JP2869734B2 - Method for producing high explosive charge composition - Google Patents

Method for producing high explosive charge composition

Info

Publication number
JP2869734B2
JP2869734B2 JP1091897A JP9189789A JP2869734B2 JP 2869734 B2 JP2869734 B2 JP 2869734B2 JP 1091897 A JP1091897 A JP 1091897A JP 9189789 A JP9189789 A JP 9189789A JP 2869734 B2 JP2869734 B2 JP 2869734B2
Authority
JP
Japan
Prior art keywords
explosive
weight
casting
mixing
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1091897A
Other languages
Japanese (ja)
Other versions
JPH02271986A (en
Inventor
松男 小林
治幸 有澤
正和 小林
勝彦 高橋
和司 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
NIPPON YUSHI KK
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
NIPPON YUSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO, NIPPON YUSHI KK filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP1091897A priority Critical patent/JP2869734B2/en
Publication of JPH02271986A publication Critical patent/JPH02271986A/en
Application granted granted Critical
Publication of JP2869734B2 publication Critical patent/JP2869734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、安全に製造でき、且つ高爆速の炸薬の組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION INDUSTRIAL APPLICATION The present invention relates to a composition of a high explosive charge that can be manufactured safely.

〈従来の技術〉 従来から高爆速の炸薬として、トリニトロトルエン
(TNT)を基剤とし、トリメチレントリニトロアミン(R
DX)あるいはシクロテトラメチレンテトラニトロアミン
(HMX)とワックスとから成る組成物が知られている。
<Conventional technology> Trimethylene trinitroamine (R) based on trinitrotoluene (TNT) as a high explosive
Compositions comprising DX) or cyclotetramethylenetetranitroamine (HMX) and a wax are known.

又、RDXを主成分とし、ビスジニトロアセタール/フ
ォルマール、ポリエチレングリコール(PEG)、トリメ
チロールプロパン(TMP)及びトリレンジイソシアネー
ト(TDI)をバインダーとする炸薬組成物も知られてい
る。
An explosive composition is also known in which RDX is a main component and bisdinitroacetal / formal, polyethylene glycol (PEG), trimethylolpropane (TMP) and tolylene diisocyanate (TDI) are binders.

〈発明が解決しようとする課題〉 前述の公知の組成物中、前者は溶填式で製造される。
炸薬の爆発性能は填薬密度が理論密度に近い程高いの
で、高爆速を得るためには填薬した炸薬を温めながら徐
々に冷却している。
<Problem to be Solved by the Invention> In the above-mentioned known composition, the former is manufactured by a filling method.
Since the explosive performance of the explosive is higher as the density of the explosive is closer to the theoretical density, the explosive is cooled gradually while warming it in order to obtain a high detonation speed.

しかし、冷却時に炸薬の体積減少が生じると共に、中
心部に熱集中が生じて鋳巣が形成され、填薬密度の高い
炸薬を得ることが困難であった。
However, during cooling, the volume of the explosive is reduced, and heat is concentrated at the center to form a cavity, which makes it difficult to obtain an explosive with a high charge density.

一方後者の組成物は、PBX(プラスチックボンディド
エクスプロシブ)であり、注型可能で安全性は高いもの
の、爆発性能として、爆速が7900m/sが限界であった。
On the other hand, the latter composition is PBX (Plastic Bonded Explosive), which can be cast and has high safety, but its explosion performance was limited to a detonation speed of 7900 m / s.

そこで7900m/sを超える高爆速で、しかも製造時の安
全性が高く、任意の形状に成形することが可能である炸
薬の製造方法の開発が求められていた。
Therefore, there has been a demand for the development of a method for producing an explosive that can be formed into an arbitrary shape with a high explosion speed exceeding 7900 m / s and high safety during production.

〈課題を解決するための手段〉 本発明者らは、前記の要望を満足させるような炸薬組
成物の製造方法について、長期にわたって研究した結
果、本発明を完成した。
<Means for Solving the Problems> The present inventors have studied over a long period of time a method for producing an explosive composition that satisfies the above-mentioned needs, and as a result, completed the present invention.

即ち本発明は、 主成分であるシクロテトラメチレンニトラミン及び、
又はトリメチレントリニトロアミンと、 トリメチロールエタントリナイトレート、トリエチレ
ングリコールジナイトレート及びジエチレングリコール
ジナイトレートとからなる群から選ばれた一種又は二種
以上のニトロ可塑剤50〜90重量%とポリエチレングリコ
ールとトリメチロールプロパンと硬化剤からなるポリウ
レタン系樹脂10〜50重量%からなるバインダーとを、バ
インダーが主成分とバインダーとの合計量の10〜30重量
%になるように混合して炸薬スラリーを得る混和工程、 混和工程で得られた炸薬スラリーを容器内に注入して
注型する注型工程 及び 注型工程後の容器を加熱して炸薬スラリーを硬化する
硬化工程 とよりなる高爆速炸薬組成物の製造方法に関する。
That is, the present invention provides cyclotetramethylene nitramine as a main component,
Or 50-90% by weight of one or more nitro plasticizers selected from the group consisting of trimethylenetrinitroamine, trimethylolethanetrinitrate, triethylene glycol dinitrate and diethylene glycol dinitrate, and polyethylene A binder comprising 10 to 50% by weight of a polyurethane resin comprising glycol, trimethylolpropane, and a curing agent is mixed so that the binder becomes 10 to 30% by weight of the total amount of the main component and the binder to form an explosive slurry. A high explosive charge composition comprising: a mixing step for obtaining, a casting step for injecting and casting the explosive slurry obtained in the mixing step into a container, and a curing step for heating the container after the casting step to cure the explosive slurry. The present invention relates to a method for manufacturing a product.

本発明に用いる主成分として用いるHMX,RDXは、それ
ぞれ単独で使用してもよいし、混合して使用してもよ
い。
HMX and RDX used as the main components used in the present invention may be used alone or as a mixture.

又、HMX及びRDXの粒度とその配合割合は、製造性、爆
発性能等から適宜選択することができる。通常は、例え
ば平均粒径200μm、15μm、3μm以下のものを組合
わせて用いる。
Further, the particle size of HMX and RDX and the compounding ratio thereof can be appropriately selected from manufacturability, explosive performance and the like. Usually, for example, those having an average particle size of 200 μm, 15 μm, 3 μm or less are used in combination.

例えば、HMXを用いる場合には、平均粒径200μm/15μ
mが6/4〜8/2(重量比以下同様)、RDXを用いる場合は
平均粒径200μm/15μmが6/4〜8/2、又は平均粒径15μm
/3μm以下が6/4〜9/1等である。
For example, when using HMX, the average particle size 200μm / 15μ
m is 6/4 to 8/2 (the same applies to the weight ratio or less), when RDX is used, the average particle diameter is 200 μm / 15 μm is 6/4 to 8/2, or the average particle diameter is 15 μm
6/4 to 9/1 or the like for / 3 μm or less.

本発明方法に用いるバインダーは、特定のニトロ可塑
剤とポリウレタン系樹脂とを含むことに特徴がある。
The binder used in the method of the present invention is characterized by containing a specific nitro plasticizer and a polyurethane resin.

特定のニトロ可塑剤とは、前述のようにTMETN,TEGDN,
DEGDNである。これらのニトロ可塑剤は1種又は2種以
上の混合物として用いられる。
Specific nitro plasticizers include TMETN, TEGDN,
DEGDN. These nitro plasticizers are used as one kind or as a mixture of two or more kinds.

ポリウレタン系樹脂とは、例えばポリエチレングリコ
ール(PEG)、トリメチロールプロパン(TMP)と硬化剤
とから成るものである。
The polyurethane resin includes, for example, polyethylene glycol (PEG), trimethylolpropane (TMP) and a curing agent.

硬化剤としては、例えばトリレンジイソシアネート
(TDI)、ジフェニルメタンジイソシアネート、ヘキサ
メチレンジイソシアネート、イソフォロンジイソシアネ
ート等のイソシアネート化合物である。
Examples of the curing agent include isocyanate compounds such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.

硬化剤とPEG等との比は、夫々のイソシアネート基及
び水酸基のモル比で通常、イソシアネート基/水酸基=
0.8〜1.2である。
The ratio of the curing agent to PEG or the like is usually the molar ratio of each isocyanate group and hydroxyl group, and isocyanate group / hydroxyl group =
0.8 to 1.2.

0.8に達しない場合、又1.2を越える場合は、硬化後の
炸薬が軟らかくなり、任意の形状に成型することが困難
となる。
If it does not reach 0.8 or exceeds 1.2, the explosive after curing becomes soft, and it becomes difficult to mold it into an arbitrary shape.

尚、本発明においては、前記ポリウレタン系樹脂以外
のニトロ可塑剤に相溶性のある樹脂を使用することもで
きる。
In the present invention, a resin compatible with a nitro plasticizer other than the polyurethane resin may be used.

ニトロ可塑剤とポリウレタン系樹脂の配合割合は重量
比で通常、ニトロ可塑剤/ポリウレンタン系樹脂=9/1
〜5/5であることが必要である。
The mixing ratio of nitro plasticizer and polyurethane resin is usually by weight ratio, nitro plasticizer / polyurethane resin = 9/1
Must be ~ 5/5.

9/1よりニトロ可塑剤が多いと、硬化後ニトロ可塑剤
が分離する。
If there is more nitro plasticizer than 9/1, the nitro plasticizer will separate after curing.

又5/5よりニトロ可塑剤が少ないと、炸薬スラリーの
粘度が高くなり、注型が困難となる。
If the amount of nitro plasticizer is less than 5/5, the viscosity of the explosive slurry becomes high and casting becomes difficult.

又本発明の組成物には、前記成分以外に安定剤とし
て、例えばエチルセントラリットやレゾルシノール等を
添加することもでき、硬化触媒として、例えばフェリッ
クアセチルアセトネートやコッパーアセチルアセトネー
ト等を添加することも出来る。それらの添加量は主成分
とバインダーとの合計量の0.3重量%以下である。
Further, in the composition of the present invention, besides the above-mentioned components, as a stabilizer, for example, ethylcentralit or resorcinol can also be added, and as a curing catalyst, for example, ferric acetylacetonate, copper acetylacetonate, or the like is added. You can also. Their addition amount is 0.3% by weight or less of the total amount of the main component and the binder.

本発明方法において、主成分とバインダーの合計量に
対して主成分70〜90重量%、バインダー30〜10重量%の
割合になるように混和する。バインダーが10重量%未満
では注型が不可能であるため高爆速炸薬は製造できな
い。30重量%を越えると高爆速の炸薬は得られない。
In the method of the present invention, the components are mixed so as to have a ratio of 70 to 90% by weight of the main component and 30 to 10% by weight of the binder based on the total amount of the main component and the binder. If the binder content is less than 10% by weight, high explosive charges cannot be produced because casting is impossible. If it exceeds 30% by weight, high explosive charges cannot be obtained.

混和工程では、ニトロ可塑剤とPEGとTMPとを混合し、
必要に応じて安定剤、、硬化触媒を添加して混合する。
次いでHMX及び、又はRDXを混合し、しかる後に硬化剤を
混合する。
In the mixing step, the nitro plasticizer, PEG and TMP are mixed,
If necessary, a stabilizer and a curing catalyst are added and mixed.
Next, HMX and / or RDX are mixed, and then a curing agent is mixed.

混合は、圧力10torr以下温度60±5℃で行ない、混合
時間は、例えば前記最初の混合が30分以上、HMX等を添
加しての混合が60分以上、硬化剤を添加してからの混合
が30分以上である。
The mixing is performed at a pressure of 10 torr or less at a temperature of 60 ± 5 ° C. The mixing time is, for example, 30 minutes or more for the first mixing, 60 minutes or more for mixing with HMX or the like, and mixing after adding a curing agent. Is more than 30 minutes.

次いで注型工程は、約60℃にあたためた注型槽に注型
容器をセットし、注型用ホッパーから混和工程で得られ
た炸薬スラリーを入れ、注型槽を圧力10torr以下にして
注型を行なう。
Next, in the casting process, set the casting container in the casting tank warmed to about 60 ° C, put the explosive slurry obtained in the mixing step from the casting hopper, and cast the casting tank to a pressure of 10 torr or less. Perform

硬化工程は、注型後の注型容器をキャアリング槽に移
し、槽内温度を通常約60℃にして、6日間以上かけて硬
化させる。
In the curing step, the casting container after casting is transferred to a carrying tank, and the temperature in the tank is usually set to about 60 ° C., and the curing is performed for 6 days or more.

〈発明の効果〉 本発明の高爆速炸薬組成物の製造方法に於ては安全な
注型が可能であり、安全に製造され、又、得られた組成
物は7900m/sを越える高爆速を有する。
<Effect of the Invention> In the method for producing a high explosive explosive composition of the present invention, safe casting is possible, and the composition is produced safely, and the obtained composition has a high explosive speed exceeding 7900 m / s. Have.

更に本発明の方法で得られた炸薬組成物は高爆速であ
るために、従来の炸薬と同等の威力を得るには薬量が少
なくて済むという特徴を有している。
Further, since the explosive composition obtained by the method of the present invention has a high explosive speed, the explosive composition is characterized in that a small amount of the drug is required to obtain the same power as a conventional explosive.

又本発明の方法で得られた炸薬を金属ケース内に収納
して起爆すると、高爆速であるために高速の破片を形成
し、目標物に与える損傷が大きいという特徴も有してい
る。
In addition, when the explosive obtained by the method of the present invention is stored in a metal case and detonated, it has a high explosion speed, so that high-speed fragments are formed and damage to a target is large.

〈実 施 例〉 以下に本発明を実施例、比較例で具体的に説明する。<Examples> Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例 1 表に示される実施例1の配合組成の炸薬を次のように
して製造した。
Example 1 An explosive having the composition shown in the table of Example 1 was produced as follows.

先ず混和工程について述べる。 First, the mixing step will be described.

即ち、トリメチロールエタントリナイトレート(TMET
N)10.5重量部、トリエチレングリコールジナイトレー
ト(TEGDN)1重量部、ジエチレングリコールジナイト
レート(DEGDN)1重量部、ポリエチレングリコール(P
EG)3重量部及びトリメチロールプロパン(TMP)0.5重
量部を圧力8torr下温度60℃で4分間混合した。
That is, trimethylolethanetrinitrate (TMET
N) 10.5 parts by weight, triethylene glycol dinitrate (TEGDN) 1 part by weight, diethylene glycol dinitrate (DEGDN) 1 part by weight, polyethylene glycol (P
EG) 3 parts by weight and trimethylolpropane (TMP) 0.5 part by weight were mixed at a temperature of 60 ° C. under a pressure of 8 torr for 4 minutes.

次いで、トリメチレントリニトロアミン(RDX)83重
量部(200μm/15μm=7/3重量比)を加え同圧力下同温
度で60分間混合した。
Subsequently, 83 parts by weight of trimethylenetrinitroamine (RDX) (200 μm / 15 μm = 7/3 weight ratio) was added and mixed at the same pressure and the same temperature for 60 minutes.

次いで、トリレンジイソシアネート(TDI)を1重量
部添加し、同圧力下同温度で30分間混合した。
Next, 1 part by weight of tolylene diisocyanate (TDI) was added, and mixed at the same pressure and the same temperature for 30 minutes.

次いで、混合物を58℃に暖められた注型用ホッパーに
移し、注型槽を圧力6torr温度60℃にして注型を行なっ
た。尚、その際注型終了後同圧力下同温度で30分間放置
し十分に脱泡を行なった。
Next, the mixture was transferred to a casting hopper warmed to 58 ° C., and the casting vessel was cast at a pressure of 6 torr and a temperature of 60 ° C. At that time, after completion of the casting, the mixture was left at the same pressure and the same temperature for 30 minutes to sufficiently remove bubbles.

しかる後に、注型容器をキャアリング槽に移し、60℃
で7日間の条件下で硬化させた。
After that, transfer the casting container to the carrying tank,
For 7 days.

このようにして本発明の方法で得られた炸薬について
次に示す試験を行なった。実施例、比較例についてそれ
らの製造性及び各試験の結果は表に示す。
The following test was performed on the explosive obtained by the method of the present invention in this manner. The manufacturability and the results of each test for the examples and comparative examples are shown in the table.

落槌感度試験: 厚さ約0.2mm(30〜35mg)の試料に重量2.5kgの落槌を
落下させ、試料が50%発火する落高を求める。その際、
試料の下にサンドペーパーを置いた条件(メソッド12)
とサンドペーパーを置かない条件(メソッド12B)との
両条件で行なう。
Dropping sensitivity test: A dropping weight of 2.5 kg is dropped on a sample having a thickness of about 0.2 mm (30 to 35 mg), and the drop height at which the sample ignites 50% is determined. that time,
Conditions with sandpaper under sample (Method 12)
And the condition without sandpaper (Method 12B).

摩擦感度試験: JIS K4810−79に準じた。厚さ約0.2mm(30〜35mg)
の試料をBAM式摩擦試験機を用い、1/6爆点の荷重(kg
f)を求める。
Friction sensitivity test: According to JIS K4810-79. Approximately 0.2mm in thickness (30-35mg)
Using a BAM type friction tester, the sample of
Find f).

弱電管感度試験: 長さ50mmの32A鉄管に試料を装填し、20℃に調温後爆
発判定用鉛板(厚さ5mm)上で起爆し、鉛板の爆痕によ
り爆否を判定し、不爆雷管の号数を求める。
Weak tube sensitivity test: A sample was loaded into a 50 mm long 32A iron tube, adjusted to 20 ° C, detonated on an explosion judgment lead plate (thickness: 5 mm), and the explosion was judged by the lead plate explosion marks. Find the number of the detonator.

熱球落下試験: 約4gの試料に調温した熱球(JIS B1501ボールベアリ
ング呼び径1/4inch)を落下させ、着火、部分着火、未
着火の境界温度を求める。
Hot-ball drop test: A heated thermo-ball (JIS B1501 ball bearing nominal diameter 1/4 inch) is dropped on a sample of about 4 g, and the boundary temperature between ignition, partial ignition and unignition is determined.

爆速試験:長さ200mmの32A鋼管に試料を装填し、イオン
ギャップ法を用いて爆速を計測する。
Explosion velocity test: A sample is loaded into a 200 mm long 32A steel pipe, and the explosion velocity is measured using the ion gap method.

実施例 2〜6 表に示される実施例2〜6の配合組成の炸薬を実施例
1に準じて製造した。但しシクロテトラメチレンテトラ
ニトロアミン(HMX)は200μm/15μm=6/4(重量比)
であるものを使用した。
Examples 2 to 6 Explosives having the compounding compositions of Examples 2 to 6 shown in the table were produced according to Example 1. However, cyclotetramethylenetetranitroamine (HMX) is 200μm / 15μm = 6/4 (weight ratio)
Was used.

夫々の炸薬について、実施例1と同様の試験を行なっ
た。結果を表に示す。
The same test as in Example 1 was performed for each explosive. The results are shown in the table.

比較例 1 本発明で用いるニトロ可塑剤の代わりに、従来から用
いられているビスジニトロプロピルアセタール/フォル
マール(BDNPA/F)を19重量部を用いた以外は表に示さ
れる比較例1の配合組成で実施例1に準じて炸薬を製造
した。
Comparative Example 1 The composition of Comparative Example 1 shown in Table except that 19 parts by weight of conventionally used bisdinitropropyl acetal / formal (BDNPA / F) was used instead of the nitro plasticizer used in the present invention. An explosive was manufactured according to Example 1 in composition.

得られた炸薬について、実施例1と同様の試験を行な
った。結果を表に示す。
The same test as in Example 1 was performed on the obtained explosive. The results are shown in the table.

比較例 2および3 バインダー量を7重量部(比較例2)および60重量部
(比較例3)にした以外は実施例1に準じて炸薬を製造
した。
Comparative Examples 2 and 3 Explosives were produced according to Example 1 except that the amount of the binder was changed to 7 parts by weight (Comparative Example 2) and 60 parts by weight (Comparative Example 3).

しかしながら、比較例2はスラリー粘度が高すぎて注
型ができなかったので途中で製造を中断した。
However, in Comparative Example 2, production was interrupted halfway because the slurry viscosity was too high to cast.

比較例3については、混合終了後主成分とバインダー
成分とが2層に分離してしまい均一な炸薬が得られなか
った。
In Comparative Example 3, after the mixing was completed, the main component and the binder component were separated into two layers, and a uniform explosive could not be obtained.

さらに表中略称はそれぞれ下記の化合物を示す。 Furthermore, the abbreviations in the table indicate the following compounds, respectively.

H M X:シクロテトラメチレンテトラニトロアミン R D X:トリメチレントリニトロアミン TMETN:トリメチロールエタントリナイトレート TEGDN:トリエチレングリコールジナイトレート DEGDN:ジエチレングリコールジナイトレート BDNPA/F:ビスジニトロプロピルアセタール/フォルマー
ル P E G:ポリエチレングリコール T M P:トリメチロールプロパン T D I:トリレンジイソシアネート 即ち実施例はすべて製造性が良好であり、且つ爆速も
8000m/s以上であって、しかも安全性が高いことを示し
ている。一方比較例1においては製造性、安全性は特に
問題はないが、爆速が遅い。更に比較列2,3は試験は供
しうる試料を得ることは出来なかった。
HMX: cyclotetramethylenetetranitroamine RDX: trimethylenetrinitroamine TMETN: trimethylolethanetrinitrate TEGDN: triethylene glycol dinitrate DEGDN: diethylene glycol dinitrate BDNPA / F: bisdinitropropyl acetal / formal PEG: Polyethylene glycol TMP: Trimethylolpropane TDI: Tolylene diisocyanate
It is higher than 8000m / s, and shows high safety. On the other hand, in Comparative Example 1, the productivity and safety are not particularly problematic, but the explosion speed is slow. Furthermore, the comparative rows 2 and 3 did not obtain any samples that could be tested.

実施例、比較例は本発明の方法で製造されたにおいて
のみ爆薬が7900m/sを越え、しかも安全性の高い炸薬を
得ることを示している。
The examples and comparative examples show that the explosive exceeds 7900 m / s only when produced by the method of the present invention, and that a highly safe explosive can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 時田 和司 愛知県知多郡武豊町字六貫山2―34 (56)参考文献 特開 平2−157177(JP,A) 特開 昭63−40790(JP,A) 特開 昭62−41791(JP,A) (58)調査した分野(Int.Cl.6,DB名) C06B 21/00 C06B 25/34 C06B 45/00 CA(STN) REGISTRY(STN) WPIDS(STN)──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kazushi Tokita 2-34 Rokukanyama, Taketoyo-cho, Chita-gun, Aichi (56) References JP-A-2-157177 (JP, A) JP-A-63-40790 (JP) JP, A) JP-A-62-41791 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C06B 21/00 C06B 25/34 C06B 45/00 CA (STN) REGISTRY (STN ) WPIDS (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分であるシクロテトラメチレンニトラ
ミン及び、又はトリメチレントリニトロアミンと、 トリメチロールエタントリナイトレート、トリエチレン
グリコールジナイトレート及びジエチレングリコールジ
ナイトレートとからなる群から選ばれた一種又は二種以
上のニトロ可塑剤50〜90重量%とポリエチレングリコー
ルとトリメチロールプロパンと硬化剤からなるポリウレ
タン系樹脂10〜50重量%からなるバインダーとを、バイ
ンダーが主成分とバインダーの合計量の10〜30重量%に
なるように混合して炸薬スラリーを得る混和工程、 混和工程で得られた炸薬スラリーを容器内に注入して注
型する注型工程 及び 注型工程後の容器を加熱して炸薬スラリーを硬化する硬
化工程 とよりなる高爆速炸薬組成物の製造方法。
1. The method according to claim 1, wherein the main component is cyclotetramethylene nitramine and / or trimethylene trinitroamine, and trimethylolethanetrinitrate, triethylene glycol dinitrate and diethylene glycol dinitrate. One or two or more nitro plasticizers, 50 to 90% by weight, a polyethylene-based resin comprising polyethylene glycol, trimethylolpropane, and a curing agent, and a binder comprising 10 to 50% by weight. A mixing step of mixing the powder so as to have a concentration of 10 to 30% by weight to obtain an explosive slurry, a casting step of injecting and pouring the explosive slurry obtained in the mixing step into a container, and heating the container after the casting step. And a curing step of curing the explosive slurry by heating.
【請求項2】主成分のシクロテトラメチレンテトラニト
ロアミン及び又はトリメチレントリニトロアミンの平均
粒径200μmと15μmとの割合が重量比で6/4〜8/2であ
る請求項1記載の高爆速炸薬の製造方法。
2. The composition according to claim 1, wherein the ratio of the average particle size of the main component cyclotetramethylenetetranitroamine and / or trimethylenetrinitroamine to 200 μm and 15 μm is 6/4 to 8/2 by weight. How to make explosive charges.
JP1091897A 1989-04-13 1989-04-13 Method for producing high explosive charge composition Expired - Lifetime JP2869734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091897A JP2869734B2 (en) 1989-04-13 1989-04-13 Method for producing high explosive charge composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091897A JP2869734B2 (en) 1989-04-13 1989-04-13 Method for producing high explosive charge composition

Publications (2)

Publication Number Publication Date
JPH02271986A JPH02271986A (en) 1990-11-06
JP2869734B2 true JP2869734B2 (en) 1999-03-10

Family

ID=14039359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091897A Expired - Lifetime JP2869734B2 (en) 1989-04-13 1989-04-13 Method for producing high explosive charge composition

Country Status (1)

Country Link
JP (1) JP2869734B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115040B2 (en) * 2012-08-22 2017-04-19 日油株式会社 Method for producing glaze composition and glaze composition produced by the production method

Also Published As

Publication number Publication date
JPH02271986A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
EP2318330B1 (en) Cast explosive composition
US20200062670A1 (en) Process for making and filling a pbx composition
EP3319929B1 (en) Cast explosive composition
US20210317051A1 (en) Pbx composition
KR100952063B1 (en) Semi-continuous two-component process for producing a composite explosive charge comprising a polyurethane matrix
CA2351002C (en) Insensitive melt cast explosive compositions containing energetic thermoplastic elastomers
CA1084715A (en) High-energy explosive or propellant composition
USH778H (en) Microencapsulated catalyst and energetic composition containing same
JP6510640B2 (en) High performance composite pyrotechnic product containing no lead in its composition and method for producing the same
US3447980A (en) Castable explosive containing tnt and a reaction product of a diisocyanate and 1,4-butyleneoxide polyglycol
JP2869734B2 (en) Method for producing high explosive charge composition
US4116734A (en) Composite explosives
JP2799726B2 (en) Composition for castable explosives
JPH0759694B2 (en) Propellant composition containing binder / filling adhesive
JP2799736B2 (en) Explosive composition
US3784419A (en) Propellant composition containing a nickle-silver composite
JP3548585B2 (en) Explosive composition
US4985093A (en) Melt cast explosives
GB2128177A (en) Pressable explosive material
JP2002284595A (en) High-performance bursting charge composition
GB2572372A (en) Improved PBX composition
Kishore et al. Effect of curative in hydroxyl-terminated polybutadiene-based binder system on characteristic properties and kinetics of polymer-based energetic composite
CN118530082A (en) Solid propellant and preparation method thereof
JP3376601B2 (en) Composite propellant composition
JPH0568438B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11