JP2545701B2 - Method for manufacturing waveguide optical device - Google Patents

Method for manufacturing waveguide optical device

Info

Publication number
JP2545701B2
JP2545701B2 JP6198721A JP19872194A JP2545701B2 JP 2545701 B2 JP2545701 B2 JP 2545701B2 JP 6198721 A JP6198721 A JP 6198721A JP 19872194 A JP19872194 A JP 19872194A JP 2545701 B2 JP2545701 B2 JP 2545701B2
Authority
JP
Japan
Prior art keywords
substrate
waveguide
optical device
film body
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6198721A
Other languages
Japanese (ja)
Other versions
JPH07140430A (en
Inventor
一平 佐脇
實 清野
啓幾 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6198721A priority Critical patent/JP2545701B2/en
Publication of JPH07140430A publication Critical patent/JPH07140430A/en
Application granted granted Critical
Publication of JP2545701B2 publication Critical patent/JP2545701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焦電効果を有する基板
に形成された光導波路を利用して構成される例えば光ス
イッチング素子等の導波路光デバイスの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a waveguide optical device such as an optical switching element which is constructed by using an optical waveguide formed on a substrate having a pyroelectric effect.

【0002】[0002]

【従来の技術】導波路光デバイスは、駆動電圧が低く、
高速動作が可能であって、しかも小型集積化を図る上で
も有望である。しかしながら、LiNbO3 (リチウム
ナイオベイト)のような焦電効果すなわち自発分極を有
する結晶を基板に用いて、その基板にTi(チタン)等
の拡散層を形成して導波路を構成したものにおいては、
温度変化によって、焦電効果に基づく電荷が基板表面に
発生し、その電荷分布が一様でないため、導波路光デバ
イスとしての動作特性(例えばスイッチング特性等)が
変動してしまうという問題があった。
2. Description of the Related Art A waveguide optical device has a low driving voltage,
It is capable of high-speed operation and is promising in terms of miniaturization and integration. However, in the case where a crystal having a pyroelectric effect, that is, spontaneous polarization, such as LiNbO 3 (lithium niobate) is used as a substrate and a diffusion layer such as Ti (titanium) is formed on the substrate to form a waveguide, ,
Due to the temperature change, charges due to the pyroelectric effect are generated on the surface of the substrate, and the charge distribution is not uniform, which causes a problem that the operating characteristics (for example, switching characteristics) as a waveguide optical device fluctuate. .

【0003】図4は従来の導波路光デバイス(ここには
一例として光スイッチング素子を示す)の斜視図であ
り、図5(a)はそのA−A断面図である。この導波路
光デバイスは、Z板LiNbO3 からなる基板1にTi
拡散層2を形成して光導波路とし、その上面に光導波路
よりも低屈折率の透明絶縁膜であるSiO2 からなるバ
ッファ層3を形成し、更にその上面に例えばAl(アル
ミニウム)からなる複数の電極4を適当な間隔で適宜配
置したものである。このような構成からなる導波路光デ
バイスの温度を上げていくと、図5(b)に示すよう
に、Z板LiNbO3 基板1はその焦電効果により分極
の状態が変化するので、この基板1の表面に生じた電荷
(図では+電荷)に対応する逆電荷(図では−電荷)が
電極4の底面に外部から供給されることになる。する
と、基板1内には、電極4のない電極間部分から電極4
のある電極部分へ向けて図示の如く無用の電界5が発生
する。導波路光デバイスは、電極間に電界を印加するこ
とによりTi拡散層2からなる光導波路の屈折率を変化
させて、例えば光路のスイッチング動作等を行うもので
あるから、昇温によって上記の無用の電界5が発生する
と、その電界に基づく無用な電気光学的効果により屈折
率が変化して、導波路光デバイスの動作点が変動してし
まい、その動作特性(例えばスイッチング特性)に大き
な悪影響を与えてしまう。
FIG. 4 is a perspective view of a conventional waveguide optical device (here, an optical switching element is shown as an example), and FIG. 5A is a sectional view taken along line AA. This waveguide optical device comprises a substrate 1 made of a Z plate LiNbO 3 and a Ti substrate.
A diffusion layer 2 is formed as an optical waveguide, a buffer layer 3 made of SiO 2 which is a transparent insulating film having a refractive index lower than that of the optical waveguide is formed on the upper surface thereof, and a plurality of Al (aluminum) layers are formed on the upper surface thereof. The electrodes 4 are appropriately arranged at appropriate intervals. When the temperature of the waveguide optical device having such a configuration is raised, as shown in FIG. 5B, the Z-plate LiNbO 3 substrate 1 changes its polarization state due to its pyroelectric effect. The reverse charge (−charge in the figure) corresponding to the charge (+ charge in the figure) generated on the surface of 1 is supplied to the bottom surface of the electrode 4 from the outside. Then, in the substrate 1, from the interelectrode portion where there is no electrode 4 to the electrode 4
A useless electric field 5 is generated toward the electrode portion having a gap as shown in the figure. The waveguide optical device changes the refractive index of the optical waveguide formed of the Ti diffusion layer 2 by applying an electric field between the electrodes to perform, for example, a switching operation of the optical path. When the electric field 5 is generated, the refractive index changes due to an unnecessary electro-optical effect based on the electric field, and the operating point of the waveguide optical device fluctuates, which has a great adverse effect on the operating characteristics (for example, switching characteristics). Will give.

【0004】従って、従来はこの温度変化に伴う特性変
動を防止するため、光導波路の構成及び電極の構成等を
温度変化に鈍感な構成としている場合が多い。
Therefore, conventionally, in order to prevent the characteristic fluctuation due to the temperature change, the structure of the optical waveguide and the electrode are often made insensitive to the temperature change.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ように温度変化に鈍感な構成としたのでは、素子構造が
限定される上に、温度変化による動作特性の変動を充分
には防止できないという問題があった。
However, the structure which is insensitive to the temperature change as described above has a problem that the device structure is limited and the change of the operating characteristics due to the temperature change cannot be sufficiently prevented. was there.

【0006】本発明の目的は、焦電効果により基板表面
に発生する分極電荷が動作特性に悪影響を与えることを
充分に防止可能な導波路光デバイスの製造方法を提供す
ることにある。
It is an object of the present invention to provide a method of manufacturing a waveguide optical device capable of sufficiently preventing the polarization charge generated on the substrate surface due to the pyroelectric effect from adversely affecting the operating characteristics.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、焦電効果を有する基板上に光導波路を作成した後、
該光導波路を含む基板上面に該光導波路よりも屈折率の
低い透明なバッファ層を作成し、しかる後に該バッファ
層上に複数の電極を作成し、更に、前記基板に生じる分
極による電荷に対応して逆電荷を供給できると共に電極
間の実質的な導通を阻止する抵抗値を有する膜体を、前
記電極上面から前記基板上面を全面覆う形でコーティン
グするようにしたものである。
According to a first aspect of the present invention, after an optical waveguide is formed on a substrate having a pyroelectric effect,
A transparent buffer layer having a refractive index lower than that of the optical waveguide is formed on the upper surface of the substrate including the optical waveguide, and then a plurality of electrodes are formed on the buffer layer, and further, a charge due to polarization generated on the substrate is dealt with. Then, a film body having a resistance value capable of supplying reverse charges and preventing substantial conduction between electrodes is coated so as to cover the entire surface of the substrate from the upper surface of the electrode.

【0008】請求項2に記載の発明は、焦電効果を有す
る基板上に光導波路を作成した後、該光導波路を含む基
板上面に該光導波路よりも屈折率の低い透明なバッファ
層を作成し、しかる後に該透明なバッファ層上に、後に
形成する複数の電極の電極間の実質的な導通を阻止する
抵抗値で前記基板に生じる分極による電荷に対応して逆
電荷を供給できる抵抗値の膜体をコーティングし、更
に、該膜体上に該複数の電極を作成するようにしたもの
である。
According to a second aspect of the present invention, after forming an optical waveguide on a substrate having a pyroelectric effect, a transparent buffer layer having a refractive index lower than that of the optical waveguide is formed on an upper surface of the substrate including the optical waveguide. Then, on the transparent buffer layer, a resistance value capable of supplying a reverse charge corresponding to a charge due to polarization generated in the substrate with a resistance value that substantially prevents conduction between electrodes of a plurality of electrodes to be formed later. The film body is coated, and the plurality of electrodes are further formed on the film body.

【0009】[0009]

【作用】本発明の製造方法によれば、基板上に少なくと
も電極間であって電極の設けられていない部分に、これ
ら電極に共に接触するような独自の膜体(この膜体は、
基板に生じる分極による電荷に対応して逆電荷を供給で
きると共に電極間の実質的の導通を阻止する抵抗値を有
している)を備えた構成が得られる。このような構成で
あれば、たとえ焦電効果によって基板表面に分極電荷が
発生したとしても、電極のない電極間に上記膜体が存在
することから、電極のある電極部分と電極のない電極間
部分(ここには膜体がある)のどちらにも上記分極電荷
に対応した逆電荷が均一に供給され、その結果、分極電
荷の影響が電極部分と電極間部分とで均質化されて、従
来のような無用の電界は発生せず、よって、温度変化に
対して極めて安定した動作特性のデバイスが得られる。
According to the manufacturing method of the present invention, an original film body (this film body is formed on the substrate, at least between the electrodes and where the electrodes are not provided) is in contact with the electrodes.
It is possible to supply a reverse charge corresponding to the charge due to the polarization generated in the substrate and to have a resistance value that prevents substantial conduction between the electrodes). With such a configuration, even if polarization charges are generated on the substrate surface due to the pyroelectric effect, the film body is present between the electrodes without electrodes, and therefore the electrode portion with electrodes and the electrode without electrodes are The opposite charge corresponding to the polarization charge is uniformly supplied to both of the parts (here, the film body), and as a result, the influence of the polarization charge is homogenized between the electrode part and the inter-electrode part. Such an unnecessary electric field is not generated, and thus a device having extremely stable operation characteristics with respect to temperature changes can be obtained.

【0010】[0010]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。図1(a)は、本発明の第1実施例
の製造方法によって得られた導波路光デバイスの断面図
である。この導波路光デバイスは、後述の本実施例の特
徴点を除き、図4に示した光スイッチング素子と同様な
基本構造を有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a sectional view of a waveguide optical device obtained by the manufacturing method according to the first embodiment of the present invention. This waveguide optical device has the same basic structure as the optical switching element shown in FIG. 4, except for the characteristic points of this embodiment described later.

【0011】本実施例では、まず、焦電効果を有する基
板の一例としてZ板LiNbO3 からなる基板1に、T
i拡散層2を所定のパターンに形成して、このTi拡散
層2をその周囲よりも屈折率の高い光導波路とする。図
4の例では、2本の直線導波路が交差したパターンとな
っている。その後、その上面に、Ti拡散層(光導波
路)2よりも低屈折率の透明絶縁膜であるSiO2 から
なるバッファ層3を例えば2000Å程度の厚さに一様
に形成してから、更にその上面に例えば厚さ3000Å
程度のAlからなる複数の電極4を所定のパターンに形
成する。図4の例では、2本のTi拡散層(光導波路)
2の交差部の真上に1つの電極4が配置され、この電極
4を両側から挟む形で他の電極4が所定距離隔てて配置
されており、中央の電極4とその両側の電極4との間に
所定電圧を印加可能に構成されている。
In the present embodiment, first, as an example of a substrate having a pyroelectric effect, a substrate 1 made of a Z plate LiNbO 3 is provided with T
The i diffusion layer 2 is formed in a predetermined pattern, and this Ti diffusion layer 2 is used as an optical waveguide having a higher refractive index than its surroundings. In the example of FIG. 4, two linear waveguides intersect each other. After that, a buffer layer 3 made of SiO 2 which is a transparent insulating film having a refractive index lower than that of the Ti diffusion layer (optical waveguide) 2 is uniformly formed on the upper surface thereof to a thickness of, for example, about 2000 Å, and For example, a thickness of 3000Å on the upper surface
A plurality of electrodes 4 made of Al having a certain degree are formed in a predetermined pattern. In the example of FIG. 4, two Ti diffusion layers (optical waveguide)
One electrode 4 is arranged directly above the intersection of two, and the other electrode 4 is arranged with a predetermined distance so that the electrode 4 is sandwiched from both sides, and the central electrode 4 and the electrodes 4 on both sides thereof are arranged. A predetermined voltage can be applied between the two.

【0012】更に、本実施例では、電極4上面からバッ
ファ層3上面を介し基板1上の全面を覆う形で、例えば
厚さ1000Å程度のITO膜からなる所定の膜体6を
スパッタリング等によりコーティングする。この膜体6
の抵抗値は、基板1に生じる分極による電荷に対応して
逆電荷を供給できる範囲内であって、かつ、電極4、4
間の実質的な導通を阻止しうる範囲内に設定されてい
る。例えば、隣接する電極4、4間のギャップを5μ
m、電極4の長さ(図1の紙面に対し垂直な方向の長
さ)を10mm、膜体6の厚さを上記の通り1000Å
とすると、電極4、4間に存在する膜体6の抵抗は例え
ば10〜1010Ωに設定される。
Further, in this embodiment, a predetermined film body 6 made of, for example, an ITO film having a thickness of about 1000Å is coated by sputtering or the like so as to cover the entire surface of the substrate 1 from the upper surface of the electrode 4 through the upper surface of the buffer layer 3. To do. This film body 6
Has a resistance value within a range capable of supplying a reverse charge corresponding to the charge due to the polarization generated on the substrate 1, and the electrodes 4, 4
It is set within a range that can prevent substantial conduction between them. For example, the gap between the adjacent electrodes 4 and 4 is 5 μm.
m, the length of the electrode 4 (length in the direction perpendicular to the paper surface of FIG. 1) is 10 mm, and the thickness of the film body 6 is 1000Å as described above.
Then, the resistance of the film body 6 existing between the electrodes 4 and 4 is set to, for example, 10 to 10 10 Ω.

【0013】このようにして本実施例によって作成され
た図1の導波路光デバイスは、バッファ層3上に電極
4、4間であって電極4の設けられていない部分(電極
間部分)に、これら電極4、4に共に接触する所定抵抗
値の膜体6を備えることになる。このような構成のデバ
イスによれば、隣接する電極4,4間の抵抗を、従来の
1013Ω以上から、上述のように10〜1010Ωにまで
下げることが可能となる。その結果、図1(b)に示す
ように、たとえデバイスの温度が上昇し、基板1表面に
焦電効果によって分極電荷(図では+電荷)が発生した
としても、電極4、4間に上記膜体6が存在することか
ら、各電極4と電極4、4間の膜体6のどちらにも、基
板1に生じた上記分極電荷に対応した逆電荷(図では−
電荷)が均一に供給される。そのため、分極電荷の影響
が電極部分と電極間部分とで均質化されて、従来のよう
な無用の電界(図5(b)に示した電界5)の発生を防
止でき、その結果、温度変化に対し極めて安定した動作
特性を持つ導波路光デバイスを実現できる。
The waveguide optical device of FIG. 1 thus manufactured according to the present embodiment is provided on the buffer layer 3 between the electrodes 4 and 4 in a portion where the electrode 4 is not provided (interelectrode portion). The film body 6 having a predetermined resistance value is provided so as to come into contact with the electrodes 4 and 4 together. According to the device having such a configuration, the resistance between the adjacent electrodes 4 and 4 can be reduced from the conventional value of 10 13 Ω or more to 10 to 10 10 Ω as described above. As a result, as shown in FIG. 1B, even if the device temperature rises and polarization charge (+ charge in the figure) is generated on the surface of the substrate 1 by the pyroelectric effect, Since the film body 6 is present, the reverse charge (− in the figure −) corresponding to the polarization charge generated on the substrate 1 is applied to both the electrodes 4 and the film body 6 between the electrodes 4 and 4.
Electric charge) is uniformly supplied. Therefore, the influence of the polarization charge is homogenized in the electrode portion and the inter-electrode portion, and it is possible to prevent the useless electric field (electric field 5 shown in FIG. 5B) from occurring as in the conventional case, and as a result, the temperature change. In contrast, a waveguide optical device having extremely stable operation characteristics can be realized.

【0014】図2は、本発明の第2実施例の製造方法に
よって得られた導波路光デバイスの断面図である。この
導波路光デバイスも、後述の本実施例の特徴点を除き、
図4に示した光スイッチング素子と同様な基本構造を有
している。
FIG. 2 is a sectional view of a waveguide optical device obtained by the manufacturing method of the second embodiment of the present invention. This waveguide optical device is also the same except for the features of this embodiment described later.
It has the same basic structure as the optical switching element shown in FIG.

【0015】本実施例では、まず前記第1実施例と同様
にして、Z板LiNbO3 からなる基板1に光導波路と
してのTi拡散層2を形成し、その上面にSiO2 から
なるバッファ層3を一様に形成する。その後、電極を形
成する前に、バッファ層3の全面を覆う形で、厚さ10
00Å程度のITO膜からなる所定の膜体7をスパッタ
リング等によりコーティングする。この膜体7の抵抗値
も、前記第1実施例で用いた膜体6と同様、基板1に生
じる分極による電荷に対応して逆電荷を供給できる範囲
内であって、かつ、電極4、4間の実質的な導通を阻止
しうる範囲内に設定されている。そして最後に、膜体7
の上面に、Alからなる複数の電極4を前記第1実施例
と同様に形成する。
In this embodiment, first, similarly to the first embodiment, a Ti diffusion layer 2 as an optical waveguide is formed on a substrate 1 made of Z plate LiNbO 3 , and a buffer layer 3 made of SiO 2 is formed on the upper surface thereof. Are formed uniformly. After that, before forming the electrodes, a thickness of 10 is formed so as to cover the entire surface of the buffer layer 3.
A predetermined film body 7 made of an ITO film of about 00Å is coated by sputtering or the like. Similarly to the film body 6 used in the first embodiment, the resistance value of the film body 7 is also within a range in which the reverse charge can be supplied corresponding to the charge due to the polarization generated in the substrate 1, and the electrode 4, It is set within a range that can prevent substantial conduction between the four. And finally, the film body 7
A plurality of electrodes 4 made of Al are formed on the upper surface of the same as in the first embodiment.

【0016】このようにして本実施例によって作成され
た図2の導波路光デバイスは、バッファ層3上の電極
4、4間であって電極4の設けられていない部分(電極
間部分)だけでなく、各電極4の直下にも、これら電極
4、4に共に接触する所定抵抗値の膜体7を備えること
になる。このような構成のデバイスによれば、たとえデ
バイスの温度が上昇し、基板1表面に焦電効果によって
分極電荷が発生したとしても、電極4直下及び電極4、
4間に上記膜体7が一様に存在することから、この膜体
7には、基板1に生じた上記分極電荷に対応した逆電荷
が前記第1実施例の場合よりも一層均一に供給される。
そのため、分極電荷の影響が電極部分と電極間部分とで
一段と均質化されて、無用の電界の発生をより有効に防
止でき、その結果、温度変化に対し著しく安定した動作
特性を持つ導波路光デバイスを実現できる。
In the waveguide optical device of FIG. 2 thus manufactured according to this embodiment, only the portion between the electrodes 4 and 4 on the buffer layer 3 where the electrode 4 is not provided (interelectrode portion). Instead, the film body 7 having a predetermined resistance value is provided directly below each electrode 4 so as to come into contact with the electrodes 4 and 4. According to the device having such a configuration, even if the temperature of the device rises and polarization charge is generated on the surface of the substrate 1 by the pyroelectric effect,
Since the film body 7 is uniformly present between the four portions, the reverse charge corresponding to the polarization charge generated on the substrate 1 is supplied to the film body 7 more uniformly than in the case of the first embodiment. To be done.
Therefore, the influence of the polarization charge is further homogenized in the electrode part and the part between the electrodes, and it is possible to more effectively prevent the generation of an unnecessary electric field, and as a result, the waveguide light having a remarkably stable operation characteristic against temperature changes. Device can be realized.

【0017】図3は、本発明の実施例によって得られた
デバイスにおける温度変化と動作点変動との関係(図中
にBで示す)を、従来のデバイスにおける同様な関係
(図中にAで示す)と比較して示したものである。IT
O膜体6、7等を有さない従来のデバイスでは、特性A
として示すように、温度変化に応じて動作点が大きく変
動することがわかる。これに対し、ITO膜体6、7等
を備えたデバイスでは、特性Bとして示すように、温度
が変化しても動作点にはほとんど変動が見られないこと
がわかる。このように、本発明によれば、導波路光デバ
イスの温度特性を著しく改善することが可能となる。
FIG. 3 shows a similar relationship (indicated by A in the figure) between the temperature change and the operating point variation in the device obtained by the embodiment of the present invention (indicated by B in the figure). Shown) in comparison with the above. IT
In the conventional device without the O film bodies 6 and 7, the characteristic A
As shown by, it can be seen that the operating point fluctuates greatly according to the temperature change. On the other hand, in the device provided with the ITO film bodies 6 and 7, as shown by the characteristic B, it can be seen that the operating point hardly changes even if the temperature changes. As described above, according to the present invention, it is possible to significantly improve the temperature characteristics of the waveguide optical device.

【0018】なお、上記実施例では膜体6、7としてI
TO膜を用いたが、これに限定されるものではなく、基
板に生じる分極電荷に対応して逆電荷を供給できると共
に電極間の実質的な導通を阻止する抵抗値を有するもの
であれば、その他各種の材料を使用可能である。例え
ば、上記抵抗値の範囲内で、SnO2 膜やSi膜を使用
することもでき、或いは、SiO2 膜に金属をドーピン
グした材料であってもよく、更には静電防止材を使用す
ることも可能である。
In the above embodiment, the film bodies 6 and 7 are I
Although the TO film is used, the present invention is not limited to this, as long as it can supply the reverse charge corresponding to the polarization charge generated on the substrate and has a resistance value that prevents substantial conduction between the electrodes. Various other materials can be used. For example, a SnO 2 film or a Si film may be used within the range of the above resistance value, or a material obtained by doping a SiO 2 film with a metal may be used, and an antistatic material may be used. Is also possible.

【0019】また、基板もZ板LiNbO3 基板に限定
されるものではなく、焦電効果を有する結晶体からなる
基板であれば、その他の基板も採用可能である。バッフ
ァ層の材料も、光導波路よりも屈折率の低い透明な絶縁
膜であれば、各種のものを使用できる。電極材料もAl
以外の様々な導電性材料を使用可能であり、また、光導
波路を形成する際の拡散物質もTiに限定されることは
ない。
The substrate is not limited to the Z-plate LiNbO 3 substrate, and any other substrate can be used as long as it is a substrate made of a crystal having a pyroelectric effect. As the material of the buffer layer, various materials can be used as long as they are transparent insulating films having a refractive index lower than that of the optical waveguide. The electrode material is also Al
Various other conductive materials can be used, and the diffusing material used to form the optical waveguide is not limited to Ti.

【0020】[0020]

【発明の効果】本発明によれば、基板上の少なくとも電
極間に所定抵抗値の独自の膜体を備えた構成の導波路光
デバイスが得られるので、たとえ基板表面に焦電効果に
よって分極電荷が発生したとしても、電極部分と電極間
部分のどちらにも上記分極電荷に対応した逆電荷を供給
することができ、その結果、分極電荷の影響が全体的に
均質化されることになり、よって、温度変化に対しても
極めて安定した動作特性を持つ導波路光デバイスを実現
することができる。
According to the present invention, a waveguide optical device having a unique film body having a predetermined resistance value between at least electrodes on a substrate can be obtained. Even if occurs, it is possible to supply the opposite charge corresponding to the polarization charge to both the electrode portion and the inter-electrode portion, and as a result, the influence of the polarization charge is entirely homogenized, Therefore, it is possible to realize a waveguide optical device having extremely stable operation characteristics even with temperature changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1実施例の製造方法によっ
て得られた導波路光デバイスの断面図であり、(b)は
昇温に伴ってデバイス内に生じる均一な電荷分布を示す
図である。
FIG. 1 (a) is a cross-sectional view of a waveguide optical device obtained by a manufacturing method according to a first embodiment of the present invention, and FIG. 1 (b) shows a uniform charge distribution generated in the device as the temperature rises. FIG.

【図2】本発明の第2実施例の製造方法によって得られ
た導波路光デバイスの断面図である。
FIG. 2 is a sectional view of a waveguide optical device obtained by a manufacturing method according to a second embodiment of the present invention.

【図3】本発明の実施例によって得られたデバイスにお
ける温度変化と動作点変動との関係を、従来のデバイス
における同様な関係と比較して示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a temperature change and an operating point fluctuation in a device obtained according to an example of the present invention in comparison with a similar relationship in a conventional device.

【図4】従来の導波路光デバイス(ここには一例として
光スイッチング素子を示す)の斜視図である。
FIG. 4 is a perspective view of a conventional waveguide optical device (here, an optical switching element is shown as an example).

【図5】(a)は図4に示した従来の導波路光デバイス
のA−A断面図であり、(b)は昇温に伴ってデバイス
内に生じる不均一な電荷分布を示す図である。
5A is a cross-sectional view taken along the line AA of the conventional waveguide optical device shown in FIG. 4, and FIG. 5B is a diagram showing a non-uniform charge distribution generated in the device as the temperature rises. is there.

【符号の説明】[Explanation of symbols]

1 基板 2 拡散層(光導波路) 3 バッファ層 4 電極 5 電界 6、7 膜体 1 substrate 2 diffusion layer (optical waveguide) 3 buffer layer 4 electrode 5 electric field 6 and 7 film body

フロントページの続き (56)参考文献 特開 昭55−69122(JP,A) 特開 昭56−165122(JP,A) 特開 昭61−240227(JP,A) 特開 昭55−35476(JP,A)Continuation of the front page (56) Reference JP-A-55-69122 (JP, A) JP-A-56-165122 (JP, A) JP-A 61-240227 (JP, A) JP-A-55-35476 (JP , A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焦電効果を有する基板(1)上に光導波
路(2)を作成した後、該光導波路を含む基板上面に該
光導波路よりも屈折率の低い透明なバッファ層(3)を
作成し、しかる後に該バッファ層上に複数の電極(4)
を作成し、更に、前記基板に生じる分極による電荷に対
応して逆電荷を供給できると共に電極間の実質的な導通
を阻止する抵抗値を有する膜体(6)を、前記電極上面
から前記基板上面を全面覆う形でコーティングすること
を特徴とする導波路光デバイスの製造方法。
1. A transparent buffer layer (3) having a refractive index lower than that of the optical waveguide after the optical waveguide (2) is formed on the substrate (1) having a pyroelectric effect. And then a plurality of electrodes (4) on the buffer layer
And a film body (6) having a resistance value capable of supplying a reverse charge corresponding to a charge due to polarization generated on the substrate and blocking a substantial conduction between electrodes from the upper surface of the electrode to the substrate. A method for manufacturing a waveguide optical device, characterized by coating the entire upper surface.
【請求項2】 焦電効果を有する基板(1)上に光導波
路(2)を作成した後、該光導波路を含む基板上面に該
光導波路よりも屈折率の低い透明なバッファ層(3)を
作成し、しかる後に該透明なバッファ層上に、後に形成
する複数の電極の電極間の実質的な導通を阻止する抵抗
値で前記基板に生じる分極による電荷に対応して逆電荷
を供給できる抵抗値の膜体を前記基板上面を全面覆う形
コーティングし、更に、該膜体上に該複数の電極
(4)を作成することを特徴とする導波路光デバイスの
製造方法。
2. After forming an optical waveguide (2) on a substrate (1) having a pyroelectric effect, a transparent buffer layer (3) having a refractive index lower than that of the optical waveguide on the upper surface of the substrate including the optical waveguide. Then, a reverse electric charge can be supplied to the transparent buffer layer corresponding to the electric charge due to polarization generated in the substrate with a resistance value that prevents substantial conduction between the plurality of electrodes to be formed later. A structure in which a film body having a resistance value covers the entire upper surface of the substrate.
And a plurality of electrodes (4) are formed on the film body, which is a method for manufacturing a waveguide optical device.
【請求項3】 前記膜体はITOからなる透明導電膜で
あることを特徴とする請求項1又は2記載の導波路光デ
バイスの製造方法。
3. The method of manufacturing a waveguide optical device according to claim 1, wherein the film body is a transparent conductive film made of ITO.
【請求項4】 前記膜体はSnO2 の透明導電膜からな
ることを特徴とする請求項1又は2記載の導波路光デバ
イスの製造方法。
4. The method of manufacturing a waveguide optical device according to claim 1, wherein the film body is made of a transparent conductive film of SnO 2 .
【請求項5】 前記膜体はSiからなることを特徴とす
る請求項1又は2記載の導波路光デバイスの製造方法。
5. The method of manufacturing a waveguide optical device according to claim 1, wherein the film body is made of Si.
【請求項6】 前記膜体はSiO2 に金属をドーピング
した材料からなることを特徴とする請求項1又は2記載
の導波路光デバイスの製造方法。
6. The method of manufacturing a waveguide optical device according to claim 1, wherein the film body is made of a material obtained by doping SiO 2 with a metal.
【請求項7】 前記膜体は静電防止材からなることを特
徴とする請求項1又は2記載の導波路光デバイスの製造
方法。
7. The method of manufacturing a waveguide optical device according to claim 1, wherein the film body is made of an antistatic material.
【請求項8】 前記基板はLiNbO3 からなることを
特徴とする請求項1乃至7のいずれか1つに記載の導波
路光デバイスの製造方法。
8. The method of manufacturing a waveguide optical device according to claim 1, wherein the substrate is made of LiNbO 3 .
JP6198721A 1994-08-23 1994-08-23 Method for manufacturing waveguide optical device Expired - Lifetime JP2545701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6198721A JP2545701B2 (en) 1994-08-23 1994-08-23 Method for manufacturing waveguide optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6198721A JP2545701B2 (en) 1994-08-23 1994-08-23 Method for manufacturing waveguide optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21402485A Division JPS6273207A (en) 1985-09-27 1985-09-27 Optical waveguide device

Publications (2)

Publication Number Publication Date
JPH07140430A JPH07140430A (en) 1995-06-02
JP2545701B2 true JP2545701B2 (en) 1996-10-23

Family

ID=16395901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6198721A Expired - Lifetime JP2545701B2 (en) 1994-08-23 1994-08-23 Method for manufacturing waveguide optical device

Country Status (1)

Country Link
JP (1) JP2545701B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149110A (en) * 1980-04-22 1981-11-18 Fujitsu Ltd Elastic surface wave device

Also Published As

Publication number Publication date
JPH07140430A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
KR960014498B1 (en) Active matrix lcd cell giving bright image and panel having active matrix lcd cell
US5995187A (en) Liquid crystal display device in-plane-switching system with counter electrode in contact with liquid crystal
US6522380B2 (en) Liquid crystal display having high transmittance and high aperture ratio
US7259821B2 (en) In-plane switching LCD device
US4869576A (en) Liquid-crystal display device employing a common electrode consisting of interconnected common electrode sections
KR100710120B1 (en) Active matrix type liquid crystal display apparatus
US5426523A (en) Liquid crystal display having a light blocking film on stepped portions
US6486934B2 (en) Method for manufacturing fringe field switching mode liquid crystal display device
JPH0422485B2 (en)
US4787712A (en) Active matrix liquid crystal display device having capacitive electrodes opposite the source buses
JPH0578016B2 (en)
JP2545701B2 (en) Method for manufacturing waveguide optical device
JPH0333720A (en) Matrix liquid crystal display device
JPH0734049B2 (en) Waveguide optical device
US4722597A (en) Electrooptic shutter array element
JPH05181149A (en) Electrode structure of liquid crystal display element
JP3125311B2 (en) Electro-optical device
JP2543696B2 (en) Electro-optical device
JPH07159743A (en) Optical waveguide element
JPH10228032A (en) Active matrix type liquid crystal display device
KR100675924B1 (en) LCD having high aperture ratio and high transmittance
JPH0588125A (en) Optical waveguide and its manufacture
KR890003631B1 (en) The element of liquid crystal using conducting spacer
JPH0361932B2 (en)
JP3657713B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960521

EXPY Cancellation because of completion of term