JPH0333091A - Composition for explosive - Google Patents

Composition for explosive

Info

Publication number
JPH0333091A
JPH0333091A JP16661189A JP16661189A JPH0333091A JP H0333091 A JPH0333091 A JP H0333091A JP 16661189 A JP16661189 A JP 16661189A JP 16661189 A JP16661189 A JP 16661189A JP H0333091 A JPH0333091 A JP H0333091A
Authority
JP
Japan
Prior art keywords
binder
explosive
weight
powder
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16661189A
Other languages
Japanese (ja)
Other versions
JP2799736B2 (en
Inventor
Matsuo Kobayashi
小林 松男
Haruyuki Arisawa
有澤 治幸
Masakazu Kobayashi
正和 小林
Kazuji Tokita
和司 時田
Katsuhiko Takahashi
勝彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
NOF Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, Nippon Oil and Fats Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP16661189A priority Critical patent/JP2799736B2/en
Publication of JPH0333091A publication Critical patent/JPH0333091A/en
Application granted granted Critical
Publication of JP2799736B2 publication Critical patent/JP2799736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To increase power in water by blending a base consisting of ammonium perchlorate and Al powder with a binder contg. at least one of specified nitrates and a polyurethane resin compsn. CONSTITUTION:One or more kinds of nitro plasticizers such as trimethylolethane trinitrate, triethylene glycol dinitrate and diethylene glycol dinitrate are mixed with polyethylene glycol, an inert plasticizer such as trimethylolpropane or dioctyl adipate and polybutadiene having terminal hydroxyl groups at about 60 deg.C to obtain a binder. This binder is further mixed with a stabilizer and a curing catalyst at about 60 deg.C as required. A base consisting of ammonium perchlorate powder and Al powder or further contg. trimethylenetrinitroamine is blended with the binder and then mixed with a curing agent such as tolylene diisocyanate at about 60 deg.C to obtain an explosive compsn. The amt. of the binder blended is 10-30wt.%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、安全に製造でき、且つ高エネルギー、特に水
中威力の大きな炸薬製造用、即ち、炸薬用組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a composition for producing an explosive that can be produced safely and has high energy, especially a high underwater power, that is, an explosive composition.

〈従来の技術) 従来、水雷用炸薬として、トリニトロトルエン(TNT
)が知られている。
<Conventional technology> Conventionally, trinitrotoluene (TNT) was used as an explosive for torpedoes.
)It has been known.

又、トリメチレントリニトロアミン(RDx)、TNT
、アルミニウム粉(Al1)を主成分とし、コンポジシ
ョンD2、ケイ酸カルシウム及び塩化カルシウムより製
造されたHBX系爆薬(MIL−E−22267A。
Also, trimethylene trinitramine (RDx), TNT
, an HBX-based explosive (MIL-E-22267A) made from composition D2, calcium silicate, and calcium chloride, with aluminum powder (Al1) as the main component.

1963.5.31)が知られている。こSでコンポジ
ションD2とは、ニトロセルロースとワックスとレシチ
ンとの混合物からなるものである。HBX系爆薬はその
組成によりHBX−1,HBX−3及びH−617)3
種類に分れる。
1963.5.31) is known. Composition D2 in this S is composed of a mixture of nitrocellulose, wax, and lecithin. HBX-based explosives are divided into HBX-1, HBX-3 and H-617)3 depending on their composition.
Divided into types.

〈発明が解決しようとする課題) 炸薬や爆薬等の水中威力については、 ショックエネルギー及びバブルエネルギーにより評価さ
れるのが通常である。前記TNTはベントライトの水中
威力を1として、それとの相対値として表わすと、ショ
ックエネルギーが0.84、バブルエネルギーが0.9
4が限界であった。
<Problem to be solved by the invention> The underwater power of explosives, explosives, etc. is usually evaluated in terms of shock energy and bubble energy. The above-mentioned TNT has a shock energy of 0.84 and a bubble energy of 0.9 when expressed as a relative value with the underwater power of bentrite being 1.
4 was the limit.

又、前述のHBX系爆薬の水中威力は、「爆薬エンサイ
クロペディアVol 10 J1983年、(アメリカ
アーミー アーマメント リサーチ アンド ディベロ
ップメント コマンド発行)によれば、HBX−1のシ
ョックエネルギーが1.13、バブルエネルギーが1.
47、HBx−3のショックエネルギーが 1.0、バ
ブルエネルギーが1.95、H−6のショックエネルギ
ーが1.18、バブルエネルギーが1.54が限界であ
る。いずれもTNTが含まれているので注型後注型物中
に巣ができ易く填薬比重を理論密度に近付けることは困
難であり、従って単位容積当たりの威力を十分に得るこ
とは困難であった。又、現在の炸薬や爆薬は製造上例え
ばTNTを溶融して製造しなければならず、溶融TNT
は非常に脱感である等で安全性において、必ずしも充分
でない点があった。
Furthermore, the underwater power of the aforementioned HBX-based explosives is as follows: According to the ``Explosive Encyclopedia Vol. 10 J, 1983 (published by the American Army Armament Research and Development Command), the shock energy of HBX-1 is 1.13, and the bubble energy is 1.13. is 1.
47, HBx-3's shock energy is 1.0, bubble energy is 1.95, H-6's shock energy is 1.18, and bubble energy is 1.54. Since both contain TNT, cavities are likely to form in the cast material after casting, making it difficult to bring the specific gravity of the filler close to the theoretical density, and therefore difficult to obtain sufficient power per unit volume. Ta. In addition, current explosives and explosives must be manufactured by melting TNT, for example, and molten TNT
In terms of safety, it was not always sufficient, as it was extremely desensitizing.

そこで実用的には現在の炸薬、爆薬よりも水中威力が大
、具体的にはショックエネルギーが少なくとも1.2、
バブルエネルギーが少なくとも2であり、且つ、安全性
がより改善された炸薬が求められている。
Therefore, in practical terms, the power of underwater explosives is greater than that of current explosives, specifically, the shock energy is at least 1.2,
There is a need for explosives having a bubble energy of at least 2 and improved safety.

く課題を解決するための手段〉 本発明者らは、前記の要望を満足させるような炸薬(組
成物)について、長期にわたりて研究した結果、特定の
組成物より製造された炸薬は前記の水中威力及び安全性
のいずれも目的を達するという知見を得て本発明を完成
した。
As a result of long-term research into explosives (compositions) that satisfy the above-mentioned needs, the present inventors have found that explosives manufactured from a specific composition can be used in the above-mentioned underwater The present invention was completed based on the knowledge that both power and safety can be achieved.

即ち本発明は、主成分として過塩素酸アンモニウム(A
P)及びアルミニウム粉 (Aβ)、バインダーとして、トリメチロールエタント
リナイトレート(TM’ETN)、トリエチレングリコ
ールジナイトレート(TEGDN)及びジエチレングリ
コールジナイトレート(DEGDN)中の少なくとも一
種とポリウレタン樹脂組成物を含む組成物及び主成分と
してAP、Ar2粉及びRDX、バインダーとして不活
性可塑剤とポリウレタン系樹脂組成物を含み、パイグー
が炸薬組成物の10〜30重量%であることを特徴とす
る炸薬用組成物に関する。
That is, the present invention uses ammonium perchlorate (A
P) and aluminum powder (Aβ), at least one of trimethylolethane trinitrate (TM'ETN), triethylene glycol dinitrate (TEGDN) and diethylene glycol dinitrate (DEGDN) as a binder, and a polyurethane resin composition. and AP, Ar2 powder, and RDX as main components, an inert plasticizer and a polyurethane resin composition as a binder, and Pai Goo accounts for 10 to 30% by weight of the explosive composition. Regarding the composition.

次に本発明の炸薬用組成物について詳述する1本発明の
組成物において、主成分は90〜70重量%、バインダ
ーは10〜30重量%である6主成分が90重量%を越
え、バインダーが10重量%未満では注型が不可能であ
り、注型式による炸薬の製造はできない、一方主成分が
30重量%未満、バインダーが70重量%を越えると、
その組成物より製造される炸薬は高エネルギーが得られ
ない。
Next, the explosive composition of the present invention will be described in detail.1 In the composition of the present invention, the main component is 90 to 70% by weight, and the binder is 10 to 30% by weight.6 The main component is more than 90% by weight, and the binder is 10 to 30% by weight. If it is less than 10% by weight, casting is impossible and explosives cannot be produced by casting. On the other hand, if the main component is less than 30% by weight and the binder exceeds 70% by weight,
Explosive charges made from that composition do not have high energy.

次に各成分について説明する。Next, each component will be explained.

主成分のAP、 Ar1、RDXは通常粉状又は粉末状
のものが用いられ、その粒度と配合割合は、目的とする
炸薬の製造性、水中威力等から適宜選択することができ
る0通常は、例えばAPは平均粒径400μm 、  
200g m 。
The main components AP, Ar1, and RDX are usually used in the form of powder or powder, and the particle size and blending ratio can be selected appropriately depending on the productivity of the intended explosive, underwater power, etc. Usually, For example, AP has an average particle size of 400 μm,
200gm.

30μm以下のものを単独或は組合わせて、Ar1は平
均粒径50μm以下のものを、RDXは平均粒径200
μm、30μm以下のものを単独或は組合わせて用いる
Ar1 has an average particle size of 50 μm or less, and RDX has an average particle size of 200 μm or less, singly or in combination.
μm, those with a diameter of 30 μm or less are used alone or in combination.

実用的な配合割合は重量比でA P/A l2=10/
 1〜1 / 1、そしrRDXを含む場合は、主成分
中最多で25重量%である。
Practical mixing ratio is A P/A l2=10/ by weight.
1 to 1/1, and if rRDX is included, the maximum amount is 25% by weight among the main components.

バインダーとしては先ずTMETN、 TEGDN、DEGDNの少なくとも一種がある。これ
らはいずれもニトロ可塑剤である。
First, the binder includes at least one of TMETN, TEGDN, and DEGDN. All of these are nitroplasticizers.

更に不活性可塑剤としては、例えばジオクチルアジペー
ト(DOA)、インデシルベラルゴネート等のエステル
系、又はトリエチルホスヘート、トリブチルホスヘート
等の正リン酸エステル系、トリフェニルホスファイト、
トリスクロロエチルホスファイト等の亜リン酸エステル
系化合物等を示すことができる。
Examples of inert plasticizers include esters such as dioctyl adipate (DOA) and indecylbelargonate, orthophosphoric esters such as triethyl phosphate and tributyl phosphate, triphenyl phosphite,
Examples include phosphite ester compounds such as trischloroethyl phosphite.

ポリウレタン系樹脂組成物とは、例えばポリエチレング
リコール(PEG)、トリメチロールプロパン(TMP
)或は末端水酸基ポリブタジェン(HTPB)で示され
る樹脂用化合物と硬化剤とから成るものである。
Polyurethane resin compositions include, for example, polyethylene glycol (PEG), trimethylolpropane (TMP),
) or a resin compound represented by terminal hydroxyl group polybutadiene (HTPB) and a curing agent.

硬化剤としては、例えばトリレンジイソシアネート(T
DI)、イソホロンジイソシアネート(IPDI)、ジ
フェニルメタンジイソシアネート、ヘキサメチレンジイ
ソシアネート等のイソシアネート化合物である。
As a curing agent, for example, tolylene diisocyanate (T
DI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate, hexamethylene diisocyanate, and other isocyanate compounds.

硬化剤と樹脂用化合物との比は、夫々のイソシアネート
基及び水酸基のモル比で通常、イソシアネート基/水酸
基=0.8〜1.2である。
The ratio of the curing agent to the resin compound is usually a molar ratio of isocyanate groups and hydroxyl groups, and isocyanate group/hydroxyl group = 0.8 to 1.2.

ニトロ可塑剤とポリウレタン系樹脂組成物との配合割合
は、重量比で、通常、ニトロ可塑剤/ポリウレタン系樹
脂=9/1〜515である。又、不活性可塑剤とポリウ
レタン系樹脂組成物との配合割合は、重量比で、通常、
不活性可塑剤/ポリウレタン系樹脂組成物=515〜1
/9である。
The mixing ratio of the nitroplasticizer and the polyurethane resin composition is usually nitroplasticizer/polyurethane resin=9/1 to 515 by weight. In addition, the blending ratio of the inert plasticizer and the polyurethane resin composition is usually
Inert plasticizer/polyurethane resin composition = 515-1
/9.

又、本発明の炸薬用組成物には、前記成分以外に安定剤
として、例えばエチルセントラリット等を添加すること
もでき、硬化触媒として、例えばフェリツクアセチルア
セトネートやコツパーアセチルアセトネート等を添加す
ることもできる。
In addition to the above-mentioned components, the explosive composition of the present invention may also contain stabilizers such as ethyl centralit, and curing catalysts such as ferritic acetylacetonate and copper acetylacetonate. It can also be added.

前記安定剤を添加すると、ニトロ可塑剤の自然分解が抑
制できる。又、酸化触媒を添加すると硬化時間を任意に
設定することができる。そしてそれらの添加量は、安定
剤が5重量%以下、硬化触媒が0.1重量%以下である
Addition of the stabilizer can suppress the natural decomposition of the nitroplasticizer. Furthermore, by adding an oxidation catalyst, the curing time can be set arbitrarily. The amount of the stabilizer added is 5% by weight or less, and the amount of the curing catalyst is 0.1% by weight or less.

本発明の炸薬用組成物より例えば次の混和、注型、硬化
の三工程により炸薬が製造される。
Explosives are manufactured from the explosive composition of the present invention, for example, by the following three steps of mixing, casting, and curing.

混和工程では、ニトロ可塑剤とPEGとTMP或は不活
性可塑剤とHTPBとを混合し、必要に応じて安定剤、
硬化触媒を添加して混合する0次いでAP及びへβ、或
はAP、AI2及びRDXを混合し、然る後に硬化剤を
混合する。
In the mixing step, the nitroplasticizer, PEG, TMP or inert plasticizer and HTPB are mixed, and if necessary, a stabilizer,
Add curing catalyst and mix. Then AP and β, or AP, AI2 and RDX are mixed, followed by mixing the curing agent.

混合は、圧力10torr以下、温度約60℃で行ない
、混合時間は、例えば前記最初の混合が30分以上、A
P等を添加しての混合が60分以上、硬化剤を添加して
からの混合が20分以上である。
The mixing is performed at a pressure of 10 torr or less and a temperature of about 60°C, and the mixing time is, for example, 30 minutes or more for the first mixing, A
The mixing time after adding P etc. is 60 minutes or more, and the mixing time after adding the curing agent is 20 minutes or more.

次いで注型工程は、約60℃に暖めた注型槽に注型容器
をセットし、注型用ホッパーに混和工程で得られた炸薬
スラリーを入れ、注型槽を圧力10torr以下にして
注型を行なう。
Next, in the casting process, the casting container is set in a casting tank heated to about 60°C, the explosive slurry obtained in the mixing process is put into the casting hopper, and the pressure of the casting tank is lowered to 10 torr or less. Do this.

硬化工程は、注型後の注型容器をキユアリング槽に移し
、槽内温度を通常約60℃にして、6日間以上かけて通
常硬化させる。
In the curing step, the cast container after casting is transferred to a curing tank, the temperature inside the tank is usually set to about 60° C., and the container is usually cured over a period of 6 days or more.

〈発明の効果〉 本発明の炸薬用組成物は、注型が可能で、そのために安
全に炸薬を製造することができ、且つ製造された炸薬は
、ショックエネルギー1.2以上、バブルエネルギー2
以上の高エネルギーを有するものである。
<Effects of the Invention> The explosive composition of the present invention can be cast, so explosives can be produced safely, and the produced explosive has a shock energy of 1.2 or more and a bubble energy of 2.
It has high energy.

又、本発明の炸薬を金属ケース内に収納し水中で起爆す
ると、水中威力が大であるために大きなバブルを形成し
、目標物に与える損傷が大きい。
Furthermore, when the explosive of the present invention is housed in a metal case and detonated underwater, it forms a large bubble due to its great power underwater, causing great damage to the target.

高エネルギーであるために、従来の炸薬と同等の威力を
得るには薬量が少なくて済むという特徴を有している。
Because of their high energy content, they require a smaller amount to achieve the same power as conventional explosives.

(実 施 例) 以下に本発明を実施例、比較例で具体的に説明する。(Example) The present invention will be specifically explained below using Examples and Comparative Examples.

実施例 l 第1表に示される実施例1の配合組成の本発明の炸薬用
組成物より次ぎのようにして炸薬を製造した。
Example 1 An explosive was produced from the explosive composition of the present invention having the composition of Example 1 shown in Table 1 in the following manner.

即ち、T M E T N 11.5重量%、TEGD
Nl、2重量%、PEG3.1重量%及びTMPo、3
重量%を圧力5 torr以下、温度59℃で40分間
混合した0次いで平均粒径400μmのAP40重量0
重量%粒径30umのAI2I2粉量8重量%平均粒径
20umのRD X 15重量%を加え、同圧力下同温
度で60分間混合し、次いで、TDIを0.9重量%添
加し、同圧力下同温度で30分間混合した。
That is, T M E T N 11.5% by weight, TEGD
Nl, 2% by weight, PEG 3.1% by weight and TMPo, 3
AP40 with an average particle size of 400 μm was mixed for 40 minutes at a pressure of 5 torr or less and a temperature of 59°C.
Weight % AI2I2 powder with particle size 30 um 8 weight % Add 15 weight % RD The mixture was mixed for 30 minutes at the same temperature.

次いで、混合物を60℃に暖められた注型用ホッパーに
移し、注型槽を圧力5 torr、温度60℃にして注
型を行なった。尚、その際注型終了後同圧力下同温度で
30分間放置し十分に脱泡を行なった。
Next, the mixture was transferred to a casting hopper heated to 60°C, and casting was performed at a pressure of 5 torr and a temperature of 60°C in the casting tank. At this time, after the casting was completed, the mold was left for 30 minutes under the same pressure and at the same temperature for sufficient degassing.

然る後に注型容器をキユアリング槽に移し、60℃で7
日間の条件下で硬化させた。
After that, transfer the casting container to a curing tank and heat it at 60℃ for 7 days.
Cured under conditions of 1 day.

このようにして得られた炸薬を1次ぎに示す試験に供し
、試験を行なった。各試験結果は第1表に示す。
The explosive powder thus obtained was first subjected to the test shown below. The results of each test are shown in Table 1.

(水中威力試験) (11ショックエネルギー(Es) 薬量約1kgで直径/高さが1/1の 円柱状の炸薬を水中で爆発させ、ト ルマリンゲージを用いショックパル スを計測しショックエネルギーを算 出する。(Underwater power test) (11 shock energy (Es) The drug amount is approximately 1 kg and the diameter/height is 1/1. A cylindrical explosive is detonated underwater and Shock pal using Luma Gauge Measure shock energy and calculate shock energy. put out

数値はペントライト化で表わす。Values are expressed in pentolite form.

(2)バブルエネルギー(Eb) 薬量約1kgで直径/高さが1/1の 円柱状の炸薬を水中で爆発させ、ト ルマリンゲージを用いバブルパルス を計測しバブルエネルギーを算出す る。(2) Bubble energy (Eb) The drug amount is approximately 1 kg and the diameter/height is 1/1. A cylindrical explosive is detonated underwater and Bubble pulse using Lumin gauge Measure and calculate bubble energy Ru.

数値はペントライト化で表わす。Values are expressed in pentolite form.

実施例 2〜6 第1表に示される実施例2〜6の配合組成の本発明の炸
薬用組成物について実施例1に準じて夫々の炸薬を製造
した。
Examples 2 to 6 Explosives were manufactured according to Example 1 using the explosive compositions of the present invention having the compositions of Examples 2 to 6 shown in Table 1.

夫々の炸薬について、実施例1と同様の試験を行なった
。結果は第1表に示す。
The same tests as in Example 1 were conducted for each explosive. The results are shown in Table 1.

比較例 l及び2 バインダー量を7重量%(比較例1)及び60重量%(
比較例2)にした以外は実施例1に準じて炸薬を製造し
た。
Comparative Examples 1 and 2 The binder amount was 7% by weight (Comparative Example 1) and 60% by weight (
An explosive was produced according to Example 1 except that Comparative Example 2) was used.

しかしながら、比較例1はスラリー粘度が高過ぎて注型
ができなかったので途中で製造を中断した。
However, in Comparative Example 1, the slurry viscosity was too high and casting could not be performed, so production was interrupted halfway.

比較例2については、混合終了後主成分とバインダー成
分とが二層に分離してしまい均一な炸薬が得られなかっ
た。
In Comparative Example 2, the main component and the binder component separated into two layers after completion of mixing, and a uniform explosive could not be obtained.

おニーー玉−−j堂 METN EGDN EGDN OA EG MP TPB TDI PDI Es トリメチロールエタントリナイトレートトリエチレング
リコールジナイトレートジエチレングリコールジナイト
レート ジオクチルアジベート ポリエチレングリコール トリメチロールプロパン 末端水酸基ポリブタジェン トリレンジイソシアネート イソホロンジイソシアネート ショックエネルギー 比較例 3〜6 次ぎに前述せる従来用いられているTNT及びHBX系
爆薬の組成及びそれらの水中威力を第2表に示す。
Neeedama--jdo METN EGDN EGDN OA EG MP TPB TDI PDI Es Trimethylolethane trinitrate Triethylene glycol dinitrate Diethylene glycol dinitrate Dioctyl adibate Polyethylene glycol Trimethylol propane Terminated hydroxyl group Polybutadiene tridiisocyanate Isophorone diisocyanate Shock Energy Comparative Examples 3 to 6 Next, Table 2 shows the compositions of the conventionally used TNT and HBX explosives mentioned above and their underwater powers.

表中 RDX   : N C: CaCβl : A 4   : E s   : E b   ニ トリメチレントリニトロアミン ニトロセルロース 塩化カルシウム アルミニウム粉 ショックエネルギー バブルエネルギー 尚、HBX系畑薬の配合割合()(BX−1,8BX−
3及びH−6)は、MIL−E−22267A、196
3.5.31を参考にした。
RDX in the table: N C: CaCβl: A4: E s: E b Nitrimethylene trinitramine Nitrocellulose Calcium chloride Aluminum powder Shock Energy Bubble energy In addition, the blending ratio of HBX field medicine () (BX-1, 8BX-
3 and H-6) are MIL-E-22267A, 196
3.5.31 was referred to.

又、Es、Ebは「煽薬エンサイクロペディアVol 
Ill J 1983年(アメリカアーミー アーマメ
ント リサーチ アンドディベロップメント コマンド
発行)を参考とした。
Also, Es and Eb are ``Encyclopedia Vol.
Reference was made to Ill J 1983 (published by the U.S. Army Armament Research and Development Command).

Claims (4)

【特許請求の範囲】[Claims] (1)主成分として、過塩素酸アンモニウム及び、アル
ミニウム粉、バインダーとして、トリメチロールエタン
トリナイトレート、トリエチレングリコールジナイトレ
ート及びジエチレングリコールジナイトレートとからな
る群から選ばれた少なくとも一種とポリウレタン系樹脂
組成物を含み、バインダーが炸薬用組成物の10〜30
重量%であることを特徴とする炸薬用組成物。
(1) The main components are ammonium perchlorate and aluminum powder, the binder is at least one member selected from the group consisting of trimethylolethane trinitrate, triethylene glycol dinitrate, and diethylene glycol dinitrate, and a polyurethane system. 10 to 30 of a resin composition, and the binder is an explosive composition.
% by weight.
(2)主成分として更にトリメチレントリニトロアミン
を含む請求項第1項に記載の炸薬用組成物。
(2) The explosive composition according to claim 1, further comprising trimethylene trinitramine as a main component.
(3)バインダーとして更に不活性可塑剤を含む請求項
第1項又は請求項第2項に記載の炸薬用組成物。
(3) The explosive composition according to claim 1 or 2, further comprising an inert plasticizer as a binder.
(4)主成分として、過塩素酸アンモニウム及びアルミ
ニウム粉、及びトリメチレントリニトロアミン、 バインダーとして不活性可塑剤とポリウレ タン系樹脂組成物を含み、バインダーが炸薬用組成物の
10〜30重量%であることを特徴とする炸薬用組成物
(4) Contains ammonium perchlorate and aluminum powder, and trimethylene trinitramine as main components, and an inert plasticizer and a polyurethane resin composition as a binder, and the binder accounts for 10 to 30% by weight of the explosive composition. An explosive composition characterized by the following.
JP16661189A 1989-06-30 1989-06-30 Explosive composition Expired - Lifetime JP2799736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16661189A JP2799736B2 (en) 1989-06-30 1989-06-30 Explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16661189A JP2799736B2 (en) 1989-06-30 1989-06-30 Explosive composition

Publications (2)

Publication Number Publication Date
JPH0333091A true JPH0333091A (en) 1991-02-13
JP2799736B2 JP2799736B2 (en) 1998-09-21

Family

ID=15834519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16661189A Expired - Lifetime JP2799736B2 (en) 1989-06-30 1989-06-30 Explosive composition

Country Status (1)

Country Link
JP (1) JP2799736B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031284A (en) * 2012-08-02 2014-02-20 Chugoku Kayaku Kk Production method of rdx
JP2014040343A (en) * 2012-08-22 2014-03-06 Nof Corp Production method of explosive charge composition, and explosive charge composition produced by the production method
CN104086340A (en) * 2014-07-23 2014-10-08 中国石油大学(华东) Multistage burning rate gunpowder capable of implementing multistage pulse high-energy gas fracturing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031284A (en) * 2012-08-02 2014-02-20 Chugoku Kayaku Kk Production method of rdx
JP2014040343A (en) * 2012-08-22 2014-03-06 Nof Corp Production method of explosive charge composition, and explosive charge composition produced by the production method
CN104086340A (en) * 2014-07-23 2014-10-08 中国石油大学(华东) Multistage burning rate gunpowder capable of implementing multistage pulse high-energy gas fracturing

Also Published As

Publication number Publication date
JP2799736B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
EP2318330B1 (en) Cast explosive composition
US3689331A (en) Nitrocellulose base compositions and method for making same
AU2006319000B2 (en) Improved semi-continuous two-component method for obtaining a composite explosive charge with polyurethane-matrix
US3609115A (en) Propellant binder
US3839106A (en) Composite explosive with a carboxylic polydiolefin binder
KR100952063B1 (en) Semi-continuous two-component process for producing a composite explosive charge comprising a polyurethane matrix
US4650617A (en) Solvent-free preparation of gun propellant formulations
US3711343A (en) Cellular nitrocellulose based composition and method of making
US3695952A (en) Solid propellant compositions containing hydroxymethyl-terminated polydienes
US6736913B1 (en) Method for processing explosives containing 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,903,11]-dodecan (CL-20) with naphthenic and paraffinic oils
US3447980A (en) Castable explosive containing tnt and a reaction product of a diisocyanate and 1,4-butyleneoxide polyglycol
USH778H (en) Microencapsulated catalyst and energetic composition containing same
JP6510640B2 (en) High performance composite pyrotechnic product containing no lead in its composition and method for producing the same
JPH0333091A (en) Composition for explosive
US3907619A (en) Solution cast double base propellants and method
JPH06340486A (en) Castable firework composition for generating smoke
US4154633A (en) Method for making solid propellant compositions having a soluble oxidizer
US3813458A (en) Random orientation of staple in slurry-cast propellants
JP2869734B2 (en) Method for producing high explosive charge composition
JP3548585B2 (en) Explosive composition
EP3115349A1 (en) Pbx composition
EP3115348A1 (en) Cast explosive composition
JPH02239177A (en) Composite propellant
JPH0725631B2 (en) Composite solid propellant and method for producing the same
NO803572L (en) SUSPENSION FURNISHED DOUBLE BASE DRIVES.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

EXPY Cancellation because of completion of term