, a film is used in which the resistance value between the electrode terminals is approximately 1 to IOMΩ. ) is used to discharge local charges on the substrate surface, such as near the electrodes, to the entire surface.

〔発明が解決しようとする課題J しかしながら、上述した従来の導波路型光デバイスの電
極構造で、第2図に示した光導波路基板全体に電極の上
から低抵抗膜を被膜する方法では。
[Problem to be Solved by the Invention J] However, in the conventional electrode structure of the waveguide type optical device described above, the method of coating the entire optical waveguide substrate with a low resistance film on the electrode as shown in FIG.

通常電極膜の厚みは2000〜4000Å以上であり、
特に高速変調器等、電極容量低減が重要なデバイスにお
いては1μm以上の場合もあり、こうした比較的厚い電
極膜の上から低抵抗膜を被膜すると、電極のある部分と
ない部分で大きな段差が生じてしまい、電極と低抵抗膜
の接触が不十分で、電極付近に帯電した電荷を十分にデ
ィスチャージできない。これを防ぐために、低抵抗膜を
厚くすると、低抵抗膜自体の面抵抗値が低下してしまい
所望の抵抗値が得られないばかりでなく、電極との間で
歪を起こし、光導波路基板にストレスを生じ、デバイス
自体の特性を劣化させてしまうという欠点がある。
The thickness of the electrode film is usually 2000 to 4000 Å or more,
Particularly in devices where electrode capacitance reduction is important, such as high-speed modulators, the thickness may be 1 μm or more, and if a low-resistance film is coated over such a relatively thick electrode film, a large step difference will occur between the areas with and without electrodes. As a result, the contact between the electrode and the low resistance film is insufficient, and the charges near the electrode cannot be sufficiently discharged. To prevent this, if the low-resistance film is made thicker, the sheet resistance of the low-resistance film itself decreases, making it impossible to obtain the desired resistance value, as well as causing distortion between the electrodes and the optical waveguide substrate. This has the drawback of causing stress and deteriorating the characteristics of the device itself.

一方、第3図に示した光導波路基板全体に低抵抗値を被
膜し、その上に電極を形成する方法では。
On the other hand, in the method shown in FIG. 3, in which the entire optical waveguide substrate is coated with a low resistance value, and electrodes are formed on it.

光導波路基板と電極との間に低抵抗膜層が加わるため、
同じ電圧を印加した場合に、光導波路に生じる電界が上
記の方法と比較して弱くなってしまう。従って、光導波
路にスイッチング変調を行うのに必要な電界を生じさせ
るためには、より高い電圧が必要となり、電圧上昇を招
いてしまうという欠点がある。
Since a low resistance film layer is added between the optical waveguide substrate and the electrode,
When the same voltage is applied, the electric field generated in the optical waveguide becomes weaker than in the above method. Therefore, in order to generate the electric field necessary for switching modulation in the optical waveguide, a higher voltage is required, which has the disadvantage of causing a voltage increase.

[課題を解決するための手段] 即ち1本発明の導波路型光デバイスの電極構造は、光導
波路が表面に形成された光導波路基板。
[Means for Solving the Problems] Namely, the electrode structure of the waveguide type optical device of the present invention is an optical waveguide substrate having an optical waveguide formed on the surface thereof.

あるいは光導波路基板の上面にさらにバッファ層が形成
された基板の電極がない部分全体と、電極が形成される
電極パターンの外周部のわずかに内側の部分に低抵抗膜
が被膜されており、電極は電極パターンの外周部の低抵
抗膜が被膜された部分においてのみ、低抵抗膜が下に、
電極膜が上になるように重なっており、他の部分では直
接光導波路基板、あるいは光導波路基板上面に形成され
たバッファ層の上に形成されていることを特徴としてい
る。
Alternatively, a buffer layer is further formed on the top surface of the optical waveguide substrate, and a low-resistance film is coated on the entire portion of the substrate where no electrodes are present, and on a portion slightly inside the outer periphery of the electrode pattern where the electrodes are formed. The low resistance film is on the bottom only in the area where the low resistance film is coated on the outer periphery of the electrode pattern.
The electrode films are stacked on top of each other, and the other parts are formed directly on the optical waveguide substrate or on the buffer layer formed on the top surface of the optical waveguide substrate.

[実施例コ 次に2本発明の実施例について図面を参照して説明する
[Embodiments] Next, two embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の方向性結合型2×2光スイ
ツチの光導波路結合部の横断面図である。
FIG. 1 is a cross-sectional view of an optical waveguide coupling portion of a directional coupling type 2×2 optical switch according to an embodiment of the present invention.

光導波路2は、LiNbO3光導波路基板1に導波路パ
ターンにバターニングされた膜厚600人のTiを10
50℃、8時間ウェット雰囲気中で熱拡散して作製され
たものである。この・光導波路基板1の表面には、電極
3による光の吸収損失を防ぐため、5fO2バッファ層
5 CM厚25OA、)が被膜されている。このSiO
□バッフ7層5のさらに上面には、電極3が形成される
電極パターンよりもわずかに内側に入り込むように、電
極パターンのない部分にSi低抵抗膜4が被膜される。
The optical waveguide 2 consists of a Ti film with a thickness of 600 nm and a Ti film patterned into a waveguide pattern on a LiNbO3 optical waveguide substrate 1.
It was manufactured by thermal diffusion in a wet atmosphere at 50° C. for 8 hours. The surface of the optical waveguide substrate 1 is coated with a 5fO2 buffer layer (5cm thick, 25OA) in order to prevent absorption loss of light by the electrodes 3. This SiO
□ Further on the upper surface of the buff 7 layer 5, a Si low resistance film 4 is coated on a portion where there is no electrode pattern so as to enter slightly inside the electrode pattern where the electrode 3 is formed.

ここでは、Si低抵抗膜4の膜厚は1000人とし、成
膜後、Si膜低抵抗膜4の抵抗値を安定化させるため、
150℃の恒温槽で1時間アニールした。Si低抵抗膜
4を被膜後、電極パターンになるように金属膜(Cr−
An2000人)を成膜し、電極3を形成した。ここで
、上記の光導波路2の導波路幅は7μmであり、この光
導波路2に電界を印加するため、電極3の幅は光導波路
上部で11μmとじた。また、Si低抵抗膜4は電極3
のパターンより1両側でそれぞれ2μ量内側に入るよう
に被膜した。これによりSi低抵抗膜と電極3は両側で
それぞれ2μII重なっており。
Here, the film thickness of the Si low-resistance film 4 is assumed to be 1000, and in order to stabilize the resistance value of the Si low-resistance film 4 after film formation,
Annealing was performed for 1 hour in a constant temperature bath at 150°C. After coating the Si low resistance film 4, a metal film (Cr-
An electrode 3 was formed by depositing a film of 2,000 An. Here, the waveguide width of the optical waveguide 2 was 7 μm, and in order to apply an electric field to the optical waveguide 2, the width of the electrode 3 was set to 11 μm at the top of the optical waveguide. Moreover, the Si low resistance film 4 is
The film was coated in an amount of 2μ on each side of the pattern. As a result, the Si low resistance film and the electrode 3 overlap by 2μII on each side.

電極3は、5in2バッフ7層と7μ量直接接触してい
ることになる。また1本実施例では、スイッチの結合部
の長さは16mmでありこのとき電極端子間抵抗値は3
MΩであった。
The electrode 3 is in direct contact with the 7 layers of 5in2 buffer by an amount of 7μ. In addition, in this embodiment, the length of the coupling part of the switch is 16 mm, and the resistance value between the electrode terminals is 3.
It was MΩ.

第4図に低抵抗膜4を電極3の上から光導波路基板1全
体に被膜した従来の2×2光スイツチと同様に、SiO
2バッファ層5の上から、低抵抗膜4を光導波路基板1
全体に被膜し、低抵抗膜4の上に電極を形成した従来の
2×2光スイツチ本発明の電極構成をもつ2×2光スイ
ツチの■、■各ボートの損失の温度特性を示す。
Figure 4 shows a SiO
2. From above the buffer layer 5, apply the low resistance film 4 to the optical waveguide substrate 1.
A conventional 2 x 2 optical switch in which the electrode is formed on the low resistance film 4, which is entirely coated.The temperature characteristics of loss for each boat of the 2 x 2 optical switch having the electrode structure of the present invention are shown.

第4図かられかるように、電極3の上から全体に低抵抗
膜4を被膜する従来の光スィッチでは。
As can be seen from FIG. 4, in the conventional optical switch, a low resistance film 4 is coated over the entire electrode 3.

特に電圧OFFの■状態での損失の温度変化に苅する変
動量が著しく大きい。低抵抗膜4の上から電極3を形成
する方法では、従来の先スイッチも本発明の電極構造を
もつ光スィッチも5〜45℃の温度範囲で十分安定なこ
とがわかる。
In particular, the amount of variation in loss due to temperature changes in the voltage OFF state is extremely large. It can be seen that in the method of forming the electrode 3 from above the low resistance film 4, both the conventional first switch and the optical switch having the electrode structure of the present invention are sufficiently stable in the temperature range of 5 to 45°C.

次に、温度特性が安定な上記2つの電極構成の光スィッ
チについてスイッチ動作電圧を測定したところ、低抵抗
膜4を光導波路基板1全体に被膜する従来の光スィッチ
では、7M入射光に対して。
Next, we measured the switch operating voltage of an optical switch with the above two electrode configurations that have stable temperature characteristics, and found that in a conventional optical switch in which the entire optical waveguide substrate 1 is coated with the low resistance film 4, with respect to 7M incident light, .

7.6vであり1本発明の電極構造をもつ光スィッチで
は、 4.5 Vと従来のスイッチに比較して約4割低
電圧動作が可能であった。
The optical switch having the electrode structure of the present invention was able to operate at a voltage of 4.5 V, approximately 40% lower than that of conventional switches.

[発明の効果コ 以上説明したように本発明は、導波路型光デバイスの光
導波路基板の電極のない部分と電極パターンの外周部の
わずかに内側にのみ低抵抗膜を施し、電極膜は電極パタ
ーンの外周部において、低抵抗膜と重なり、他の部分は
、光導波路基板、あるいはバッファ層と直接接触する構
造にすることにより、光デバイスの動作電圧を上昇させ
ることなく、所望の低抵抗膜の電荷を基板全体にディス
チャージする効果が得られ、安定した光デバイスの特性
を実現できる効果がある。
[Effects of the Invention] As explained above, the present invention provides a low resistance film only on the non-electrode portion of the optical waveguide substrate of a waveguide type optical device and slightly inside the outer periphery of the electrode pattern. By creating a structure in which the outer periphery of the pattern overlaps with the low-resistance film and the other parts are in direct contact with the optical waveguide substrate or buffer layer, the desired low-resistance film can be formed without increasing the operating voltage of the optical device. This has the effect of discharging the electric charge to the entire substrate, which has the effect of realizing stable characteristics of the optical device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の導波路型光デバイスの電極構造の横断
面図、第2図と第3図は従来の導波路型光デバイスの電
極構造の横断面図である。また。 第4図は従来の電極構造をもつ導波路型光スイッチ(a
) 、 (b)と本発明の電極構造をもつ導波路型光ス
イッチ(C)の挿入損失の温度特性を示す。 1・・・光導波路基板、2・・・光導波路、3・・・電
極。 4・・・低抵抗膜、5・・・バッファ層。
FIG. 1 is a cross-sectional view of the electrode structure of a waveguide-type optical device of the present invention, and FIGS. 2 and 3 are cross-sectional views of the electrode structure of a conventional waveguide-type optical device. Also. Figure 4 shows a waveguide type optical switch (a) with a conventional electrode structure.
), (b) and the temperature characteristics of the insertion loss of the waveguide optical switch (C) having the electrode structure of the present invention are shown. 1... Optical waveguide substrate, 2... Optical waveguide, 3... Electrode. 4...Low resistance film, 5...Buffer layer.

Claims (1)

【特許請求の範囲】 1、基板表面に光導波路が形成された光導波路基板と、
該光導波路基板の表面に、設けられた電極及び低抵抗膜
とを有する導波路型光デバイスにおいて、 前記電極が形成される前記光導波路部分を除いて低抵抗
膜を被膜した後、低抵抗膜が被膜されていない部分の幅
よりわずかに広い幅の電極膜パターンを形成したことを
特徴とする導波路型光デバイスの電極構造。 2、前記光導波路基板と前記電極の間に絶縁層を設けた
ことを特徴とする特許請求の範囲第1項記載の導波路型
光デバイスの電極構造。
[Claims] 1. An optical waveguide substrate with an optical waveguide formed on the surface of the substrate;
In a waveguide type optical device having an electrode and a low resistance film provided on the surface of the optical waveguide substrate, after coating a low resistance film except for the optical waveguide portion where the electrode is formed, the low resistance film is coated. An electrode structure for a waveguide type optical device, characterized in that an electrode film pattern is formed with a width slightly wider than the width of an uncoated part. 2. The electrode structure of a waveguide type optical device according to claim 1, characterized in that an insulating layer is provided between the optical waveguide substrate and the electrode.
JP16692589A 1989-06-30 1989-06-30 Electrode structure of waveguide type optical device Expired - Lifetime JPH0833529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16692589A JPH0833529B2 (en) 1989-06-30 1989-06-30 Electrode structure of waveguide type optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16692589A JPH0833529B2 (en) 1989-06-30 1989-06-30 Electrode structure of waveguide type optical device

Publications (2)

Publication Number Publication Date
JPH0333823A true JPH0333823A (en) 1991-02-14
JPH0833529B2 JPH0833529B2 (en) 1996-03-29

Family

ID=15840203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16692589A Expired - Lifetime JPH0833529B2 (en) 1989-06-30 1989-06-30 Electrode structure of waveguide type optical device

Country Status (1)

Country Link
JP (1) JPH0833529B2 (en)

Also Published As

Publication number Publication date
JPH0833529B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
US7844149B2 (en) Humidity tolerant electro-optic device
JP3771287B2 (en) Waveguide type electro-optic element
JP3628342B2 (en) Dielectric optical waveguide device
JPS62173428A (en) Waveguide optical device
JPH01302325A (en) Optical waveguide device and its forming method
JPS5987B2 (en) Electro-optical switches and modulators
JPH0333823A (en) Electrode structure for waveguide type optical device
JPH0713711B2 (en) High speed optical modulator
JP3021888B2 (en) Optical waveguide functional element and method of manufacturing the same
JPH0419714A (en) Optical device
JPH07159743A (en) Optical waveguide element
JPH0815657A (en) Waveguide type electro-optical element
JPH0251124A (en) Optical waveguide progressive wave electrode
JPH09269469A (en) Optical waveguide device
JPH06222403A (en) Directional coupling type optical waveguide
JPH0215245A (en) Optical waveguide type device
JP3275888B2 (en) Optical waveguide device
JPH02114243A (en) Optical control device and its manufacture
JPS61198106A (en) Optical waveguide forming method
JP2503880B2 (en) Light control device manufacturing method
JP3024555B2 (en) Optical waveguide device and method of manufacturing the same
JP2671586B2 (en) Light control device
JP2624199B2 (en) Light control device and manufacturing method thereof
JPH0361932B2 (en)