JPH02171728A - Optical controller - Google Patents

Optical controller

Info

Publication number
JPH02171728A
JPH02171728A JP32590988A JP32590988A JPH02171728A JP H02171728 A JPH02171728 A JP H02171728A JP 32590988 A JP32590988 A JP 32590988A JP 32590988 A JP32590988 A JP 32590988A JP H02171728 A JPH02171728 A JP H02171728A
Authority
JP
Japan
Prior art keywords
light
driving
receiving element
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32590988A
Other languages
Japanese (ja)
Inventor
Kenji Uchino
内野 研二
Kazuyasu Hikita
和康 疋田
Mikiya Ono
幹也 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP32590988A priority Critical patent/JPH02171728A/en
Priority to US07/456,970 priority patent/US5050969A/en
Priority to FR8917171A priority patent/FR2646525B1/en
Priority to DE3943041A priority patent/DE3943041A1/en
Priority to GB8929205A priority patent/GB2229543B/en
Publication of JPH02171728A publication Critical patent/JPH02171728A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a full control type optical device having a high S/N, and an operation characteristic of high reliability by placing the subject controller so that a signal light for passing through an optical modulation element does not pass through the surface of a circuit board, and also, a driving light for driving a photodetector is made incident from the direction being different from that of the signal light. CONSTITUTION:An optical switch element 10 having an electrooptical effect is placed so that a signal light 11 transmits through in parallel to the surface of a substrate 6, an electrode 12 is formed on both side faces of a transparent electric conductor 10 so that an electric field is applied in the direction vertical to a transmission light, and each terminal is connected to a circuit 7 for coupling each terminal of photodetectors 8, 9. In this state, when a light beam 15 is radiated to the photodetector 8 by a mercury lamp 19, a voltage generated by a bulk photoelectromotive force effect is applied to an optical shutter element 10, and by switching an optical path of a driving light 15, and switching it to the photodetector 8 or 9 which is irradiated, the signal 11 of a light beam can be controlled. In such a way, an optical switching device having a high S/N and high reliability can be obtained at a lower cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光を用いて、電気的増幅装置等を介キ4゛、
直接他の光を制御する装置に関する。更に、詳しくは、
小型化、薄層化のできる光制御装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention uses light to transmit 4゜,
This invention relates to a device that directly controls other lights. Furthermore, for more details,
This invention relates to a light control device that can be made smaller and thinner.

[従来の技術] 従来の光制御装置は、例えば、°87年春季物理学会学
術講演会を稿集の27a−LJ−7(80頁)“全光制
御電気光学素子の試作”及び”EffcCt of l
l11purity Doping on Photo
striction 1nFerroelectric
 Ceraa+1c−by M、Tan1醜ura a
nd にUchino、5ensors and Ma
terials l、46(198g)に提案されるよ
うに、印加電圧によって物質の屈折率が変化するという
″電気光学効果”と、圧電性結晶に光(例えば紫色光)
を照射すると、バンドギャップをはるかに超す起電力を
生ずるバルク光起電力光とを組合わせて、光の照射によ
って起電力を通じて光シヤツターを駆動し、光(赤色光
)を制御することができる電気回路を持たない全光制御
型素子がある。これは、第1図に示すもので、スライド
ガラスを基板6とし、その上に2個の受光セラミ/ラス
素子1と、1個のセラミックス光シヤツター2が配置さ
れているものである。その動作原理は、受光素子1に水
銀ランプ3の光が当ると起電力が発生し、その起電力に
よって光ンヤメター素子2を駆動するというものである
[Prior Art] Conventional optical control devices are described, for example, in 27a-LJ-7 (page 80) “Prototype of all-optically controlled electro-optical device” and “EffcCt of l
l11purity Doping on Photo
striction 1nFerroelectric
Ceraa+1c-by M, Tan1 ugly ura a
nd ni Uchino, 5ensors and Ma
terials l, 46 (198g), the "electro-optic effect" in which the refractive index of a material changes depending on the applied voltage, and the effect of light (e.g. violet light) on piezoelectric crystals.
In combination with bulk photovoltaic light, which generates an electromotive force that far exceeds the band gap when irradiated with light, the light irradiation drives a light shutter through the electromotive force, and the light (red light) can be controlled. There is an all-optically controlled device that does not have a circuit. This is shown in FIG. 1, on which a slide glass is used as a substrate 6, and two light-receiving ceramic/glass elements 1 and one ceramic light shutter 2 are arranged thereon. The principle of operation is that when the light from the mercury lamp 3 hits the light receiving element 1, an electromotive force is generated, and the light metering element 2 is driven by the electromotive force.

2つの駆動素子A、Bは、互いに逆の起M、1!圧を生
4”るように、光シヤツター素子に電気的に接続され、
A、Bに交互に水銀ランプ光を照射すると、光シャノタ
ーを透過するHe−Neレーザの赤色光は、第2図に示
すように、0.2Hzで変調され、S/N比は、約2d
Bである。その受光素子3.4の材質は、P L Z 
T (3152/48)、光シヤツター2の材質は、P
 L Z T (9/65/35 ) テある。また、
光照射による光起電力効果をWO3添加のP LZTに
ついて、調査した結果から、1゜5原子%までは、無添
加のものに比べ、光起電力が増加している。
The two driving elements A and B have mutually opposite movements M, 1! electrically connected to the optical shutter element so as to generate a pressure of 4",
When A and B are alternately irradiated with mercury lamp light, the red light of the He-Ne laser that passes through the optical sensor is modulated at 0.2 Hz as shown in Figure 2, and the S/N ratio is approximately 2 d.
It is B. The material of the light receiving element 3.4 is P L Z
T (3152/48), the material of the optical shutter 2 is P
L Z T (9/65/35) There is. Also,
The results of investigating the photovoltaic effect due to light irradiation on WO3-added P LZT show that up to 1°5 at%, the photovoltaic force increases compared to that without additives.

然し乍ら、この公知の装置では、第1に、受光f:子が
コマの上に截っており、デバイスの小型化、薄層化がで
きないこと、第2に、リード線を用いており、デバイス
として組立てコストが高くなること、第3に、赤色の信
号光(スイッチングされる尤)と、駆動する水fMラン
プ光が同じ方向からデバイスに入射するため、駆動光が
信号光に混信しないような[夫が必要となること、第4
に、信号光が基板を透過する方向に入射しているため、
信号光が基板の影響を受けることになり、即ち、基板に
不透明な材質が使用できず、また、光透過率の低い基板
では光信号のS/N比が低くなる、更に、基板の材質の
選択に制約を受けることなどの問題があった。
However, in this known device, firstly, the light-receiving f: element is cut out on top of the frame, making it impossible to make the device smaller and thinner.Secondly, lead wires are used, and the device cannot be made smaller or thinner. Third, because the red signal light (which is likely to be switched) and the driving water fM lamp light enter the device from the same direction, it is difficult to prevent the driving light from interfering with the signal light. [The need for a husband, No. 4
Since the signal light is incident in the direction that passes through the substrate,
The signal light will be affected by the substrate, that is, an opaque material cannot be used for the substrate, and a substrate with low light transmittance will lower the S/N ratio of the optical signal. There were problems such as being restricted in choices.

[発明が解決しようとする問題点] 本発明は、上記のような欠点を解消するため、バルク光
起電力効果を有する圧電材料、例えば、P L Z T
 (3152/48 ) ヲ受光素子トシ、光を照射し
た際に、発生する電圧で、゛電気光学効果“を利用した
光変調素子を駆動する、光により光を制御する装置を提
供することを目的にする。即ち、本発明は、前記のよう
な、(1)小型化、?1層化の困難性、■構造に依る高
い組立てコスト、(3)基板材質の制約などの問題点を
除去し、(1)小型化、薄層化を容易にし、(り基板の
材質を自由に選択できるようにすること(こより、(3
):1ストパフオーマンスを向l:させ、(4) S 
/ N比が高く、信頼性が高い動作特性を有する全制御
型光学デバイスを提供−ることを目的とする。
[Problems to be Solved by the Invention] In order to solve the above-mentioned drawbacks, the present invention provides a piezoelectric material having a bulk photovoltaic effect, such as P L Z T
(3152/48) An object of the present invention is to provide a device for controlling light using light, which drives a light modulation element using the "electro-optic effect" with the voltage generated when a light receiving element is irradiated with light. That is, the present invention eliminates the above-mentioned problems such as (1) miniaturization, difficulty in forming a single layer, (2) high assembly cost depending on the structure, and (3) restrictions on substrate material. (1) Facilitate miniaturization and thinning of layers, and allow free selection of substrate materials (Thus, (3)
): 1-stop performance, (4) S
An object of the present invention is to provide a fully controlled optical device having a high /N ratio and highly reliable operating characteristics.

[問題点を解決するための手段] 本発明は、透明な電気光学効果を有゛4る誘電体に電極
を設け、信号光の入射面と出射面には、各々の偏光方向
が互いに直交し、また、印加電界の方向に互いに451
をなすように2つの偏光子が取り付けられた光変調素子
と:駆動源として、自発分極の方向を揃えた、光起電力
効果を有する少なくとも1つの誘電体受光素子よりなり
、上記の2種の素子を導体配線で電気的に接続して構成
される、光により光を制御する装置において、前記2種
の機能素子は、回路基板の回路上に設置され、光変調素
子を通過する信号光が、この回路基板而を通過せず、更
に受光素子を駆動する駆動光が信号光と異なる方向から
入射するように配置されたことを特徴と1−る光制御装
置である。そして、光度副索Y−を通過する信号光が、
この回路基板面を通過せず、受光素子を駆動−゛る駆動
光が信号光と異なる方向から入射するように配置するた
め、光変調素子−の信号光の入射面、及び出射面が、こ
の回路基板而と垂直であること、ルっ受光素T・の受光
面が回路基板と平行であることが好適である。また、受
光素子が2個の受光素rからなり、それらの自発分極の
方向が、直列でループ状に接続され、光度副索Tの各々
のN、極が、前記の各々の接続回路に接続されたものが
好適である。
[Means for Solving the Problems] The present invention provides electrodes on a transparent dielectric material having an electro-optic effect, and the polarization directions of the signal light are perpendicular to each other on the incident surface and the output surface. , and 451 to each other in the direction of the applied electric field.
A light modulation element to which two polarizers are attached so as to form a polarizer; and at least one dielectric light receiving element having a photovoltaic effect with the directions of spontaneous polarization aligned as a driving source; In a device that controls light using light, which is configured by electrically connecting elements with conductive wiring, the two types of functional elements are installed on the circuit of the circuit board, and the signal light passing through the light modulation element is This is a light control device characterized in that the drive light for driving the light receiving element is arranged so as to enter from a direction different from that of the signal light without passing through the circuit board. Then, the signal light passing through the luminous intensity subline Y- is
In order to arrange the driving light that drives the light receiving element to enter from a direction different from that of the signal light without passing through this circuit board surface, the incident surface and output surface of the signal light of the light modulating element are It is preferable that the light-receiving surface of the light-receiving element T be parallel to the circuit board. Further, the light receiving element consists of two light receiving elements r, the directions of their spontaneous polarizations are connected in series in a loop shape, and the N pole of each of the luminous intensity sub-wires T is connected to each of the above-mentioned connection circuits. It is preferable that the

そして、その受光素子が2個の受光素子からなり、それ
らの自発分極方向が、並列でループ状に接続され、光変
調素子の各々の電極が、前記の各々の接続回路に接続さ
れたものが好適である。
The light receiving element is composed of two light receiving elements whose spontaneous polarization directions are connected in parallel in a loop shape, and each electrode of the light modulating element is connected to each of the above connection circuits. suitable.

また、その受光素子が圧電セラミックスで、バルク光起
電力効果を有するランタン添加チタン酸ジル−lン酷鉛
で、Laを3モル%添加した、PLZT (3152/
48)、即ち、P b a、ey L a s、am(
Z r *、**T i *、am>*、****Om
及びこれにWOsを0〜2゜0原Y−%添加り、 タP
 L Z T(3152/48)からなり、透明なスイ
ッチング素子は、ランタン添加チク2階ジルコン階鉛P
 L Z T (9/65/35 )即ち、Pb。
In addition, the light-receiving element is made of piezoelectric ceramics, and PLZT (3152/3152/
48), that is, P b a, ey L a s, am (
Z r *, **T i *, am>*, ***Om
And to this, add 0 to 2°0 original Y-% of WOs,
The transparent switching element is made of LZT (3152/48), and the transparent switching element is made of lanthanum-doped zirconium lead P.
L Z T (9/65/35) ie Pb.

*IL a s、**(Z r *、*4 i *、*
*>*、*tviOsからなる構成が好適である。
*IL a s, **(Z r *, *4 i *, *
A configuration consisting of *>*, *tviOs is preferred.

このような構成について、本発明によると、バルク光起
電力効果を有する受光素子を駆動源とし、2次光学効果
の大きなPLZTをスイッチング素子として、回路基板
上に、駆動光の方向と信号光の方向が重ならないように
、これらの素子を配置して、組合わせることにより、 (1)何らかの増幅回路を用いることなく、駆動光の入
力により、他の信号光の出力を直接コントロルすること
ができる。
Regarding such a configuration, according to the present invention, a light-receiving element having a bulk photovoltaic effect is used as a driving source, PLZT having a large secondary optical effect is used as a switching element, and the direction of driving light and signal light are arranged on a circuit board. By arranging and combining these elements so that their directions do not overlap, it is possible to (1) directly control the output of other signal lights by inputting driving light without using any kind of amplifier circuit; .

(2小型化、薄層化を容易にすることができる。(2) Miniaturization and thinning can be easily achieved.

(3)信号光が基板と平行に入射するため、基板は、不
透明なものでも使用でさ、材質を自由に選択することが
できる。
(3) Since the signal light is incident parallel to the substrate, the material of the substrate can be freely selected, even if it is opaque.

(4)基板の材質が選択できるため、回路を形成した基
板が、使用できるので、配線の工程を簡略化でき、また
、信頼性の高い光スイツチング装置を、より安価に製造
4−ることかできる等の効果が期待できる。
(4) Since the material of the board can be selected, the board on which the circuit is formed can be used, simplifying the wiring process and making it possible to manufacture highly reliable optical switching devices at a lower cost. You can expect the same effect.

史に、受光素rに、WO8を添加したPLZTを用いる
ことにより、より大きなバルク光起電力効果を得ること
が可能となった。
Historically, it has become possible to obtain a larger bulk photovoltaic effect by using PLZT doped with WO8 for the photodetector r.

本発明は、光により光を制御する装置において、電気的
回路を形成した基板の上に、1個或いは2個のバルク光
起電力硬化を有する受光素子を、互いの自発分極の方向
が、直列、或いは並列に電気回路りにハンダ等で接続し
、電気光学効果を有する光スイツチ素子を、その信号光
の透過方向が、基板の而に平行になるように、配置し、
信号光に平行になるように設けられた1対の電極が各々
の受光素子の各々の電極に配線接続されるようにしたも
のである。
The present invention is a device for controlling light using light, in which one or two light-receiving elements having bulk photovoltaic force curing are arranged in series on a substrate on which an electric circuit is formed so that the directions of their spontaneous polarizations are aligned with each other. , or an optical switch element having an electro-optical effect is connected in parallel to an electric circuit with solder or the like, and arranged so that the transmission direction of the signal light is parallel to the substrate,
A pair of electrodes provided parallel to the signal light are wired to each electrode of each light receiving element.

また、受光素子の材料として、従来から用いられている
P LZTの他、バルク光起電力効果が大きくなるよう
にWO3を2,0原Y%まで添加しりP L Z T 
(3152/4g)を用イタ。
In addition to P LZT, which has been conventionally used as a material for the light-receiving element, we added WO3 up to 2.0% Y% to increase the bulk photovoltaic effect.
(3152/4g) was used.

次に、添付図面により本発明を更に説明−る。Next, the present invention will be further explained with reference to the accompanying drawings.

第3図は、本発明の装置の一例を示す寮面図である。即
ち、本発明の光学装置の例示の構造図であり、6は11
面基板であり、7は基板上に形成された電気回路で、2
個のバルク光起電力効果を有する受光素子A、B、即ち
各々8と9は、自発分極の向きが直列になるように配列
され、前記の回路に接続されている。
FIG. 3 is a view of a dormitory showing an example of the device of the present invention. That is, it is an exemplary structural diagram of the optical device of the present invention, where 6 is 11
7 is an electric circuit formed on the board, and 2 is a flat board.
The light-receiving elements A and B having a bulk photovoltaic effect, ie, 8 and 9, respectively, are arranged so that the directions of their spontaneous polarizations are in series, and are connected to the above-mentioned circuit.

電気光学効果を有する光スイツチ素子1oは、信号光1
1が基板6の面に平行に透過するように、配置され、電
極12は、透過光に垂直方向に、電界を印加するように
、透明な誘電体10の両側面に形成され、各々の端子は
、受光素子8゜9の各々の端子を結合する回路7に接続
されている。
The optical switch element 1o having an electro-optic effect transmits a signal light 1
The electrodes 12 are formed on both sides of the transparent dielectric 10 to apply an electric field in a direction perpendicular to the transmitted light, and the electrodes 12 are arranged so that the light passes through parallel to the surface of the substrate 6. is connected to a circuit 7 that connects each terminal of the light receiving element 8.9.

第3図において、更に、光スィッチ10は、信号光11
の入射面と出射面の両面に、偏光子13.14を設けた
。偏光子の偏光方向は、電界の印加力向と45°をなし
、11つまた、2つの偏光f・の偏光方向が互いに直交
Vるように設置した。
In FIG. 3, the optical switch 10 further includes a signal light 11
Polarizers 13 and 14 were provided on both the entrance and exit surfaces. The polarization direction of the polarizer made an angle of 45° with the applied force direction of the electric field, and the polarizers were installed so that the polarization directions of the two polarized lights f were perpendicular to each other.

駆動光15は、例えば水銀灯等により、基板面にIK直
にIK(射される。
The driving light 15 is directly IK (irradiated) onto the substrate surface using, for example, a mercury lamp.

次に、第4図に示[光制御装置は、本発明の光制御装置
の動作特性を測定し、確認するための測定方法を示[,
16は、信号光11を発生するHe−Neレー自ダグ光
示し、17は、光検知装置で、18は1ンビユータであ
り、検知された光強度等の測定データを記ufるもので
ある。!9は、水銀ランプで、15の駆動光を発生する
。また、駆動光15は、受光素子8.9のどちらか一方
或いはその両Jjに照射できるものである。
Next, FIG. 4 shows a measurement method for measuring and confirming the operating characteristics of the light control device of the present invention.
Reference numeral 16 indicates a He-Ne beam that generates the signal light 11, reference numeral 17 indicates a photodetector, and reference numeral 18 indicates a monitor, which records measurement data such as the detected light intensity. ! 9 is a mercury lamp which generates 15 driving lights. Further, the driving light 15 can be applied to one or both of the light receiving elements 8.9 or both Jj.

次に第5図は、本発明の光制御装置の他の例であり、光
スイツチ素子10を受光素子8.9の作る回路のループ
の外側に配置した例である。2つの受光素子が隣接して
いるために、制御光15をあまり振らなくても、光制御
装置を制御できるものである。
Next, FIG. 5 shows another example of the optical control device of the present invention, in which the optical switch element 10 is arranged outside the loop of the circuit formed by the light receiving element 8.9. Since the two light receiving elements are adjacent to each other, the light control device can be controlled without changing the control light 15 much.

また、第6図は、2個のバルク起電力効果を有4°る受
光素子8.9の自発分極の向きが並列になるように配置
され、回路が接続されている。従って、2倍の早さで制
御できる装置が得られる。
Further, in FIG. 6, two light receiving elements 8.9 having a bulk electromotive force effect having a 4° angle are arranged so that their spontaneous polarization directions are parallel, and the circuits are connected. Thus, a device is obtained which can be controlled twice as fast.

[作用] 本発明の光制御装置の動作原理を第4図の測定装置を示
4図面を取り、説明4“る。
[Function] The principle of operation of the optical control device of the present invention will be explained with reference to FIG. 4, which shows the measuring device.

電界が印加される前の光シヤツターに信号光が入射しで
も、偏光子が直交している状態になるため、原理的に出
射光は、得られない。
Even if signal light is incident on the optical shutter before an electric field is applied, no output light can be obtained in principle because the polarizers are orthogonal to each other.

次Iこ、受光素子8に、水銀ランプ19により光15を
照射すると、バルク光起電力効果により発生した電圧+
Vが、光シャ/ター素子10に印加される。入射側の偏
光子13で直線偏光を受けた信号光11は、電圧が印加
された光シャ/ター素子10を通過するが、このとき、
電気光学効果のため、入射光11のうち、出射光側の偏
光子14を通過できる成分の光が生じ、出射光が得られ
る。
Next, when the light receiving element 8 is irradiated with light 15 from the mercury lamp 19, a voltage +
V is applied to the optical shutter element 10 . The signal light 11 that has received linear polarization by the polarizer 13 on the incident side passes through the optical shutter element 10 to which a voltage is applied, but at this time,
Due to the electro-optic effect, a component of the incident light 11 that can pass through the polarizer 14 on the output light side is generated, and output light is obtained.

始めの信号光11が遮蔽された状態をオフ状態、信号光
11が透過した状態をオン状態と1−れば、光による人
力により尤の信号が、制o4.!!れることになる。
If the state in which the initial signal light 11 is blocked is the off state, and the state in which the signal light 11 is transmitted is the on state, then the current signal can be controlled by human power using light. ! ! It will be.

次に、水銀ランプの光15の光路を切り替えて、もう1
つの受光素T−9に照射すると、はじめの受光素F8と
自発分極Psの向きが反対なので、はじめに印加した場
合とは、逆の起電力−■が発生する。従って、オン状態
の光シャッター素−r12は、逆の電圧−Vが印加され
ることにより、オフ状態を誘導される。このように駆動
光15の光路を切り替えて、照射する受光素′T−8或
いは9に替えることにより、光の信号11を制御するこ
とができる。即ち、以上のように電気的な駆動回路を用
いることなく、光、例えば、15によって、他の光例え
ば、11をコントロールすることができるものである。
Next, switch the optical path of light 15 from the mercury lamp, and
When one photodetector T-9 is irradiated, since the direction of the spontaneous polarization Ps is opposite to that of the first photodetector F8, an electromotive force -■ opposite to that when first applied is generated. Therefore, the optical shutter element -r12 in the on state is induced to be in the off state by applying the opposite voltage -V. The light signal 11 can be controlled by switching the optical path of the driving light 15 and changing the irradiating light receiving element T-8 or T-9. That is, as described above, the light, for example 15, can control other lights, for example 11, without using an electrical drive circuit.

次に、本発明の光制御装置について、次の実施例により
、説明するが、本発明は、次の実施例に限定されるもの
ではない。
Next, the light control device of the present invention will be explained using the following examples, but the present invention is not limited to the following examples.

[実施例1] [オン 才)制御] 7×9c鵬の而=を法のアルミナ基板上に、第3図に示
すような回路7を、銀−パラジウムペーストを印刷し、
焼き付けることにより形成した。
[Example 1] [On control] A circuit 7 as shown in Fig. 3 was printed with silver-palladium paste on an alumina substrate of 7 x 9c.
It was formed by baking.

方、3原f・%のL a c′P bサイトを置換し、
Z「とTiの比率が52748であるチタン酸ジル:1
ン酸鉛、即ち、 P b *、*v L a *、ea(Z r *、s
41 *、as)a、s*mao n[以ド略してP 
L Z T (,3152/48 )と称する]の組成
の面寸法20X5+wで厚さ0.3111の2枚のトラ
ミックス平板8.9の各々の5111X0.31+11
の両面に銀ペーストを塗布焼き付けて、電極を形成し、
2kV/aの直流電界を印加して、分極処理を施し、受
光素子8.9とした。
On the other hand, replacing the L a c′P b site of 3 primary f・%,
Z' and Ti: Zyl titanate with a ratio of 52748: 1
Pb *, *v L a *, ea (Z r *, s
41 *, as) a, s*mao n [hereinafter abbreviated as P
5111X0.31+11 of each of two tramix flat plates 8.9 with surface dimensions 20X5+w and thickness 0.3111 of composition L Z T (,3152/48)]
Apply silver paste to both sides and bake to form electrodes.
A DC electric field of 2 kV/a was applied to perform polarization treatment to obtain a light receiving element 8.9.

また、9原子%のLaでPbサイトを置換し、ZrとT
iの比率が65:35であるチタン階ジルコン階鉛、即
ち、 P b *、*+ L a *、a*(Z r *、s
4 i o、+a)*、5tyiO*[以下略り、−’
r、P L Z T (9/65/35 )と称する]
の組成物体の2.5X2.5X2.5mmの寸法の透明
なセラミックス10の1対の両面に、m電極を焼き付け
、この1対の電極に直交し、互いに、平行な1対の而を
、鏡面研摩し、信号光の散乱が、起、−り難いようにし
た。
In addition, the Pb site was replaced with 9 at% La, and Zr and T
Titanium scale zircon scale lead where the ratio of i is 65:35, i.e. P b *, *+ L a *, a * (Z r *, s
4 i o, +a)*, 5tyiO* [hereinafter omitted, -'
r, P L Z T (9/65/35)]
M electrodes are baked on both sides of a pair of transparent ceramics 10 with dimensions of 2.5 x 2.5 x 2.5 mm, and a pair of electrodes perpendicular to this pair of electrodes and parallel to each other are mirror-finished. Polished to make it difficult for signal light to scatter.

この鏡面研摩した而に、偏光f−13,14として、ポ
ジ【Iイド(登録+Tfi標)板を接着剤で貼り付けた
。ボラ[1イド(登録商標)板は、偏光方向が電界の印
加力向と45°をなし、また、2つの偏光方向が互いに
直交4゛るように設定した。接着剤は、信号光の光路に
かからないように、塗布、硬化させて、スイッチング素
子とした。受光素T−8,9は、分極方向が互いに反平
行になるように、直列に回路にハンダ付けした。スイッ
チ椿ング素−P12は、信号光の光路の配置を取り、接
着固定し、室温近傍で硬化する銀ペーストを用いて、回
路パターンと導通を形成させた。
After this mirror polishing, a positive [I-id (registered + Tfi mark) board] was attached with adhesive for polarized light of f-13 and f-14. The Bora [1 ID (registered trademark) plate was set so that the polarization direction was 45° with respect to the direction of applied electric field, and the two polarization directions were 4° perpendicular to each other. The adhesive was applied and cured to form a switching element so as not to interfere with the optical path of the signal light. The light receiving elements T-8 and T-9 were soldered in series to the circuit so that their polarization directions were antiparallel to each other. Switch Tsubaki element-P12 was arranged in the optical path of the signal light, fixed with adhesive, and electrically connected to the circuit pattern using a silver paste that hardens near room temperature.

得られた第3図の素子回路の動作特性を、第4図に示す
方法で測定した。測定用信号光としては、赤色He−N
eレーザ16を用いた。光スィッチを透過した赤色光の
光量は、光検知装置i¥17で測定し、そのデータをコ
ンピュータ1Bで記録した。
The operating characteristics of the obtained element circuit shown in FIG. 3 were measured by the method shown in FIG. Red He-N is used as the measurement signal light.
An e-laser 16 was used. The amount of red light transmitted through the optical switch was measured with a photodetector i\17, and the data was recorded on computer 1B.

P L Z T (3152/48 ) ノ受光素T−
AとB、即ら、8.9に、水銀ランプ光を交互に5秒間
ずつ照射しながら、光スイッチ素r・の応答特性を測定
しr−0その結果を第7図に示した。
P L Z T (3152/48) Photodetector T-
A and B, ie, 8.9, were alternately irradiated with mercury lamp light for 5 seconds each, and the response characteristics of the optical switch element r-0 were measured, and the results are shown in FIG.

また、駆動光をAに照射−すると、オン状態で駆動され
、Bに照射するとオフ状態で駆動され、信号光(7)S
/N比は、4.5〜5dBt’あった。
Also, when the driving light is irradiated on A, it is driven in the on state, and when it is irradiated on B, it is driven in the off state, and the signal light (7) S
/N ratio was 4.5 to 5 dBt'.

従来技術による結果では、約2dBのS/N比が得られ
ており、これより2dB以上S/N比が高くなった。
According to the results of the conventional technology, an S/N ratio of about 2 dB was obtained, and the S/N ratio was higher than this by 2 dB or more.

このように性能が向トされる理由としては、(1)信号
光が、ガラス等でできた基板を透過しない構造にしたた
め、ノイズレベルが低下したこと、(り回路が、電気抵
抗の小さい銀−パラジウムで形成され、またムダな長さ
の配線が省略できたため、回路の抵抗による光起電力の
損失が低下したこと、 (3)駆動光が信号光に垂直な方向から入射する構造と
したので、駆動光が信号光に混信することが極めて少な
いこと等が、挙げられる。
The reasons for this improvement in performance are (1) the signal light does not pass through the substrate made of glass, etc., which reduces the noise level; - Made of palladium and unnecessary length of wiring can be omitted, reducing loss of photovoltaic force due to circuit resistance. (3) Structure in which the driving light enters from the direction perpendicular to the signal light. Therefore, interference between the driving light and the signal light is extremely rare.

尚、本実施例では、偏光f・13.14を、誘電体t=
5 ミツ/スPLZT(9/65/35) 101m直
接貼り付けたが、誘電体ヒラミックスから距離をおいて
、設置しても、所用特性を得られることが明らかである
In addition, in this example, polarized light f・13.14 is polarized by dielectric material t=
5 Mitsu/Su PLZT (9/65/35) 101m Although it was directly attached, it is clear that the desired characteristics can be obtained even if it is installed at a distance from the dielectric Hiramix.

[実施例2] 一ト述の実施例1において、受光素子の材質をPL Z
 T (3152/48 )に代エテ、WO,を0.5
原子%添加したP L Z T (3152/48 )
を用いた場合の実施例を示す。
[Example 2] In Example 1 mentioned above, the material of the light receiving element is PL Z
T (3152/48), WO, 0.5
P L Z T (3152/48) added by atomic%
An example is shown below.

受光素子8.90寸法は、実施例1のものと同様で、2
0X5X0.3−であり、第3図のモ面図に示すような
構成のものであり、電極の形状、分極条件及び光スイツ
チ回路の構成は、実施例1に帛じたものである。また、
形成された素子回路の動作特性を実施例1と同様に測定
した。その結果を、第8図に示す。
The dimensions of the light-receiving element 8.90 are the same as those of Example 1;
0.times.5.times.0.3-, and has the configuration as shown in the top view of FIG. 3, and the shape of the electrodes, polarization conditions, and configuration of the optical switch circuit are the same as in Example 1. Also,
The operating characteristics of the formed element circuit were measured in the same manner as in Example 1. The results are shown in FIG.

得られたS/N比は、6〜7dBであった。The obtained S/N ratio was 6-7 dB.

実施例1に比べ1.5〜2.5dBの向上がh−>た、
これは、P L Z T (3152/48 )に、W
Osを添加した効果である。尚、WOIを、1.0、!
、5.2.0.2.5原子%に増加さけで、添加した材
料で受光素子−を形成させたところ、!。
There was an improvement of 1.5 to 2.5 dB compared to Example 1,
This is explained in P L Z T (3152/48) by W
This is the effect of adding Os. Furthermore, the WOI is 1.0!
, 5.2. When a light-receiving element was formed using the added material with an increase to 0.2.5 at%, ! .

0原t%及び1.5原子%の場合では、S/N比が、無
添加のPLzTを用いた場合のS/N比よ’) 4> 
大fi、 <、マタ、2.OJl;(7−%添加(7)
PLZTで、無添加のPLZTを用いた場合のS/N比
と同じで、2.5JIX子%添加のPLZTではやや劣
っていた。
In the case of 0 atomic % and 1.5 atomic %, the S/N ratio is the same as the S/N ratio when using additive-free PLzT') 4>
Daifi, <, Mata, 2. OJl; (7-% addition (7)
The S/N ratio of PLZT was the same as that of PLZT with no additives, and was slightly inferior with PLZT with 2.5 JIX% added.

従って、WOlの0〜2.0原子%添加量の範囲が、最
もS/N比の向ト効果が見られた。
Therefore, the greatest effect on improving the S/N ratio was observed in the range of 0 to 2.0 atom % of WOl added.

[実施例3] [光スイツチ素子を4光素子回路の外側に設置]第5図
に示4゛ように、光スイップ素子10を、2個の受光素
子8.9を構成するループ状回路の外側に配置した構造
の光−光スイツチ素子を作製した。
[Embodiment 3] [Optical switch element installed outside a four-optical element circuit] As shown in FIG. A light-to-light switch element with a structure placed on the outside was fabricated.

この構造の利点は、受光f:FB、9が隣接しているの
で、駆動光のビーl、の切り替え幅を小さくできるとい
う点である。
The advantage of this structure is that since the light receiving beams f: FB, 9 are adjacent to each other, the switching width of the driving light beam 1 can be made small.

、tた、受光素子・の材質は、実施@2と同じようにW
o、1&加の材料を使用したところ、S/N比は、実施
例2と同様に、6dBであった。
, the material of the light receiving element is W as in implementation @2.
When the materials of O, 1 & A were used, the S/N ratio was 6 dB as in Example 2.

[実施例4] [+行分極の受光素子−構成] 本実施例Cは、第6図に示す配置のものを使用し、受光
素子8.9の分極方向が互いに7行になるように並列に
接続した。
[Example 4] [+ row polarized light receiving element - configuration] This example C uses the arrangement shown in FIG. connected to.

その動作特性を、第4図に示す方法で測定した、即ら、
2個の受光素子に同時に駆動光15を照射することによ
り測定した。
Its operating characteristics were measured by the method shown in FIG.
The measurement was performed by simultaneously irradiating the driving light 15 onto two light receiving elements.

受光素子の材質は、実施例2のものと同じで、WO,0
,5原子%添加(7) P L ’Z T (3152
/4g ) −1’ある。
The material of the light receiving element is the same as that of Example 2, and is WO,0.
, 5 atomic% addition (7) P L 'Z T (3152
/4g) -1' exists.

駆動光オフ状態から光照射を始めて、透過光の強瓜が6
dBになるまでの時間は、2〜2.5秒間であり、これ
は、実施f42の場合のように、ノjの駆動I/f丁−
に駆動光を照射した場合に比べて、約1/2の時間であ
る。
Started light irradiation from the drive light off state, and the transmitted light reached 6
The time to reach dB is 2 to 2.5 seconds, which is due to the drive I/f of node j, as in the case of implementation f42.
This is about 1/2 the time compared to when the driving light is irradiated.

、−のように、光の照射を検出するためには、自発分極
の向きを並ターにした構造を用いることにより、よりI
+4.い光シャッタの開状態を実現できることが確認さ
れた。
, -, in order to detect light irradiation, it is possible to obtain more I
+4. It was confirmed that it is possible to realize a light shutter open state.

第7図は、逆方向に分極した2つの受光素子A、Hに交
t7に光を照射したときの本発明の光制御装置の光応答
特性を示すグラフである。
FIG. 7 is a graph showing the optical response characteristics of the optical control device of the present invention when two light receiving elements A and H polarized in opposite directions are irradiated with light at an angle t7.

第8図は、WO1添加の材質を用いたときの同様な本発
明の光制卿装殻の光応答特性を示すグラフである。
FIG. 8 is a graph showing the light response characteristics of a similar light control shell of the present invention when a material containing WO1 is used.

[発明の効果] 本発明によると、バルク光起電力効果を有する受光素r
−を駆動源とし、2次光学効果の大きなPLZTをスイ
ッチング素子として、回路基板上に、駆動光の方向と信
号光の方向が重ならないように、これらのll:fを配
置して、組合わせることにより、 (1)何らかの増幅回路を用いることなく、駆動光の人
力により、他の信号光の出力を直接コント〔1−ルする
ことができる。
[Effects of the Invention] According to the present invention, a light receiving element having a bulk photovoltaic effect
- is used as a driving source, and PLZT with a large secondary optical effect is used as a switching element, and these ll:f are arranged and combined on the circuit board so that the direction of the driving light and the direction of the signal light do not overlap. (1) The output of other signal lights can be directly controlled by human power of the driving light without using any amplification circuit.

(り小型化、薄層化を容易に4ることかできる。(Reducing the size and thickness of the layers can be done easily.)

(3)信号光が基板と)V行に入射するため基板は、不
透明なものでも使用でき、材質を自由に選択(る、−と
ができる。
(3) Since the signal light is incident on the V row of the substrate, an opaque substrate can be used, and the material can be freely selected.

(4)材質が選択できるため、回路を形成した基板が、
使用できるので、配線のし程を簡略化でき、また、信頼
性の高い光スイyブン/f装置を、より安価に製造する
、二とができる等の効果が期待できる。
(4) Since the material can be selected, the board on which the circuit is formed can be
Since it can be used, the wiring process can be simplified, and a highly reliable optical switching/f device can be manufactured at a lower cost, and other effects can be expected.

更に、受光素子に、WOlを添加したPLZTを用いる
ことにより、より大きなバルク光起電力効果を得ること
が可能となった。
Furthermore, by using PLZT doped with WOl for the light receiving element, it has become possible to obtain a larger bulk photovoltaic effect.

史に、本発明の光制御装置は、 (1)光による光のトンシングができること、(ZIX
;演算装置の基礎ユニット等に応用することができ、ま
た、それに有効である装置を提供することができたもの
である。
Historically, the light control device of the present invention has the following features: (1) ability to perform light tossing with light;
; It has been possible to provide a device that can be applied to the basic unit of an arithmetic device, etc., and is effective therein.

4.1fflQ’−な図面の説明 第1図は、従来の光制御装にの構造を模式的−二ノド−
′斜視図である。
4. Explanation of 1fflQ'-Drawings Figure 1 is a schematic diagram of the structure of a conventional light control device.
'It is a perspective view.

第2図は、従来の全九制御型電気尤学Igfで得られた
動作特性を示す、レーザー出力変化と経過時間でブ【1
)卜したグラフである。
Figure 2 shows the operating characteristics obtained with the conventional all-9 control type electromagnetic Igf.
) is a graph.

第3図は、本発明による光制御装置の構成を示−41例
の平面回路を示す平面図である。
FIG. 3 is a plan view showing an example of a planar circuit showing the configuration of a light control device according to the present invention.

第4図は、本発明による他の例の光制御装置の構成を示
す模式図fある。
FIG. 4 is a schematic diagram f showing the configuration of another example of the light control device according to the present invention.

第5図は、本発明による他の例の光制御装置の構成を示
す模式図である。
FIG. 5 is a schematic diagram showing the configuration of another example of the light control device according to the present invention.

第6図は、本発明による他の例の光制御装置の構成を示
を模式図である。
FIG. 6 is a schematic diagram showing the configuration of another example of the light control device according to the present invention.

第7図は、本発明による光制御装置で測定された特性を
示すグラフである。
FIG. 7 is a graph showing the characteristics measured by the light control device according to the present invention.

第8図は、本発明の光制御装置による測定光応答特性を
示すグラフである。
FIG. 8 is a graph showing the measured light response characteristics by the light control device of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)透明な“電気光学効果”を有する誘電体に電極を
設け、信号光の入射面と出射面は、各々の偏光方向を互
いに直交させ、また、印加電界の方向が互いに45°を
なすように2つの偏光子が取り付けられた光変調素子と
; その駆動源として、自発分極の方向を揃えた、光起電力
効果を有する少なくとも1つの誘電体受光素子を有し、 前記の2種の即ち光変調素子と受光素子の2種の機能素
子を1個の回路基板上に載置し、構成される、光により
光を制御する装置において、前記2種の機能素子は、該
回路基板の光路上に設置され、前記光変調素子を通過す
る信号光が、該回路基板面を通過せずに、前記受光素子
を駆動する駆動光が前記の信号光と異なる方向から入射
するように配置されたことを特徴とする光制御装置。
(1) Electrodes are provided on a transparent dielectric material that has an "electro-optic effect," and the incident and exit surfaces of the signal light have their respective polarization directions perpendicular to each other, and the directions of the applied electric fields are at 45 degrees to each other. a light modulation element to which two polarizers are attached; as a driving source thereof, at least one dielectric light receiving element having a photovoltaic effect with the directions of spontaneous polarization aligned; That is, in a device for controlling light by light, which is configured by placing two types of functional elements, a light modulating element and a light receiving element, on one circuit board, the two types of functional elements are mounted on one circuit board. installed on an optical path, and arranged so that signal light passing through the light modulation element does not pass through the circuit board surface, and driving light for driving the light receiving element enters from a direction different from that of the signal light. A light control device characterized by:
(2)前記光変調素子を通過する信号光が、この回路基
板面を通過せず、該受光素子を駆動する駆動光が、該信
号光と異なる方向から入射するように配置されているた
め、該光変調素子の信号光の入射面及び出射面が、この
回路基板面に垂直であること、且つ該受光素子の受光面
が、該回路基板と平均であることを特徴とする請求項第
1項記載の光制御装置。
(2) Since the signal light passing through the light modulation element does not pass through the circuit board surface, and the driving light for driving the light receiving element is arranged so as to enter from a direction different from that of the signal light, Claim 1, wherein an incident surface and an output surface of the signal light of the light modulation element are perpendicular to the circuit board surface, and the light receiving surface of the light receiving element is average with the circuit board. The light control device described in Section 1.
(3)前記受光素子が2個の受光素子からなり、それら
の自発分極の方向が、直列でループ状に接続され、前記
光変調素子の各々の電極が、前記の各々の接続回路に接
続されたことを特徴とする請求項第1項記載の光制御装
置。
(3) The light receiving element is composed of two light receiving elements, the directions of their spontaneous polarizations are connected in series in a loop, and each electrode of the light modulating element is connected to each of the connection circuits. The light control device according to claim 1, characterized in that:
(4)前記受光素子が2個の受光素子からなり、それら
の自発分極方向が、並列でループ状に接続され、前記光
変調素子の各々の電極が、前記の各々の接続回路に接続
されたことを特徴とする請求項第1項記載の光制御装置
(4) The light-receiving element is composed of two light-receiving elements, whose spontaneous polarization directions are connected in parallel in a loop, and each electrode of the light modulation element is connected to each of the connection circuits. The light control device according to claim 1, characterized in that:
(5)前記受光素子が圧電セラミックス体で、バルク光
起電力効果を有するランタン添加チタン酸ジルコン酸鉛
で、Laを3モル%添加した、PLZT(3/52/4
8)、即ち、 ▲数式、化学式、表等があります▼焼結体及びこれにW O_2を0〜2.0原子%添加したPLZT(3/52
/48)焼結体からなり、透明なスイッチング素子は、
ランタン添加チタン酸ジルコン酸鉛:PL2T(9/6
5/35)即ち、 ▲数式、化学式、表等があります▼焼結体からなる請求
項 第1項記載の光制御装置。
(5) The light-receiving element is a piezoelectric ceramic body, made of lanthanum-doped lead zirconate titanate having a bulk photovoltaic effect, and containing 3 mol% of La, PLZT (3/52/4
8), that is, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Sintered body and PLZT with 0 to 2.0 atomic % of W O_2 added to it (3/52
/48) A transparent switching element made of a sintered body is
Lanthanum-added lead zirconate titanate: PL2T (9/6
5/35) That is, ▲There are mathematical formulas, chemical formulas, tables, etc.▼The light control device according to claim 1, which is made of a sintered body.
JP32590988A 1988-12-26 1988-12-26 Optical controller Pending JPH02171728A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP32590988A JPH02171728A (en) 1988-12-26 1988-12-26 Optical controller
US07/456,970 US5050969A (en) 1988-12-26 1989-12-26 Photo-driven switching apparatus
FR8917171A FR2646525B1 (en) 1988-12-26 1989-12-26 PHOTONICALLY CONTROLLED SWITCHING APPARATUS
DE3943041A DE3943041A1 (en) 1988-12-26 1989-12-27 SWITCHING DEVICE OPERATED BY LIGHT
GB8929205A GB2229543B (en) 1988-12-26 1989-12-27 Photo-driven switching or modulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32590988A JPH02171728A (en) 1988-12-26 1988-12-26 Optical controller

Publications (1)

Publication Number Publication Date
JPH02171728A true JPH02171728A (en) 1990-07-03

Family

ID=18181948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32590988A Pending JPH02171728A (en) 1988-12-26 1988-12-26 Optical controller

Country Status (1)

Country Link
JP (1) JPH02171728A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171024A (en) * 1982-04-01 1983-10-07 Agency Of Ind Science & Technol Optical control type optical switch
JPS63131125A (en) * 1986-11-20 1988-06-03 Ricoh Co Ltd Light-driven optical switching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171024A (en) * 1982-04-01 1983-10-07 Agency Of Ind Science & Technol Optical control type optical switch
JPS63131125A (en) * 1986-11-20 1988-06-03 Ricoh Co Ltd Light-driven optical switching device

Similar Documents

Publication Publication Date Title
EP0490387B1 (en) Waveguide type optical device
US5050969A (en) Photo-driven switching apparatus
WO1987002149A1 (en) Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JPS6212894B2 (en)
JPH02171728A (en) Optical controller
JP2605140B2 (en) Optical device
JPH01182824A (en) Optical element
JPH07104502B2 (en) Light control device
US3572898A (en) Z-cut crystal electro-optical modulator
EP0117604B1 (en) Electro-optical light shutters
JPH0229023U (en)
GB1063396A (en) Display device
JPH02280117A (en) Shutter glass
JPS6329725A (en) Dimming filter
JPH02109331U (en)
JP2714965B2 (en) Optical DC electric field measuring device
JPS62218924A (en) Lamination type ceramic display
JPS60158417A (en) Optical control device
JPS61145525A (en) Optical shutter element
JPS62226122A (en) Liquid crystal display element
JPH019934Y2 (en)
JPS63246721A (en) Optical phase modulator
JPS62105118A (en) Gate array element and its manufacture
JPS62267718A (en) Optical shutter array
JPS58134620A (en) Optical switch