JPH01302325A - Optical waveguide device and its forming method - Google Patents

Optical waveguide device and its forming method

Info

Publication number
JPH01302325A
JPH01302325A JP13391288A JP13391288A JPH01302325A JP H01302325 A JPH01302325 A JP H01302325A JP 13391288 A JP13391288 A JP 13391288A JP 13391288 A JP13391288 A JP 13391288A JP H01302325 A JPH01302325 A JP H01302325A
Authority
JP
Japan
Prior art keywords
optical waveguide
buffer layer
film
electrode
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13391288A
Other languages
Japanese (ja)
Other versions
JPH0451812B2 (en
Inventor
Minoru Kiyono
實 清野
Naoyuki Megata
直之 女鹿田
Takashi Yamane
隆志 山根
Teruo Kurahashi
輝雄 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13391288A priority Critical patent/JPH01302325A/en
Publication of JPH01302325A publication Critical patent/JPH01302325A/en
Publication of JPH0451812B2 publication Critical patent/JPH0451812B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently apply an electric field and to prevent the DC drift by coating a waveguide substrate with a semiconductive film and forming a buffer layer on an optical waveguide area and coating the buffer layer with a semiconductive film. CONSTITUTION:An optical waveguide 2 formed on the waveguide substrate, a semiconductive film 4a coating the waveguide substrate 1, a buffer layer 3 formed on the semiconductive film 4a on the optical waveguide area, a semiconductive film 4b coating the buffer layer 3, and an electrode 5 formed on the buffer layer with the semiconductive film 4b between them are provided. That is, the semiconductive film 4b which is formed to coat the buffer layer 3 forms a path to reduce the voltage drop between the electrode 5 and the waveguide substrate 1. Thus, the electric field applied to an optical waveguide 2 is effectively increased. Further, the electric charge supplied to the electrode 5 is uniformly distributed through semiconductive films to prevent local concentration of the electric charge.

Description

【発明の詳細な説明】 [概要] 光スィッチや光変調器等に使用される光導波路デバイス
およびその形成方法に関し、 効率的な電界の印加およびDCドリフトの防止が可能な
光導波路デバイスの提供を目的とし、導波路基板上に形
成された光導波路と、前記導波路基板を被覆する第1の
半導電性の膜と、前記光導波路領域上の第1の半導電性
の膜上に形成されたバッファ層と、さらに該バッファ層
を被覆する第2の半導電性の膜と、第2の半導電性の膜
を介して前記バッファ層上部に形成された電極により構
成される。
[Detailed Description of the Invention] [Summary] Regarding an optical waveguide device used in an optical switch, an optical modulator, etc. and a method for forming the same, the present invention aims to provide an optical waveguide device that can efficiently apply an electric field and prevent DC drift. an optical waveguide formed on a waveguide substrate, a first semiconductive film covering the waveguide substrate, and an optical waveguide formed on the first semiconductive film on the optical waveguide region. The buffer layer further includes a second semiconductive film covering the buffer layer, and an electrode formed on the buffer layer via the second semiconductive film.

〔産業上の利用分野] 本発明は、光スイフチや光変調器等に使用される光導波
路デバイスおよびその形成方法に関する。
[Industrial Application Field] The present invention relates to an optical waveguide device used in an optical switch, an optical modulator, etc., and a method for forming the same.

〔従来の技術〕[Conventional technology]

一般に、良好な電気光学効果を有する光導波路材料とし
てリチウム・ナイオヘイト(以下、LiNb0i )が
良く知られている。従来、LiNbO3を基板に用いた
光導波路デバイスの形成は、LiNb0zの結晶基板表
面にパターン形成したチタン(Ti)膜を熱拡散させて
光導波路を形成し、さらに咳光導波路に接近させて金属
電極を設けて光導波路デバイスを形成する場合が多い。
Generally, lithium niohate (hereinafter referred to as LiNbOi) is well known as an optical waveguide material having good electro-optic effects. Conventionally, to form an optical waveguide device using LiNbO3 as a substrate, an optical waveguide is formed by thermally diffusing a patterned titanium (Ti) film on the surface of a LiNbOz crystal substrate, and then a metal electrode is placed close to the optical waveguide. is often used to form an optical waveguide device.

しかし、LiNbO5基板の上に直接金属電極を形成す
ると、導波路を進行する光エネルギーの一部が導波路か
ら滲み出し金属電極に吸収されて伝送波の伝送効率が低
下する。
However, if a metal electrode is directly formed on the LiNbO5 substrate, a part of the optical energy traveling through the waveguide leaks out from the waveguide and is absorbed by the metal electrode, reducing the transmission efficiency of the transmitted wave.

更に、LiNb0iでは光の屈折率(約2.1)に対し
てマイクロ波の屈折率(約4,2)が大きいことから、
特にGH2オーダーのマイクロ波を電極に伝送する場合
、伝送速度は光に比べて遅いので、効率よく動作させる
ためには光波との速度整合をとる必要がある。
Furthermore, since LiNb0i has a larger refractive index for microwaves (approximately 4.2) than the refractive index for light (approximately 2.1),
In particular, when microwaves on the order of GH2 are transmitted to electrodes, the transmission speed is slower than that of light, so it is necessary to match the speed with the light waves in order to operate efficiently.

通常、これらの対策として光導波路と電極の間にバッフ
ァ層を設けている。
Usually, as a countermeasure against these problems, a buffer layer is provided between the optical waveguide and the electrode.

〔発明が解決しようとする課題] 第4図は、従来例に係る光導波路デバイスの構成を示す
斜視断面図である。
[Problems to be Solved by the Invention] FIG. 4 is a perspective sectional view showing the configuration of an optical waveguide device according to a conventional example.

図において、21はLiNb0iよりなる導波路裁板で
あり、その表面にはTi膜を帯状にパターニング形成し
た後、Tiを導波路基板中に熱拡散することにより形成
された光導波路22を備えている。
In the figure, 21 is a waveguide cut plate made of LiNb0i, and is equipped with an optical waveguide 22 formed by patterning a Ti film into a band shape on its surface and then thermally diffusing Ti into the waveguide substrate. There is.

さらに導波路基板および光導波路の表面は絶縁性材料、
例えばAi! t O3またはSin、等からなる厚さ
2000〜4000人稈変のバッファ層23で被覆され
、該バッファ層23の表面で上記光導波路の上部にはA
u等の金属薄膜からなる電極24が展着およびメツキ等
の手段により形成されている。
Furthermore, the surfaces of the waveguide substrate and optical waveguide are made of insulating material,
For example, Ai! The optical waveguide is coated with a buffer layer 23 of 2,000 to 4,000 thick and made of O3 or Sin, etc., and the upper part of the optical waveguide on the surface of the buffer layer 23 is
An electrode 24 made of a metal thin film such as U is formed by means such as spreading and plating.

しかし、図に示したような光導波路デバイスでは、電4
!i24と導波路基板21とは電気客用的に接続されて
いるので、印加される電界はバッファ層23による電圧
降下のために光導波路22に印加される電界は実効的に
小さくなり、効果的な印加が望めない。
However, in the optical waveguide device shown in the figure,
! Since the i24 and the waveguide substrate 21 are electrically connected, the applied electric field is effectively reduced due to the voltage drop caused by the buffer layer 23, and the electric field applied to the optical waveguide 22 is effectively reduced. I cannot hope for a strong impression.

また、数千人程度の厚さのパフフッ層に数十Vおいうは
七んど絶縁破壊に近い高電圧が印加されるため電荷の移
動にともなうドリフトが生じる。
In addition, since a high voltage of several tens of volts, which is close to dielectric breakdown, is applied to the puff layer with a thickness of several thousand, drift occurs due to the movement of charges.

すなわち、LiNb0.は強誘電体であるため、電界の
印加に対応して電荷が導波路表面に発生し、この電荷に
対応した逆極性の電荷が電極の底面近傍に外部から供給
される。このように電極底面近くに電荷がたまると、印
加電界に対して反対向きの電界が発生し、光デバイスの
動作点、例えば光スインチング素子におけるスイッチン
グに必要な電極間電圧が変動するといった問題が生じる
That is, LiNb0. Since it is a ferroelectric material, a charge is generated on the waveguide surface in response to the application of an electric field, and a charge of the opposite polarity corresponding to this charge is supplied from the outside near the bottom surface of the electrode. When charge accumulates near the bottom of the electrode, an electric field is generated in the opposite direction to the applied electric field, causing problems such as fluctuations in the operating point of the optical device, such as the interelectrode voltage required for switching in an optical switching element. .

本発明は、効率的な電界の印加とDCドリフトの防止が
可能な光導波路デバイスの提供を目的とする。
An object of the present invention is to provide an optical waveguide device that can efficiently apply an electric field and prevent DC drift.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1の光導波路デバイスは、その一実施例を第
1図に示すように、導波路基板上に形成された光導波路
と、前記導波路基板を被覆する第1の半導電性の膜と、
前記光導波路領域上の第1の半導電性の股上に形成され
たバッファ層と、さらに該バッファ層を被覆する第2の
半導電性の膜と、第2の半導電性の膜を介して前記バッ
ファ層上部に形成された電極とを有することを特徴とし
、本発明の光導波路デバイスの形成方法は、その一実施
例を第2図に示すように、光導波路を備える導波路基板
上に第1の半導電性の膜を形成する工程と、前記光導波
路領域上の第1の半導電性の股上にバッファ層を形成す
る工程と、該バッファ層および第1の半導電性の膜を被
覆する第2の半導電性の膜を形成する工程と、前記バッ
ファ層上部に位置する第2の半導電性の膜上に電極を形
成する工程とを有することを特徴とし、 さらに、本発明の第2の光導波路デバイスは、導波路基
板上に形成された光導波路と、該光導波路上に形成され
たバッファ層と、該バッファ層および前記導波路基板を
被覆する半導電性の膜と、該半導電性の股上に形成され
る′:S、tJiと含有することを特徴とし、上記目的
を達成する。
As an embodiment of the first optical waveguide device of the present invention is shown in FIG. a membrane;
a buffer layer formed on the first semiconducting crotch on the optical waveguide region, a second semiconducting film covering the buffer layer, and a second semiconducting film. An embodiment of the method for forming an optical waveguide device of the present invention is as shown in FIG. forming a first semiconducting film; forming a buffer layer on the crotch of the first semiconducting film on the optical waveguide region; The present invention further comprises the steps of forming a covering second semiconductive film and forming an electrode on the second semiconductive film located above the buffer layer. The second optical waveguide device includes an optical waveguide formed on a waveguide substrate, a buffer layer formed on the optical waveguide, and a semiconductive film covering the buffer layer and the waveguide substrate. , ':S, tJi formed on the semiconductive crotch, and achieves the above object.

〔作用〕[Effect]

本発明の光導波路デバイスでは、光導波路の上部に形成
される電極はバッファ層および半導電性の膜を介して電
気容量的に接続されるが、前記パフフッ層は光導波路の
上部のみに存在し、このバッファ層を半導電性の膜が被
覆するように形成され、該半導電性の膜がパスを形成す
るようになるので、電極と導波路基板間の電圧降下が小
さくなる。
In the optical waveguide device of the present invention, the electrodes formed on the top of the optical waveguide are capacitively connected via the buffer layer and the semiconductive film, but the puff layer is present only on the top of the optical waveguide. A semiconductive film is formed to cover this buffer layer, and since the semiconductive film forms a path, the voltage drop between the electrode and the waveguide substrate is reduced.

さらに、導波路基板と電極との間には電荷が動ける程度
に大きな抵抗を持つ半導電!1りが形成されているので
、導波路の表面に電荷のたまりが発生しても、これに対
応して電極に供給される電荷は半導電膜を介して一様に
分布される。
In addition, it is a semi-conductor with a resistance large enough to allow charge to move between the waveguide substrate and the electrode! 1 is formed, so even if charge accumulates on the surface of the waveguide, the corresponding charge supplied to the electrode is uniformly distributed via the semiconducting film.

[実施例] 第1図は、本発明の実施例に係る光導波路デバイスの構
成を示す斜視断面図である。
[Example] FIG. 1 is a perspective sectional view showing the configuration of an optical waveguide device according to an example of the present invention.

図において、lはLiNb0r基板、2は光導波路、3
はバッファ層としてのSiO2膜、4a、4bは半導電
膜としてのSi膜、5はAuよりなる電極である。
In the figure, l is a LiNb0r substrate, 2 is an optical waveguide, and 3 is a
4 is a SiO2 film as a buffer layer, 4a and 4b are Si films as semiconducting films, and 5 is an electrode made of Au.

以下、第2図に従って本発明の実施例に係る光導波路デ
バイスの形成工程を説明すると、LiNbO3基板lの
表基板形成されたTi蒸着膜を帯状にパターニング形成
した後、該Tiを導波路基板中に熱拡散して、LiNb
0z基板1よりも屈折率の大きい7μm程度の径を有す
る光導波路2を形成する(第2図(a))。
Hereinafter, the process of forming an optical waveguide device according to an embodiment of the present invention will be explained with reference to FIG. thermally diffused into LiNb
An optical waveguide 2 having a diameter of about 7 μm and having a larger refractive index than the 0z substrate 1 is formed (FIG. 2(a)).

次いで、光導波路2およびLiNb0z基板1を覆う第
1の半導電性の膜であるSi膜4aをスパッタにより3
00〜1000人程度形成する(第2図(b))。
Next, a Si film 4a, which is a first semiconducting film covering the optical waveguide 2 and the LiNb0z substrate 1, is deposited by sputtering.
00 to 1000 people (Figure 2(b)).

続いて、光導波路2の上方であって5iftW4aの上
にバッファ層となる膜厚2000〜4000人程度のS
iO□膜3を形成する(第2図(C))。
Next, a layer of S with a thickness of about 2000 to 4000 layers is formed above the optical waveguide 2 and on the 5iftW4a to serve as a buffer layer.
An iO□ film 3 is formed (FIG. 2(C)).

さらに、スパッタにより前記5i(h膜3 (バッファ
層)およびSi膜4a(第1の半導電性の膜)を被覆す
る第2の半導電性の膜である5illQ4bを形成する
(第2図(d))。
Furthermore, a second semiconductive film 5illQ4b is formed by sputtering to cover the 5i(h film 3 (buffer layer) and the Si film 4a (first semiconductive film) (see FIG. 2). d)).

最後に、Si膜4bの膜上で上記光導波路2の上部位置
に帯状、例えば幅が数μm、厚さ3μm程度のAu薄膜
からなる電極5を蒸着およびメツキ等の手段を用いて形
成すると、本発明の実施例に係る光機能デバイスが完成
する(第1図)。
Finally, an electrode 5 made of a thin Au film having a width of several μm and a thickness of about 3 μm is formed on the Si film 4b above the optical waveguide 2 using methods such as vapor deposition and plating. An optical functional device according to an embodiment of the present invention is completed (FIG. 1).

このように本発明の光導波路デバイスでは、バッファ層
きしてのSing膜3は光導波路2の上部のみに存在し
、該5in2膜3を被覆するようSi膜4bが形成され
ているので、′s、145とL i N b Os I
Is 4Filとの間にパスが形成されるようになり、
僅かな電流が流れるようになる。従って、電極5とLi
NbO5基板lとの基板体じる電圧降下は従来に比べて
小さくなるので、光導波路2に印加される電界は実効的
に大きくなる。
As described above, in the optical waveguide device of the present invention, the Sing film 3 serving as a buffer layer exists only on the upper part of the optical waveguide 2, and the Si film 4b is formed to cover the 5in2 film 3. s, 145 and L i N b Os I
A path is now formed between Is 4Fil,
A small amount of current will flow. Therefore, the electrode 5 and Li
Since the voltage drop across the substrate with respect to the NbO5 substrate 1 is smaller than in the conventional case, the electric field applied to the optical waveguide 2 is effectively increased.

さらに、Si膜4の存在により、光導波路2の表面に電
荷のたまりが発生した場合、これに対応して電極5に供
給される電荷はSi膜4を介して一様に分布されるので
、電荷の局所的な集中が防止される。
Furthermore, due to the presence of the Si film 4, when charges accumulate on the surface of the optical waveguide 2, the corresponding charges supplied to the electrodes 5 are uniformly distributed via the Si film 4. Local concentration of charge is prevented.

従って、DCドリフトの発生を防止し、かつ効果的な電
界印加が可能な光導波路デバイスの提供が可能になる。
Therefore, it is possible to provide an optical waveguide device that can prevent the occurrence of DC drift and can effectively apply an electric field.

第3図は他の実施例であり、この場合には第2図の作成
手順で(b)の5itK!4aの形成工程が省略されて
いるが、この方法でも電圧降下およびDCドリフトに対
して改善が行える。
FIG. 3 shows another example. In this case, the 5itK! Although the step of forming 4a is omitted, this method can also improve voltage drop and DC drift.

〔発明の効果〕〔Effect of the invention〕

本発明の光導波路デバイスによれば、バッファ層は光導
波路の上部のみに存在し、このバッファ層を被覆するよ
うに形成された半導電性の膜がパスを形成して電極と導
波路基板間の電圧降下を小さくする。従って、光導波路
に印加される電界は実効的に大きくなる。
According to the optical waveguide device of the present invention, the buffer layer exists only on the top of the optical waveguide, and the semiconductive film formed to cover the buffer layer forms a path between the electrode and the waveguide substrate. Reduce voltage drop. Therefore, the electric field applied to the optical waveguide becomes effectively large.

さらに、導波路基板と電極との間に形成された半導電膜
により、導波路の表面に電荷のたまりが発生した場合、
これに対応して電極に供給される電荷は半導電膜を介し
て一様に分布されるので、電荷の局所的な集中が防止さ
れる。
Furthermore, if charges accumulate on the surface of the waveguide due to the semiconducting film formed between the waveguide substrate and the electrode,
Correspondingly, the charges supplied to the electrodes are uniformly distributed through the semiconducting film, thereby preventing local concentration of charges.

従って、DCドリフトの発生を防止し、かつ効果的な電
界印加が可能な光1波路デバイスの従供が可能になる。
Therefore, it becomes possible to use an optical single wavepath device that can prevent the occurrence of DC drift and can effectively apply an electric field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る光導波路デバイスの構成
を示す斜視断面図、 第2図は本発明の実施例に係る光導波路デバイスの形成
工程説明図、 第3図は本発明の他の実施例に係る光導波路デバイスの
構成を示す斜視断面図、 第4図は従来例に係る光導波路5デバイスの構成を示す
斜視断面図である。 (符号の説明) 1・・・LiNb0.基板、 2・・・光導波路、 3・・・SiO□膜、 4 a、  4 b−5i膜、 5・・・電極。
FIG. 1 is a perspective cross-sectional view showing the configuration of an optical waveguide device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the formation process of an optical waveguide device according to an embodiment of the present invention, and FIG. FIG. 4 is a perspective sectional view showing the configuration of an optical waveguide device according to the conventional example. (Explanation of symbols) 1...LiNb0. Substrate, 2... Optical waveguide, 3... SiO□ film, 4 a, 4 b-5i film, 5... Electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)導波路基板上に形成された光導波路と、前記導波
路基板を被覆する第1の半導電性の膜と、前記光導波路
領域上の第1の半導電性の膜上に形成されたバッファ層
と、さらに該バッファ層を被覆する第2の半導電性の膜
と、第2の半導電性の膜を介して前記バッファ層上部に
形成された電極とを有することを特徴とする光導波路デ
バイス。
(1) An optical waveguide formed on a waveguide substrate, a first semiconducting film covering the waveguide substrate, and a first semiconducting film formed on the optical waveguide region. a second semiconductive film covering the buffer layer; and an electrode formed on the buffer layer via the second semiconductive film. Optical waveguide device.
(2)光導波路を備える導波路基板上に第1の半導電性
の膜を形成する工程と、前記光導波路領域上の第1の半
導電性の膜上にバッファ層を形成する工程と、該バッフ
ァ層および第1の半導電性の膜を被覆する第2の半導電
性の膜を形成する工程と、前記バッファ層上部に位置す
る第2の半導電性の膜上に電極を形成する工程とを有す
ることを特徴とする光導波路デバイスの形成方法。
(2) forming a first semiconductive film on a waveguide substrate including an optical waveguide; and forming a buffer layer on the first semiconductive film on the optical waveguide region; forming a second semiconducting film covering the buffer layer and the first semiconducting film, and forming an electrode on the second semiconducting film located above the buffer layer. A method for forming an optical waveguide device, comprising the steps of:
(3)導波路基板上に形成された光導波路と、該光導波
路上に形成されたバッファ層と、該バッファ層および前
記導波路基板を被覆する半導電性の膜と、該半導電性の
膜上に形成される電極とを有することを特徴とする光導
波路デバイス。
(3) an optical waveguide formed on a waveguide substrate; a buffer layer formed on the optical waveguide; a semiconductive film covering the buffer layer and the waveguide substrate; An optical waveguide device comprising an electrode formed on a film.
JP13391288A 1988-05-31 1988-05-31 Optical waveguide device and its forming method Granted JPH01302325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13391288A JPH01302325A (en) 1988-05-31 1988-05-31 Optical waveguide device and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13391288A JPH01302325A (en) 1988-05-31 1988-05-31 Optical waveguide device and its forming method

Publications (2)

Publication Number Publication Date
JPH01302325A true JPH01302325A (en) 1989-12-06
JPH0451812B2 JPH0451812B2 (en) 1992-08-20

Family

ID=15115999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13391288A Granted JPH01302325A (en) 1988-05-31 1988-05-31 Optical waveguide device and its forming method

Country Status (1)

Country Link
JP (1) JPH01302325A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644449A2 (en) * 1993-09-17 1995-03-22 Fujitsu Limited Dielectric optical waveguide device
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
EP0677765A3 (en) * 1990-03-02 1996-01-31 Fujitsu Ltd Optical waveguide device.
EP0713123A1 (en) * 1994-11-18 1996-05-22 Nec Corporation Optical control device
WO2013147129A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Optical waveguide element
US8712204B2 (en) 2011-03-17 2014-04-29 Ngk Insulators, Ltd. Optical modulation element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018280236A1 (en) 2017-06-07 2020-01-16 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
JP7319266B2 (en) 2017-11-13 2023-08-01 シファメド・ホールディングス・エルエルシー Intravascular fluid transfer devices, systems and methods of use
CN112004563A (en) 2018-02-01 2020-11-27 施菲姆德控股有限责任公司 Intravascular blood pump and methods of use and manufacture
EP3996797A4 (en) 2019-07-12 2023-08-02 Shifamed Holdings, LLC Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022605A2 (en) * 1990-03-02 2000-07-26 Fujitsu Limited Optical waveguide device
EP0677765A3 (en) * 1990-03-02 1996-01-31 Fujitsu Ltd Optical waveguide device.
EP1022605A3 (en) * 1990-03-02 2000-08-16 Fujitsu Limited Optical waveguide device
EP0644449A3 (en) * 1993-09-17 1995-09-20 Fujitsu Ltd Dielectric optical waveguide device.
EP0644449A2 (en) * 1993-09-17 1995-03-22 Fujitsu Limited Dielectric optical waveguide device
US5598490A (en) * 1993-09-17 1997-01-28 Fujitsu Limited Dielectric optical waveguide device
CN1037996C (en) * 1993-09-17 1998-04-08 富士通株式会社 Dielectric optical waveguide device
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
EP0713123A1 (en) * 1994-11-18 1996-05-22 Nec Corporation Optical control device
US5661830A (en) * 1994-11-18 1997-08-26 Nec Corporation Waveguide-type optical control device
US8712204B2 (en) 2011-03-17 2014-04-29 Ngk Insulators, Ltd. Optical modulation element
WO2013147129A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Optical waveguide element
JP2013210484A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Optical waveguide element
CN104204917A (en) * 2012-03-30 2014-12-10 住友大阪水泥股份有限公司 Optical waveguide element
US20150078701A1 (en) * 2012-03-30 2015-03-19 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element
CN104204917B (en) * 2012-03-30 2015-11-25 住友大阪水泥股份有限公司 Optical waveguide components
US9291838B2 (en) 2012-03-30 2016-03-22 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element

Also Published As

Publication number Publication date
JPH0451812B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JP2867560B2 (en) Optical waveguide device
JP3628342B2 (en) Dielectric optical waveguide device
JPH01302325A (en) Optical waveguide device and its forming method
JPH07199134A (en) Structure and method for photoelecton device for reducing temperature effect in lightguide modulator
JP2002229060A (en) Reflection-type display device and method of manufacturing the same
JPH0578016B2 (en)
JPH0422485B2 (en)
JPH09211402A (en) Broad-band light modulator
JPH1039266A (en) Optical control device
JP2730129B2 (en) Thin film transistor
US4714312A (en) Electrostatically biased electrooptical devices
US6480633B1 (en) Electro-optic device including a buffer layer of transparent conductive material
JP2581731B2 (en) Waveguide optical device and method of manufacturing the same
JPS61198106A (en) Optical waveguide forming method
JPS6161659B2 (en)
JPH0251124A (en) Optical waveguide progressive wave electrode
JPH0653506A (en) Thin-film transistor
JPH09222589A (en) Optical control element and its production
JPH10104559A (en) Optical waveguide device
JPH09269469A (en) Optical waveguide device
JPH01204020A (en) Formation of optical waveguide traveling wave electrode
JP3134298B2 (en) Method for manufacturing light control device
JP2671586B2 (en) Light control device
JP2545701B2 (en) Method for manufacturing waveguide optical device
JPS59214020A (en) Optical switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees