JPS6161659B2 - - Google Patents

Info

Publication number
JPS6161659B2
JPS6161659B2 JP5233282A JP5233282A JPS6161659B2 JP S6161659 B2 JPS6161659 B2 JP S6161659B2 JP 5233282 A JP5233282 A JP 5233282A JP 5233282 A JP5233282 A JP 5233282A JP S6161659 B2 JPS6161659 B2 JP S6161659B2
Authority
JP
Japan
Prior art keywords
electrode
light
optical switch
terminal
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5233282A
Other languages
Japanese (ja)
Other versions
JPS58171024A (en
Inventor
Yoshikazu Hori
Yoji Fukuda
Yoshinobu Tsujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5233282A priority Critical patent/JPS58171024A/en
Publication of JPS58171024A publication Critical patent/JPS58171024A/en
Publication of JPS6161659B2 publication Critical patent/JPS6161659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、光通信又は光導波路の分野で利用さ
れ、光信号の変調、あるいは光信号の伝達方向を
制御する光制御型光スイツチに関するものであ
り、特に光により、信号光を制御することの可能
な光制御型光スイツチを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optically controlled optical switch that is used in the field of optical communications or optical waveguides and that modulates optical signals or controls the transmission direction of optical signals. The present invention provides a light control type optical switch that can control signal light.

本発明はスイツチング時間、特に光制御型の光
スイツチの遮断時間を改善することを目的とす
る。
The object of the invention is to improve the switching time, in particular the cut-off time of optically controlled optical switches.

従来の光制御型光スイツチの構成は第1図に示
すごとくであり、LiNbO3を用いた全反射型の光
スイツチと、CdTe斜め蒸着による光起電力膜に
より構成されている。すなわち、1はLiNbO3
りなる電気光学効果を有する誘電体基板、2は
Tiが拡散されることにより形成された光導波
路、3はCdTeの光起電力膜、4は金属電極であ
る。
The configuration of a conventional light-controlled optical switch is as shown in FIG. 1, and is composed of a total reflection type optical switch using LiNbO 3 and a photovoltaic film formed by oblique evaporation of CdTe. That is, 1 is a dielectric substrate made of LiNbO 3 and has an electro-optic effect, and 2 is a dielectric substrate having an electro-optic effect.
An optical waveguide is formed by diffusing Ti, 3 is a CdTe photovoltaic film, and 4 is a metal electrode.

上記構成の光制御型光スイツチにおいて、信号
光5が入射された時、通常の状態、即ち制御光が
入射されない時には、信号光は直進して出路6に
出射する。ところが制御光7が光起電力素子3に
入射されると金属電極4を通じて、光導波路2の
交叉部付近に光起電力による電界が印加され、導
波路2内に屈折率変化が出じ、入射光が交叉部付
近で全反射を受けて、出射光が出路8より出射す
るものである。
In the optically controlled optical switch having the above configuration, when the signal light 5 is incident, the signal light travels straight and is emitted to the output path 6 in a normal state, that is, when no control light is incident. However, when the control light 7 is incident on the photovoltaic element 3, an electric field due to the photovoltaic force is applied to the vicinity of the intersection of the optical waveguide 2 through the metal electrode 4, causing a change in the refractive index within the waveguide 2, and the incident The light undergoes total reflection near the intersection, and the emitted light is emitted from the exit path 8.

第1図の構成の従来の光制御型光スイツチにお
いて、制御光7を入射した時の入射光信号を第2
図aに、変調出力光8の光強度の時間的変化を第
2図bに示す。
In the conventional optically controlled optical switch having the configuration shown in FIG.
Figure a shows the temporal change in the light intensity of the modulated output light 8, and Figure 2 b shows the temporal change in the light intensity.

第2図bより明らかな様に変調出力光の立ち上
がり時間は秒以下であるにもかかわらず、立ち上
がりには、数分要している。この遅い下がり時間
は光起電力膜の高い内部抵抗に起因しており、従
来の光制御型光スイツチの大きな欠点であつた。
As is clear from FIG. 2b, although the rise time of the modulated output light is less than a second, it takes several minutes for the modulated output light to rise. This slow fall time is due to the high internal resistance of the photovoltaic film, and has been a major drawback of conventional light-controlled optical switches.

このように従来において立ち下がり時間が立ち
上がり時間より大きい理由を考えてみる。光制御
型光スイツチの応答時間は、一般に、電極間の容
量Cと、光起電力素子の内部抵抗Rの積、すなわ
ちCR積でほぼ決定される。制御光が入射された
場合の光起電力の内部抵抗RONと、遮断された場
合の光起電力の内部抵抗ROFFを比較すると、光
起電力層の光導伝現象のために、一般にRON<R
OFFの関係がある。従つて、立ち上がり時間τON
(=CRON)と立ち下がり時間τOFF(=CROFF
を比較すると、一般にτON<τOFFである。しか
も、τOFFがτONの数十〜数万倍となり、立ち下
がり時間が長くなり、このことが、従来の光制御
型光スイツチの大きな欠点であつた。
Let's consider why the fall time is longer than the rise time in the conventional art. Generally, the response time of a light-controlled optical switch is approximately determined by the product of the capacitance C between the electrodes and the internal resistance R of the photovoltaic element, that is, the CR product. Comparing the internal resistance R ON of the photovoltaic force when the control light is incident and the internal resistance R OFF of the photovoltaic force when it is blocked, it is generally found that due to the photoconduction phenomenon of the photovoltaic layer, R ON <R
There is an OFF relationship. Therefore, the rise time τ ON
(=CR ON ) and fall time τ OFF (=CR OFF )
In general, τ ON < τ OFF . Moreover, τ OFF is several tens to tens of thousands of times larger than τ ON , resulting in a longer fall time, which has been a major drawback of conventional optically controlled optical switches.

本発明は、従来のかかる問題を解決し、出力光
の遮断時間の短い光制御型光スイツチを提供する
ものである。
The present invention solves the conventional problems and provides a light-controlled optical switch that cuts off the output light in a short time.

本発明の実施例における光制御型光スイツチを
第3図に示す。光スイツチの構造は第1図と同様
であるが、光起電力膜と電極の構造が異なる。す
なわち、同図において9はLiNbO3基板、10は
Ti拡散導波路、11,12は同時に斜め蒸着さ
れて形成された光起電力素子、13,14は電極
であり、第1の制御光15は11に照射され、第
2の制御光16は12に照射される。従つて電極
13を基準とした時、第一の制御光、第二の制御
光に対して、電極14には異なる極性の光起電力
が発生することになる。このような構成によると
第一の制御光の照射により第1図に示す従来の光
スイツチと同様に、光スイツチを動作させ入力光
16の出力が出路17から18に切りかわり、一
方遮断時には、第二の制御光の照射により、逆極
性の電圧を印加して遮断時間を短かくすることが
できる動作を行なえる。
FIG. 3 shows a light-controlled optical switch according to an embodiment of the present invention. The structure of the optical switch is similar to that shown in FIG. 1, but the structures of the photovoltaic film and electrodes are different. That is, in the same figure, 9 is a LiNbO 3 substrate, and 10 is a LiNbO 3 substrate.
A Ti diffusion waveguide, 11 and 12 are photovoltaic elements formed by simultaneous oblique vapor deposition, 13 and 14 are electrodes, the first control light 15 is irradiated to 11, and the second control light 16 is irradiated to 12. is irradiated. Therefore, when the electrode 13 is used as a reference, photovoltaic forces of different polarities are generated at the electrode 14 for the first control light and the second control light. According to such a configuration, when the first control light is irradiated, the optical switch is operated and the output of the input light 16 is switched from the output path 17 to the output path 18, similar to the conventional optical switch shown in FIG. By irradiating the second control light, it is possible to perform an operation that can shorten the cut-off time by applying a voltage of opposite polarity.

第4図a,b,cはそれぞれ上記光制御型光ス
イツチを動作させるときの、第一制御光信号,第
二制御光信号および出力信号光の時間に対する光
強度を示している。これらの図より明らかなよう
に、第1制御光信号を遮断した直後に、第2制御
光信号を入射することにより、出力信号光の立ち
下がり時間が従来に比べて大幅に短縮されてい
る。
FIGS. 4a, 4b, and 4c show the optical intensities of the first control optical signal, the second control optical signal, and the output signal light with respect to time, respectively, when operating the optically controlled optical switch. As is clear from these figures, by inputting the second control light signal immediately after cutting off the first control light signal, the fall time of the output signal light is significantly shortened compared to the conventional method.

なお、本実施例では、全反射型の光スイツチと
CdTe斜め蒸着による光起電力素子とを複合素子
を挙げたが、電気光学効果を応用した光スイツチ
や、CdTe以外の半導体による光起電力素子にも
適用できるものである。
In addition, in this example, a total internal reflection type optical switch and
Although a photovoltaic device made by oblique evaporation of CdTe has been cited as a composite device, it can also be applied to optical switches that apply the electro-optic effect and photovoltaic devices made of semiconductors other than CdTe.

以上実施例を用いて説明した様に、本発明の光
制御型光スイツチは従来の光制御型光スイツチの
遮断時間を、電極の改造ともう一つの制御光を用
いることにより、著しく短縮できるものである。
As explained above using the embodiments, the light-controlled optical switch of the present invention can significantly shorten the cut-off time of the conventional light-controlled optical switch by modifying the electrodes and using another control light. It is.

本発明の光制御型光スイツチは、光通信,光計
測,光制御等の分野において特に有用であり、そ
の価値を発揮するものであり、光技術,光産業の
進展に大きく貢献できるものである。
The optically controlled optical switch of the present invention is particularly useful in the fields of optical communication, optical measurement, optical control, etc., exhibits its value, and can greatly contribute to the advancement of optical technology and the optical industry. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光制御型光スイツチの斜視図、
第2図a,bは同スイツチにおけるスイツチング
特性を示す図、第3図は本発明の実施例における
光制御型光スイツチの斜視図、第4図は同スイツ
チにおけるスイツチング特性を示す図である。 9……LiNbO3基板、10……Ti拡散導波路、
11,12……光起電力素子、13,14……電
極、15……第1の制御光、16……第2の制御
光。
Figure 1 is a perspective view of a conventional optically controlled optical switch.
FIGS. 2a and 2b are diagrams showing the switching characteristics of the same switch, FIG. 3 is a perspective view of a light-controlled optical switch according to an embodiment of the present invention, and FIG. 4 is a diagram showing the switching characteristics of the same switch. 9...LiNbO 3 substrate, 10...Ti diffusion waveguide,
11, 12...Photovoltaic element, 13, 14... Electrode, 15... First control light, 16... Second control light.

Claims (1)

【特許請求の範囲】 1 電気光学効果を有する誘電体基板上に出射光
側が分岐部から複数本に枝分かれしてなる光導波
路を形成し、一方の端子と他方の端子が延在した
第1電極と、所定端子が延在した第2電極とを対
向させて前記光導波路の近傍に形成し、前記第1
電極の一方の端子と前記第2電極の所定端子間に
光射照時に前記光導波路を横切る第1電界を印加
するための第1光起電力素子を形成し、前記第1
電極の他方の端子と前記第2電極の所定端子間に
光照射時に前記第1電界と逆方向の第2電界を印
加するための第2光起電力素子を形成し、前記第
1起電力素子への光照射の遮断の直後前記第2起
電力素子へ光照射を行なうことを特徴とする光制
御型光スイツチ。 2 第1および第2光起電力素子が半導体の斜め
蒸着膜により形成されていることを特徴とする特
許請求の範囲第1項記載の光制御型光スイツチ。 3 第1および第2の光起電力素子がCdTeの斜
め蒸着膜により形成されていることを特徴とする
特許請求の範囲第1項記載の光制御型光スイツ
チ。
[Scope of Claims] 1. An optical waveguide is formed on a dielectric substrate having an electro-optical effect, with the output light side branching into a plurality of branches from a branching part, and a first electrode having one terminal and the other terminal extending. and a second electrode with a predetermined terminal extending therefrom are formed in the vicinity of the optical waveguide so as to face each other.
forming a first photovoltaic element for applying a first electric field across the optical waveguide during light irradiation between one terminal of the electrode and a predetermined terminal of the second electrode;
forming a second photovoltaic element for applying a second electric field in a direction opposite to the first electric field during light irradiation between the other terminal of the electrode and a predetermined terminal of the second electrode; A light-controlled optical switch characterized in that immediately after cutting off light irradiation to the second electromotive force element, light irradiation is performed to the second electromotive force element. 2. The optically controlled optical switch according to claim 1, wherein the first and second photovoltaic elements are formed of obliquely deposited semiconductor films. 3. The optically controlled optical switch according to claim 1, wherein the first and second photovoltaic elements are formed of obliquely deposited CdTe films.
JP5233282A 1982-04-01 1982-04-01 Optical control type optical switch Granted JPS58171024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5233282A JPS58171024A (en) 1982-04-01 1982-04-01 Optical control type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5233282A JPS58171024A (en) 1982-04-01 1982-04-01 Optical control type optical switch

Publications (2)

Publication Number Publication Date
JPS58171024A JPS58171024A (en) 1983-10-07
JPS6161659B2 true JPS6161659B2 (en) 1986-12-26

Family

ID=12911837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5233282A Granted JPS58171024A (en) 1982-04-01 1982-04-01 Optical control type optical switch

Country Status (1)

Country Link
JP (1) JPS58171024A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138511A (en) * 1983-12-27 1985-07-23 Takashi Mori Optical information multiplexing device
JPS6191779A (en) * 1984-10-11 1986-05-09 Agency Of Ind Science & Technol Optical information processor
JPS62299938A (en) * 1986-06-20 1987-12-26 Matsushita Electric Ind Co Ltd Optical switch module
JPH02171728A (en) * 1988-12-26 1990-07-03 Mitsubishi Mining & Cement Co Ltd Optical controller
JP2007082693A (en) * 2005-09-21 2007-04-05 Ebisuya Kagaku Kogyo Kk Hair brush

Also Published As

Publication number Publication date
JPS58171024A (en) 1983-10-07

Similar Documents

Publication Publication Date Title
JPH07287256A (en) Waveguide type electro-optical element
US5473711A (en) Dielectric optical waveguide device
JPH0764126A (en) Optical control device
KR19990008390A (en) Cascaded Thermo-Optical Devices
US20070007676A1 (en) Electro-optic modulator
JPS6161659B2 (en)
JP2940141B2 (en) Waveguide type optical control device
US20040240789A1 (en) Customizing traveling wave optical modulators
US20020067905A1 (en) Electrochromic optical attenuator
JP3139712B2 (en) Light control device
JPS62245228A (en) Light-light control element
JPH0815657A (en) Waveguide type electro-optical element
JPS5993431A (en) Optical switch
JPH0659289A (en) Waveguide type optical function device
JPH0228501Y2 (en)
JP3078395B2 (en) Optical element
JP3134298B2 (en) Method for manufacturing light control device
JPH07168042A (en) Light control device and its manufacture
JPH059770B2 (en)
JPH06347837A (en) Light control device and its production
JPH03282428A (en) Optical functional element and its driving method
DE19546227A1 (en) Low loss integrated optical functional element with waveguide
JPS5917511A (en) Optical switch
JPH0383024A (en) Light control device
JPS6151775B2 (en)