JP3548585B2 - Explosive composition - Google Patents

Explosive composition Download PDF

Info

Publication number
JP3548585B2
JP3548585B2 JP19957992A JP19957992A JP3548585B2 JP 3548585 B2 JP3548585 B2 JP 3548585B2 JP 19957992 A JP19957992 A JP 19957992A JP 19957992 A JP19957992 A JP 19957992A JP 3548585 B2 JP3548585 B2 JP 3548585B2
Authority
JP
Japan
Prior art keywords
explosive
weight
component
binder
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19957992A
Other languages
Japanese (ja)
Other versions
JPH0648878A (en
Inventor
和宏 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP19957992A priority Critical patent/JP3548585B2/en
Publication of JPH0648878A publication Critical patent/JPH0648878A/en
Application granted granted Critical
Publication of JP3548585B2 publication Critical patent/JP3548585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • C06B45/105The resin being a polymer bearing energetic groups or containing a soluble organic explosive

Description

【0001】
【産業上の利用分野】
本発明は爆薬組成物に関する。更に詳しくは、高エネルギーバインダーを含む爆薬、特に、弾頭の炸薬等に利用されるプラスチックボンデッドエクスプロシブ(PBX)に関する。
【0002】
【従来の技術】
従来の爆薬組成物として、トリニトロトルエンを基剤としシクロトリメチレントリニトラミン(RDX)又はシクロテトラメチレンテトラニトラミン(HMX)をワックスで固めたものや、RDX又はHMXを主成分としポリエチレングリコール(PEG)、トリメチロールプロパン(TMP)、トリレンジイソシアネート(TDI)、又はヘキサメチレンジイソシアネート(HMDI)及びジオクチルアジペート(DOA)をバインダーとするいわゆるプラスチックボンデッドエクスプロシブ(PBX)が知られている。
【0003】
更に近年になって後者のPBXには、バインダー成分中に、グリシジルアジドポリマー(GAP)を含むものが公知である(米国特許第5,061,330号)。
【0004】
【発明が解決しようとする課題】
このような公知の爆薬組成物の中で、ワックス等で固めるものは、温度を上げて、ワックスを溶解し、これにRDX又はHMX粉体を混合し、冷却して作るため、冷却時の体積減少により、鋳巣と呼ばれる空隙が形成されやすい。そのため組成物の填薬密度を高めることが困難となり、爆薬としての性能、特に爆速の高いものが得られなかった。
又、バインダーで固めるPBXは注型可能で、製造中の安全性は高いが、バインダーの混合比率を高める必要があり、その結果爆薬性能としての爆速に限界があった。
従って、より爆発性能の高いPBXが強く求められていた。
【0005】
【課題を解決するための手段】
本発明者はこのような要求を満足させるような爆薬組成物について鋭意検討した結果、GAPよりもよりエネルギーの高いアジ化ポリマーに注目し、これをバインダーに含有させることにより、高爆速を達成し得ることを見出し本発明を完成するに至った。
【0006】
即ち、本発明はRDX及び/又はHMXの爆発性化合物から成る主成分と、(A)アジ化ポリマー、(B)ビス(2,2−ジニトロプロピル)アセタール/フォルマール(BDNPA/F)、トリメチロールエタントリナイトレート(TMETN)及びジエチレングリコールジナイトレート(DEGDN)から成る群から選ばれる1種又は2種以上、(C)架橋剤及び(D)硬化剤から成るバインダー成分とを含有し、バインダー成分中の(A)成分の含有量が 50 60 重量%で、(B)成分の含有量が(A)成分 100 重量部に対して 35 60 重量部であり、該バインダー量が組成物全体の15〜30重量%である爆薬組成物に関する。
【0007】
本発明の爆薬組成物に用いる主成分としてのRDX、HMXはそれぞれ単独で使用しても良いし、混合しても良い。
【0008】
又、RDX、HMXの粒径は適宜選択出来るが、爆発性能に影響するのみならず、製造性も左右する。つまり、200μmを超える粒径のものの単独使用は、爆発性能が劣り、20μmや3μm等の小粒径のものの単独使用は、高爆速が期待出来るが製造に困難をきたす。従って、粒径200μmのものと20μmのものとの混合、あるいは粒径200μmのもの、20μmのものと3μmのものとの混合が望ましい。又、その混合比は、例えば200μm/20μmでは65/35(重量比、以下同じ)〜80/20、好ましくは、70/30〜77/23である。200μm/20μm/3μmでは、70/22/8〜77/20/3である。
【0009】
更に、RDX及び/又はHMXの組成物全体に占める割合は、70〜85重量%が適当である。
【0010】
本発明の爆薬組成物に用いるバインダー成分は(A)アジ化ポリマーと(B)特定の化合物群から選ばれるニトロ可塑剤と(C)架橋剤及び(D)硬化剤から成り、更に必要に応じて少量の安定剤、硬化触媒とから成る。
【0011】
アジ化ポリマーの適当なものとしては、末端水酸基を有する3,3−ビスアジドメチルオキセタン/テトラヒドロフランコポリマー(BAMO/THFコポリマー)、又は末端水酸基を有する3,3−ビスアジドメチルオキセタン/3−アジドメチル−3−メチルオキセタンコポリマー(BAMO/AMMOコポリマー)等が挙げられる。
【0012】
BAMO/THFコポリマーについては、BAMO/THFのモル比は任意のものが選べるがPBXつまり注型方式での爆薬としては、7/3〜4/6(モル比、以下同じ)、好ましくは7/3〜6/4である。7/3を超えるものは粘度が高く、バインダーの組成物全体に対する比率が高くなり、高性能化が期待できない。又、4/6未満のものも、不活性なTHF成分が多くなるため、高性能化が図れない。更に、分子量は1000〜3000のものが好ましい。
【0013】
次に、BAMO/AMMOコポリマーについても、BAMO/AMMOのモル比は、製造時の粘度、組成物としてのエネルギーレベルの点から7/3〜4/6が好ましい。又、分子量も1000〜3000の範囲のものが選ばれる。
【0014】
これらのポリマーはいずれも末端は硬化剤とウレタン結合するため、水酸基であることが必要である。
【0015】
又、これらのアジ化ポリマー(A)の使用量は、バインダー成分全体に対して50〜60重量%である。50重量%未満では主成分であるRDX、HMXの結合性に支障をきたし、60重量%を超えると可塑剤量が減ることになり、バインダーとしての粘度が高くなり、製造性に問題が生じ、何れも好ましくない。
【0016】
本発明のバインダー成分に使用されるニトロ可塑剤(B)とは、前述のBDNPA/F、TMETN及びDEGDNから成る群から選ばれる特定の化合物である。これらは1種又は2種以上混合して用いる。その量は、アジ化ポリマー(A)100重量部に対して35〜60重量部である。35重量部未満であるとバインダーとしての粘度が高くなり、注型に支障をきたす。又、60重量部を超えると組成物から分離してくる。
【0017】
架橋剤(C)としては、トリメチロールプロパン(TMP)及び3つの末端水酸基を持つ3,3−ビスアジドメチルオキセタン/テトラヒドロフランコポリマー(BTT)が適当である。爆薬組成物の物性を考慮すると、後者の方がより好ましい。
【0018】
又、これらの架橋剤(C)の使用量は、通常、アジ化ポリマー(A)との比で表示される。つまり、(C)の水酸基モル数/{(C)+(A)}の水酸基モル数である。この表示で0.05〜0.5望ましくは0.1〜0.3の範囲である。0.05未満では、所謂、架橋度が小さく組成物の物性の経時的劣化を引き起こす。又、0.5を超えると架橋度が大きく、硬く、柔軟性に欠ける組成物となり、何れも適用出来ない。
【0019】
硬化剤(D)としては、例えばヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート(IPDI)、トリレンジイソシアネート(TDI)等のイソシアネート化合物が用いられる。又、硬化剤(D)とアジ化ポリマー(A)との比は、それぞれのイソシアネート基及び水酸基のモル比で通常イソシアネート/水酸基=0.8〜1.2である。0.8未満では硬化後の爆薬が軟らかすぎ、任意の形状に成形することが困難であり、一方、1.2を超えると未反応イソシアネートが残留し、組成物の爆発性能及び物性に低下をきたす。
【0020】
又、本発明に於いて任意成分として用いられる安定剤としては、例えばエチルセントラリット、硬化触媒としては、例えばジブチルチンジラウレート(DBTDL)、トリフェニルビスマス(TPB)等が挙げられる。それらの組成物中の含有量は外割で0.5重量%以下である。
【0021】
本発明に於いて、前記バインダー量は組成物全体の15〜30重量%である。15重量%未満では、注型が不可能であり、30重量%を超えると高爆速の爆薬が得られない。
【0022】
本発明の爆薬組成物からは公知の方法で、例えば混和、注型、硬化の3工程により爆薬が製造できる。
【0023】
【発明の効果】
本発明の爆薬組成物は安全な注型が可能であり、得られた爆薬は7900m/sを超える高爆速を有する。
【0024】
【実施例】
以下、本発明を実施例、比較例によって具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0025】
実施例1
表1に示す配合組成の爆薬を次の様に製造した。(A)BAMO/THFコポリマー16.5重量%、(B)TMETN9.7重量%、(C)TMP1.1重量%を圧力8Torr下、温度57℃で25分間混合した。
次いで、HMX70.0重量%(粒径200μm/粒径20μm=77/23重量比)を加え、同圧力、同温度で46分間混合した。
次いで、(D)IPDI2.7重量%を添加し、同圧力、同温度で更に、25分間混合した。
次いで、混合物を予め57℃に温められた注型用ホッパーに移し、圧力10Torr、温度25℃にて注型容器に注型した。
その後、注型容器をキュア槽に移し、57℃で7日間で硬化させた。
この様にして得られた爆薬について試験を行った。結果を表1に示す。尚、表1中の試験内容を下記に示した。
【0026】
・製造性
安全に、且つ気泡を含有せず、又、バインダーと粉体とが分離しない爆薬が製造できるかどうかで判定した。
・爆速試験
長さ200mmの32A炭素鋼管に試料を注填し、イオンギャップ法を用いて、爆速を計測した。
・落つい感度試験
JIS K 4810に従い、1/6爆点を求め、その落高より等級で表示した。
・摩擦感度試験
JIS K 4810に従い、1/6爆点を求め、その時の荷重(kgf)より等級で表示した。
【0027】
実施例2、3
表1に示す配合組成で実施例1と同様に爆薬を製造した。それぞれの爆薬について実施例1と同様の試験を行い、その結果を表1に示した。
尚、実施例3のRDXは200μm/20μm=70/30重量比の混合物を使った。
【0028】
【表1】

Figure 0003548585
【0029】
比較例1
本発明で用いるアジ化ポリマーの代わりに、PEG(分子量:1500)を用い、表2に示す配合組成で、実施例1に準じて爆薬を製造した。又、その爆薬について実施例1と同様の試験を行い、その結果を表2に示した。
【0030】
比較例2
本発明で用いるアジ化ポリマーの代わりに、GAP(分子量:2100、水酸基数:2)を用い、表2に示す配合組成で、実施例1に準じて爆薬を製造した。又、その爆薬について実施例1と同様の試験を行い、その結果を表2に示した。
【0031】
【表2】
Figure 0003548585
[0001]
[Industrial applications]
The present invention relates to explosive compositions. More specifically, the present invention relates to a plastic bonded explosive (PBX) used for an explosive containing a high-energy binder, in particular, for an explosive of a warhead.
[0002]
[Prior art]
Conventional explosive compositions include trinitrotoluene-based cyclotrimethylenetrinitramine (RDX) or cyclotetramethylenetetranitramine (HMX) solidified with wax, or RDX or HMX as a main component and polyethylene glycol ( So-called plastic bonded explosives (PBX) using PEG), trimethylolpropane (TMP), tolylene diisocyanate (TDI), or hexamethylene diisocyanate (HMDI) and dioctyl adipate (DOA) as binders are known.
[0003]
More recently, the latter PBX is known which contains a glycidyl azide polymer (GAP) in a binder component (US Pat. No. 5,061,330).
[0004]
[Problems to be solved by the invention]
Among such known explosive compositions, those that are solidified with wax or the like are prepared by raising the temperature, dissolving the wax, mixing RDX or HMX powder with the mixture, and cooling the mixture. Due to the reduction, voids called voids are likely to be formed. For this reason, it was difficult to increase the filling density of the composition, and a high explosive performance, particularly a high explosive speed could not be obtained.
Further, PBX solidified with a binder can be cast and has high safety during production, but it is necessary to increase the mixing ratio of the binder, and as a result, there is a limit to the explosive speed as explosive performance.
Therefore, a PBX having higher explosive performance has been strongly demanded.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on explosive compositions that satisfy such requirements, the present inventors have focused on azide polymers having higher energy than GAP, and achieved high explosion velocities by incorporating them into binders. The inventors have found that the present invention has been completed and completed the present invention.
[0006]
That is, the present invention provides a main component comprising an explosive compound of RDX and / or HMX, (A) an azide polymer, (B) bis (2,2-dinitropropyl) acetal / formal (BDNPA / F), trimethylol ethane trinitrate (TMETN) and diethylene glycol dinitrate one selected from the group consisting of (DEGDN) or two or more, and containing a binder component consisting of (C) crosslinking agent and (D) a curing agent, a binder The content of the component (A) in the component is 50 to 60 % by weight, the content of the component (B) is 35 to 60 parts by weight based on 100 parts by weight of the component (A) , and the amount of the binder is 15 to 30% by weight of the total explosive composition.
[0007]
RDX and HMX as main components used in the explosive composition of the present invention may be used alone or in combination.
[0008]
Further, the particle size of RDX and HMX can be appropriately selected, but not only affects the explosion performance but also affects the productivity. In other words, the single use of particles having a particle size exceeding 200 μm is inferior in explosive performance, and the use of single particles having a small particle size such as 20 μm or 3 μm can be expected to have a high explosion velocity, but makes production difficult. Therefore, it is desirable to mix the particles having a particle diameter of 200 μm and 20 μm, or to mix the particles having a particle diameter of 200 μm, 20 μm and 3 μm. The mixing ratio is, for example, 65/35 (weight ratio, the same applies hereinafter) to 80/20, preferably 70/30 to 77/23 at 200 μm / 20 μm. For 200 μm / 20 μm / 3 μm, the ratio is 70/22/8 to 77/20/3.
[0009]
Further, the proportion of RDX and / or HMX in the whole composition is suitably from 70 to 85% by weight.
[0010]
The binder component used in the explosive composition of the present invention comprises (A) an azide polymer, (B) a nitro plasticizer selected from a specific compound group, (C) a crosslinking agent, and (D) a curing agent. And a small amount of stabilizer and curing catalyst.
[0011]
Suitable azide polymers include 3,3-bisazidomethyloxetane / tetrahydrofuran copolymer having terminal hydroxyl groups (BAMO / THF copolymer) or 3,3-bisazidomethyloxetane / 3-azidomethyl- having terminal hydroxyl groups. 3-methyloxetane copolymer (BAMO / AMMO copolymer) and the like.
[0012]
As for the BAMO / THF copolymer, the molar ratio of BAMO / THF can be selected arbitrarily. 3 to 6/4. If the ratio exceeds 7/3, the viscosity is high, the ratio of the binder to the whole composition becomes high, and improvement in performance cannot be expected. In addition, those having a ratio of less than 4/6 cannot achieve high performance because the inactive THF component increases. Further, those having a molecular weight of 1,000 to 3,000 are preferred.
[0013]
Next, regarding the BAMO / AMMO copolymer, the molar ratio of BAMO / AMMO is preferably 7/3 to 4/6 from the viewpoint of the viscosity during production and the energy level of the composition. Further, those having a molecular weight in the range of 1,000 to 3,000 are selected.
[0014]
Since the terminal of each of these polymers is bonded to the curing agent by urethane, it is necessary that the terminal be a hydroxyl group.
[0015]
The amount of the azide polymer (A) used is 50 to 60 % by weight based on the whole binder component. If it is less than 50% by weight, the binding properties of the main components RDX and HMX are hindered. If it exceeds 60% by weight, the amount of the plasticizer decreases, the viscosity as a binder increases, and a problem arises in productivity. Neither is preferred.
[0016]
The nitro plasticizer (B) used in the binder component of the present invention is a specific compound selected from the group consisting of BDNPA / F, TMETN and DEGDN described above. These may be used alone or in combination of two or more. The amount is 35 to 60 parts by weight based on 100 parts by weight of the azide polymer (A). If the amount is less than 35 parts by weight, the viscosity as a binder becomes high, which hinders casting. If it exceeds 60 parts by weight, it will separate from the composition.
[0017]
As the crosslinking agent (C), trimethylolpropane (TMP) and 3,3-bisazidomethyloxetane / tetrahydrofuran copolymer having three terminal hydroxyl groups (BTT) are suitable. Considering the physical properties of the explosive composition, the latter is more preferable.
[0018]
The amount of the cross-linking agent (C) used is usually indicated by the ratio to the azide polymer (A). That is, the molar number of hydroxyl groups in (C) / the molar number of hydroxyl groups in {(C) + (A)}. In this display, the range is 0.05 to 0.5, preferably 0.1 to 0.3. If it is less than 0.05, the so-called cross-linking degree is small and the physical properties of the composition deteriorate with time. On the other hand, if it exceeds 0.5, the composition has a high degree of crosslinking, is hard, and lacks flexibility, and none of them can be applied.
[0019]
As the curing agent (D), for example, isocyanate compounds such as hexamethylene diisocyanate (HMDI), isophorone diisocyanate (IPDI), and tolylene diisocyanate (TDI) are used. The ratio between the curing agent (D) and the azide polymer (A) is usually isocyanate / hydroxyl group = 0.8 to 1.2 in terms of the molar ratio of each isocyanate group and hydroxyl group. If it is less than 0.8, the explosive after curing is too soft and it is difficult to mold it into an arbitrary shape. On the other hand, if it exceeds 1.2, unreacted isocyanate remains and the explosive performance and physical properties of the composition deteriorate.
[0020]
The stabilizer used as an optional component in the present invention includes, for example, ethyl centralite, and the curing catalyst includes, for example, dibutyltin dilaurate (DBTDL) and triphenylbismuth (TPB). Their content in the composition is not more than 0.5% by weight.
[0021]
In the present invention, the amount of the binder is 15 to 30% by weight of the whole composition. If it is less than 15% by weight, casting is impossible, and if it exceeds 30% by weight, high explosives cannot be obtained.
[0022]
From the explosive composition of the present invention, an explosive can be produced by a known method, for example, by three steps of mixing, casting, and curing.
[0023]
【The invention's effect】
The explosive composition of the present invention can be safely cast, and the obtained explosive has a high explosive velocity exceeding 7900 m / s.
[0024]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0025]
Example 1
Explosives having the composition shown in Table 1 were produced as follows. (A) 16.5% by weight of a BAMO / THF copolymer, (B) 9.7% by weight of TMETN, and (C) 1.1% by weight of TMP were mixed under a pressure of 8 Torr at a temperature of 57 ° C. for 25 minutes.
Next, 70.0% by weight of HMX (particle size: 200 μm / particle size: 20 μm = 77/23 weight ratio) was added and mixed at the same pressure and the same temperature for 46 minutes.
Next, (D) 2.7% by weight of IPDI was added, and the mixture was further mixed at the same pressure and the same temperature for 25 minutes.
Next, the mixture was transferred to a casting hopper preliminarily heated to 57 ° C., and cast into a casting container at a pressure of 10 Torr and a temperature of 25 ° C.
Thereafter, the casting container was transferred to a cure tank and cured at 57 ° C. for 7 days.
The explosives thus obtained were tested. Table 1 shows the results. The test contents in Table 1 are shown below.
[0026]
Manufacturability It was determined whether or not an explosive that can be manufactured safely, does not contain air bubbles, and does not separate the binder and the powder can be manufactured.
-Explosion velocity test The sample was poured into a 200 mm long 32A carbon steel pipe, and the explosion velocity was measured using the ion gap method.
・ Sensitivity sensitivity test
In accordance with JIS K 4810, 1/6 explosion point was determined and indicated by the grade from its drop height.
・ Friction sensitivity test
In accordance with JIS K 4810, the 1/6 explosion point was determined, and the result was expressed in a class based on the load (kgf).
[0027]
Examples 2 and 3
Explosives were produced in the same manner as in Example 1 with the composition shown in Table 1. The same test as in Example 1 was performed for each explosive, and the results are shown in Table 1.
The RDX used in Example 3 was a mixture having a weight ratio of 200 μm / 20 μm = 70/30.
[0028]
[Table 1]
Figure 0003548585
[0029]
Comparative Example 1
Explosives were produced according to Example 1 using PEG (molecular weight: 1500) in place of the azide polymer used in the present invention and with the composition shown in Table 2. Further, the same explosives were tested as in Example 1, and the results are shown in Table 2.
[0030]
Comparative Example 2
An explosive was produced according to Example 1 using GAP (molecular weight: 2100, number of hydroxyl groups: 2) in place of the azide polymer used in the present invention and with the composition shown in Table 2. Further, the same explosives were tested as in Example 1, and the results are shown in Table 2.
[0031]
[Table 2]
Figure 0003548585

Claims (4)

シクロトリメチレントリニトラミン及び/又はシクロテトラメチレンテトラニトラミンの爆発性化合物から成る主成分と、(A)アジ化ポリマー、(B)ビス(2,2−ジニトロプロピル)アセタール/フォルマール、トリメチロールエタントリナイトレート及びジエチレングリコールジナイトレートから成る群から選ばれる1種又は2種以上、(C)架橋剤及び(D)硬化剤から成るバインダー成分とを含有し、バインダー成分中の(A)成分の含有量が 50 60 重量%で、(B)成分の含有量が(A)成分 100 重量部に対して 35 60 重量部であり、該バインダー量が組成物全体の15〜30重量%である爆薬組成物。A main component comprising an explosive compound of cyclotrimethylenetrinitramine and / or cyclotetramethylenetetranitramine; (A) an azide polymer; (B) bis (2,2-dinitropropyl) acetal / formal; It contains one or more kinds selected from the group consisting of methylol ethane trinitrate and diethylene glycol dinitrate, (C) a binder component comprising a crosslinking agent and (D) a curing agent , and (A) in the binder component The content of the component is 50 to 60 % by weight, the content of the component (B) is 35 to 60 parts by weight relative to 100 parts by weight of the component (A) , and the amount of the binder is 15 to 30% by weight of the whole composition. Explosive composition in%. アジ化ポリマーが、末端水酸基を有する3,3−ビスアジドメチルオキセタン/テトラヒドロフランコポリマー、又は末端水酸基を有する3,3−ビスアジドメチルオキセタン/3−アジドメチル−3−メチルオキセタンコポリマーである請求項1記載の爆薬組成物。2. The azide polymer is a 3,3-bisazidomethyloxetane / tetrahydrofuran copolymer having a terminal hydroxyl group or a 3,3-bisazidomethyloxetane / 3-azidomethyl-3-methyloxetane copolymer having a terminal hydroxyl group. Explosive composition. 架橋剤がトリメチロールプロパン、又は3つの末端水酸基を持つ3,3−ビスアジドメチルオキセタン/テトラヒドロフランコポリマーである請求項1記載の爆薬組成物。The explosive composition according to claim 1, wherein the crosslinking agent is trimethylolpropane or a 3,3-bisazidomethyloxetane / tetrahydrofuran copolymer having three terminal hydroxyl groups. 請求項1〜3のいずれか1記載の爆薬組成物を注型し、硬化させて得られる、It is obtained by casting and curing the explosive composition according to any one of claims 1 to 3, 79007900 m/sを超える爆速を有する爆薬。Explosives with explosive speeds exceeding m / s.
JP19957992A 1992-07-27 1992-07-27 Explosive composition Expired - Fee Related JP3548585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19957992A JP3548585B2 (en) 1992-07-27 1992-07-27 Explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19957992A JP3548585B2 (en) 1992-07-27 1992-07-27 Explosive composition

Publications (2)

Publication Number Publication Date
JPH0648878A JPH0648878A (en) 1994-02-22
JP3548585B2 true JP3548585B2 (en) 2004-07-28

Family

ID=16410193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19957992A Expired - Fee Related JP3548585B2 (en) 1992-07-27 1992-07-27 Explosive composition

Country Status (1)

Country Link
JP (1) JP3548585B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993241B2 (en) * 2012-08-02 2016-09-14 中国化薬株式会社 Manufacturing method of RDX
JP6115040B2 (en) * 2012-08-22 2017-04-19 日油株式会社 Method for producing glaze composition and glaze composition produced by the production method

Also Published As

Publication number Publication date
JPH0648878A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
US5316600A (en) Energetic binder explosive
US4799980A (en) Multifunctional polyalkylene oxide binders
KR20110058826A (en) Cast explosive composition
KR100952063B1 (en) Semi-continuous two-component process for producing a composite explosive charge comprising a polyurethane matrix
EP1167324B1 (en) Insensitive melt cast explosive compositions containing energetic thermoplastic elastomers
JP5041467B2 (en) Composite propellant
JP6510640B2 (en) High performance composite pyrotechnic product containing no lead in its composition and method for producing the same
JP3548585B2 (en) Explosive composition
JP5391585B2 (en) Propellant and manufacturing method thereof
KR101101218B1 (en) Gap/nitramine-based energetic propellant composition having excellent mechanical properties
EP1141062B1 (en) Synthesis of energetic thermoplastic elastomers containing oligomeric urethane linkages
JP3140533B2 (en) High energy binder-based composite propellants
JP3376601B2 (en) Composite propellant composition
US4985093A (en) Melt cast explosives
JP2022157773A (en) Composite propellant
JP3090820B2 (en) Smokeless composite propellant
JP2021155327A (en) Composite propellant
JP3132524B2 (en) Composite propellants
JP3304467B2 (en) Propellant
JP2869734B2 (en) Method for producing high explosive charge composition
JP2016060645A (en) Composite propellant
JPS6168383A (en) Composite solid propellant
JPS62216985A (en) Nitramine-containing composite solid propellent composition
JPH0725631B2 (en) Composite solid propellant and method for producing the same
JPS62202890A (en) Htpb type composite solid propellant

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees