US3711343A - Cellular nitrocellulose based composition and method of making - Google Patents

Cellular nitrocellulose based composition and method of making Download PDF

Info

Publication number
US3711343A
US3711343A US00173676A US3711343DA US3711343A US 3711343 A US3711343 A US 3711343A US 00173676 A US00173676 A US 00173676A US 3711343D A US3711343D A US 3711343DA US 3711343 A US3711343 A US 3711343A
Authority
US
United States
Prior art keywords
nitrocellulose
diisocyanate
composition
combustible
cellular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00173676A
Inventor
T Dunigan
G Sisco
L Pell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3711343A publication Critical patent/US3711343A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0091Elimination of undesirable or temporary components of an intermediate or finished product, e.g. making porous or low density products, purifying, stabilising, drying; Deactivating; Reclaiming
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/118Gel contains resin

Definitions

  • the present invention relates to a totally consumable, smokeless, combustible composition and to the methods of making the same. More particularly the invention is concerned with combustible material that may be formed in the shape of and serve as combustible cartridge cases or the like.
  • combustible cartridge cases will. be apparent to those skilled in the art.
  • the firing ratesof weapons in which combustible cartridge cases are used may be increased substantially due to the elimination of the ejection operation which would also result in a saving of weight and space in the weapon.
  • the problem of disposal of metal shell cases is eliminated, creating thereby a saving of metals which might become critically short in supply during times of emergency.
  • the elimination of the conventional metal case results in a cdnsiderable saving in weight.
  • An additional advantage of combustible cartridge cases may involve the possible reduction in gun erosion.
  • Yet another use of combustible casing material would be in the manufacture of rocket casing that would be consumed as the rocket fuel was burned, thus eliminating a considerable dead weight found in prior metal rocket casings.
  • Prior combustible casings were found to be unsatisfactory because of one or more of the following deficiencies: excessive residue, incomplete burnout, failure to produce an effective vapor barrier and/or the production of smoke.
  • a primary object of the present invention is the provision of a combustible composition, which when used as a cartridge casing will burn completely when fired in conventional weapons.
  • Another object of this invention is to provide a combustible composition which has superior strength while maintaining a good burning rate.
  • Yet another object of this invention is to provide a combustible composition which will not generate smoke.
  • a still further object of this invention is to provide a process for the production of a consumable composition which is simple, eflicient and inexpensive.
  • novel combustible compositions are obtained by mixing a small amount of an organic polyisocyanate with a nitrocellulose base propellant in the presence of an organic liquid plasticizer and preferably also, an opacifying agent, and heating the resultant viscuous liquid mixture before or after it is poured into molds to cure.
  • the organic polyisocyanate reacts with the moisture normally present in the nitrocellulose and which may be present in other ingredients e.g. (liquid plasticizer or opacifying agent), thereby generating gaseous carbon dioxide which is more or less uniformly distributed throughout the mass imparting a cellular structure thereto.
  • the excess polyisocyanate not consumed in the above reaction reacts with the hydroxyl group of the nitrocellulose polymer to crosslink such polymers and thereby increase the strength and dimensional stability of the foamed nitrocellulose.
  • the foamed nitrocellulose thus obtained is completely combustible, smokeless, essentially residue free and is particularly suited for the manufacture of non-metallic cartridge cases.
  • Nitrocellulose base propellants which have been found to be effective include single base ball powder [98.0% nitrocellulose (12.6% nitrogen content), 1.0% diethylphthalate, 1.0% 2-nitrodiphenylamine, and 0.1% dioctylphthalate (added)] and double base ball powder [89.76% nitrocellulose, 8.59% nitroglycerine, 1.65% Z-nitrodiphenylamine, and 0.53% carbon black (added)].
  • the plasticizer can be an oxidant-type liquid containing active oxidizing groups such as nitro, nitrate, nitrite and nitroso groups, e.g. nitroglycerine diethylene glycol dinitrate, pentaerythritol trinitrate, 1,2,4-trinitro-butane and the like, or inert organic liquid plasticizers, which function as an additional fuel component, as, for example, sebacates, such as dibutyl sebacate and dioctyl sebacate; phthalates, such as dibutyl phthalate and dioctyl phthalate; adipates, such as dioctyl adipate and dinormal propyl adipate; glycol esters of fatty acids and combinations of the above such as casting solvent x (34.0% 1,2,3-butane-triol trinitrate, 65.0% triethylene glycol dinitrate and 1.0% 2-nitrodiphenylamine) Substantially any reactive organic poly
  • the particular polyisocyanate selected is generally determined to a considerable extent by its reaction rate in a given reaction system and the properties which it imparts to the final polymer product.
  • a somewhat less reactive aliphatic diioscyanate such as hexamethylene diisocyanate can be advantageous to prevent excessive exotherm or to prevent excessive hardening of the polymeric structure before good cell formation is obtained.
  • the aromatic diisocyanates are preferred because of their more rapid reaction rates, and, in particular, 2,4- or a mixture of 2,4- and 2,6-tolylene diisocyanate, because of its excellent performance, availability and low cost.
  • the amount of polyisocyanate employed for the combustlble composition will vary as it is a function of the amount of water found in the other ingredients and the structural rigidity and dimensional stability desired. Sufficient polyisocyanate must be provided to react with not only all the Water present but also to react with the hydroxyl g ps of the nitrocellulose base propellant to eifect cross linking of the nitrocellulose polymer and produce a Solid cellular composition of increased strength and rigidity.
  • Additives such as PETN (pentaerythrite tetranitrate), RiDX (cyclotrimethylenetrinitramine), or HMX (cyclott'etramethylenetetranitramine) may be used to increase "burning rates.
  • PETN penentaerythrite tetranitrate
  • RiDX cyclotrimethylenetrinitramine
  • HMX cyclott'etramethylenetetranitramine
  • Carbon black or other pigments known to the art may be added to provide opacity to the combustible composiion.
  • composition is mixed at an elevated temperature, approximately 90 F., until a casti- --ble viscosity is achieved (approximately 30,000 centipoise).
  • the mixture is then cast into molds of preferred 'I 'he same as Example I except the diethylene glycol dinitrate is substituted for the dinormal propyladipate.
  • EXAMPLE III Compounds: In composition, percent Double base ball powder* 60.0 Triethylene glycol dinitrate 19.0 Nitroglycerine 19.0 2,4-tolylene diisocyanate 2.0 Carbon black (added) 0.02
  • EXAMPLE V Compounds: 7 In composition, percent Double base ball powder 1 60.0 l Casting solvent x 2 38.0 1 2,4-tolylene diisocyanate 2.0 j Carbon black (added) 0.2
  • foaming was accomlished at the mixing stage, it may also take place at the curing stage. This is accomplished by mixing the nitrocellulose base ball powder, liquid plasticizer and polyisocyariate at ambient temperature and pouring the homogeneous mixture into heated molds (approximately 72 C.) under 4000 p.s.i. At this elevated temperature foaming will occur while the composition is curing.
  • the preferred temperature to attain a casting viscosity is about 90 E
  • a temperature between 7590 F. may be used without any appreciable variation in foaming action. Above 90 F., curing will take place which is detrimental to any mixing.
  • the percent composition of the ingredients may be varied somewhat without any variation in performance.
  • the nitrocellulose base ball powder may be varied from 50-75% with optimum results occurring in the 6070% range.
  • the organic polyisocyanate because of variations in moisture content of the ingredients and because of the structural rigidity required, may be varied from 14%. Optimum results as to foaming and strength occur at about 2%.
  • the plasticizer may be varied from 5-50% with optimum results occurring between 27-38%.
  • composition which is combustible, essentially consumable (almost totally consumed when single base ball powder is used, totally consumed when double base ball powder is used), does not generate smoke and has the added advantage of strength due to the cross linking of nitrocellulose bonds.
  • compositions made in accordance with this invention are capable of being formed or shaped into tubes, solid cylinders or other shapes by the use of appropriate molds.
  • the product resulting thereby is a combustible material suitable for use for such items as combustible cartridge cases, combustible primers, combustible initiators and other items where the combustion of the item in use is desirable or required.
  • a process for producing a solid, crosslinked, cellular nitrocellulose base propellant composition which comprises:
  • an organic polyisocyanate selected from the group consisting of hexamethylene diisocyanate, 2,4- tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, m-phenylene diisocyanate, 3,3 bitolylene 4,4-diisocyanate, diphenylmethane 4,4 diisocyanate, dianisidine diisocyanate and 1,5-naphthalene diisocyanate with a finely divided nitrocellulose base propellant selected from the group consisting of single base ball powder and double base ball powder and an inert liquid organic plasticizer for said propellant to produce a slurry, the amount of said polyisocyanate being sufiicient to react with (l) the water normally present in said propellant and said plasticizer and (2) hydroxyl groups of the nitrocellulose propellant;
  • plasticizer is selected from the group consisting of phthalates, seba-' cates, adipates, glycol esters of higher fatty acids and oxidant-type liquids containing nitro, nitrate, nitrite and nitroso groups.
  • a solid cellular nitrocellulose base propellant composition suitable as a combustible cartridge case consisting essentially of the cross-linked reaction product of an organic polyisocyanate, selected from the group consisting of hexamethylene diisocyanate, 2,4-tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, m-phenylene diisocyante, 3,3-bitolylene-4,4-diisocyanate, diphenylmethane-4,4'-diisocyanate, dianisidine diisocyanate and 1,5-naphthalene diisocyanate, a nitrocellulose base propellant selected from the group consisting of single base ball powder and double base ball powder and an inert liquid organic plasticizer wherein said ingredients are present in the following percentages by weight: nitrocellulose base propellant 50%-75% organic polyisocyanate l%-4% and liquid organic plasticizer 5%50%.
  • composition of claim 10 wherein the plasticizer is selected from the group consisting of sebacates, phthalates, adipates, glycol esters of higher fatty acids and oxidant-type liquids containing nitro, nitrate, nitrite and nitroso groups.
  • composition of claim 10 wherein the organic polyisocyanate is selected from the group consisting of hexamethylene diisocyanate, 2,4-tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,-6-tolylene di isocyanate, m-phenylene diisocyanate, 3,3'-bitolylene-4,4'-
  • diisocyanate diphenylmethane-4, 4'-diisocyanate, dianisidine diisocyanate and LS-naphthalene diisocyanate.
  • composition of claim 11) wherein the organic polyisocyanate is 2,4-tolylene diisocyanate.
  • a process for producing a solid cross linked, cellular nitrocellulose base propellant composition which comprises:
  • an organic poly- 3O isocyanate selected from the group consisting of hexarnethylene diisocyanate, 2,4-tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,6-
  • naphthalene diisocyanate 50%-75% by weight of a nitrocellulose base propellant selected from the group consisting of single base ball powder and double 1 base ball powder, and 5%5*0% by Weight of an inert liquid organic plasticizer to produce a slurry,

Abstract

NOVEL, SMOKELESS, COMBUSTIBLE, CONSUMABLE COMPOSITIONS ARE PRODUCED BY MIXING A NITROCELLULOSE BASED EXPLOSIVE WITH AN ORGANIC POLYISOCYANATE IN THE PRESENCE OF A LIQUID PLASTICIZER AT AN ELEVATED TEMPERATURE.

Description

United States Patent ()fiice' 3,711,343 Patented Jan. 16, 1973 ABSTRACT OF THE DISCLOSURE Novel, smokeless, combustible, consumable compositions are produced by mixing a nitrocellulose based explosive with an organic polyisocyanate in the presence of a liquid plasticizer at an elevated temperature.
l The invention described herein may be manufactured, used and licensed by or for the Government for governmental purposes without the payment to us of any royalties thereon. l
DESCRIPTION OF THE INVENTION The present invention relates to a totally consumable, smokeless, combustible composition and to the methods of making the same. More particularly the invention is concerned with combustible material that may be formed in the shape of and serve as combustible cartridge cases or the like.
The advantages of combustible cartridge cases will. be apparent to those skilled in the art. The firing ratesof weapons in which combustible cartridge cases are used may be increased substantially due to the elimination of the ejection operation which would also result in a saving of weight and space in the weapon. The problem of disposal of metal shell cases is eliminated, creating thereby a saving of metals which might become critically short in supply during times of emergency. Furthermore, the elimination of the conventional metal case results in a cdnsiderable saving in weight. An additional advantage of combustible cartridge cases may involve the possible reduction in gun erosion. Yet another use of combustible casing material would be in the manufacture of rocket casing that would be consumed as the rocket fuel was burned, thus eliminating a considerable dead weight found in prior metal rocket casings.
Although use as a casing material is a principal object, other possible uses include the production of primer tubes and obturators, the potting of strands for tensile testing, the case bonding of nitrocellulose based propellants and the production of a thin sheet to be used as a substitute for cloth powder bags.
Prior combustible casings were found to be unsatisfactory because of one or more of the following deficiencies: excessive residue, incomplete burnout, failure to produce an effective vapor barrier and/or the production of smoke.
Previous methods of manufacture of consumable compositions required separate mixing of selected resins, explosives and blowing agents and then a subsequent combination of these items. This type of process was time consuming, expensive and required extensive solvent removal.
Accordingly, a primary object of the present invention is the provision of a combustible composition, which when used as a cartridge casing will burn completely when fired in conventional weapons.
Another object of this invention is to provide a combustible composition which has superior strength while maintaining a good burning rate.
Yet another object of this invention is to provide a combustible composition which will not generate smoke.
A still further object of this invention is to provide a process for the production of a consumable composition which is simple, eflicient and inexpensive.
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same become better understood by reference to the following detailed description.
According to the present invention, novel combustible compositions are obtained by mixing a small amount of an organic polyisocyanate with a nitrocellulose base propellant in the presence of an organic liquid plasticizer and preferably also, an opacifying agent, and heating the resultant viscuous liquid mixture before or after it is poured into molds to cure. During the mixing and/or curing operations, the organic polyisocyanate reacts with the moisture normally present in the nitrocellulose and which may be present in other ingredients e.g. (liquid plasticizer or opacifying agent), thereby generating gaseous carbon dioxide which is more or less uniformly distributed throughout the mass imparting a cellular structure thereto. Further the excess polyisocyanate not consumed in the above reaction, reacts with the hydroxyl group of the nitrocellulose polymer to crosslink such polymers and thereby increase the strength and dimensional stability of the foamed nitrocellulose.
The foamed nitrocellulose thus obtained is completely combustible, smokeless, essentially residue free and is particularly suited for the manufacture of non-metallic cartridge cases.
Nitrocellulose base propellants which have been found to be effective include single base ball powder [98.0% nitrocellulose (12.6% nitrogen content), 1.0% diethylphthalate, 1.0% 2-nitrodiphenylamine, and 0.1% dioctylphthalate (added)] and double base ball powder [89.76% nitrocellulose, 8.59% nitroglycerine, 1.65% Z-nitrodiphenylamine, and 0.53% carbon black (added)].
The plasticizer can be an oxidant-type liquid containing active oxidizing groups such as nitro, nitrate, nitrite and nitroso groups, e.g. nitroglycerine diethylene glycol dinitrate, pentaerythritol trinitrate, 1,2,4-trinitro-butane and the like, or inert organic liquid plasticizers, which function as an additional fuel component, as, for example, sebacates, such as dibutyl sebacate and dioctyl sebacate; phthalates, such as dibutyl phthalate and dioctyl phthalate; adipates, such as dioctyl adipate and dinormal propyl adipate; glycol esters of fatty acids and combinations of the above such as casting solvent x (34.0% 1,2,3-butane-triol trinitrate, 65.0% triethylene glycol dinitrate and 1.0% 2-nitrodiphenylamine) Substantially any reactive organic polyisocyanate can be employed, including aliphatic diisocyanates, such as hexamethylene diisocyanate, and aromatic polyisocyanates, such as 2,4-tolylene diisocyanate, mixtures of 2,4- tolylene diisocyanate and 2,6-tolylene diisocyanate, mphenylene diisocyanate, 3,3 bitolylene-4,4'-diisocyanate, diphenylmethane 4,4'-diisocyanate, dianisidine diisocyanate, and 1,5-naphthalene diisocyanate.
The particular polyisocyanate selected is generally determined to a considerable extent by its reaction rate in a given reaction system and the properties which it imparts to the final polymer product. In a highly reactive system, the use of a somewhat less reactive aliphatic diioscyanate, such as hexamethylene diisocyanate can be advantageous to prevent excessive exotherm or to prevent excessive hardening of the polymeric structure before good cell formation is obtained. In general, the aromatic diisocyanates are preferred because of their more rapid reaction rates, and, in particular, 2,4- or a mixture of 2,4- and 2,6-tolylene diisocyanate, because of its excellent performance, availability and low cost.
The amount of polyisocyanate employed for the combustlble composition will vary as it is a function of the amount of water found in the other ingredients and the structural rigidity and dimensional stability desired. Sufficient polyisocyanate must be provided to react with not only all the Water present but also to react with the hydroxyl g ps of the nitrocellulose base propellant to eifect cross linking of the nitrocellulose polymer and produce a Solid cellular composition of increased strength and rigidity.
Additives such as PETN (pentaerythrite tetranitrate), RiDX (cyclotrimethylenetrinitramine), or HMX (cyclott'etramethylenetetranitramine) may be used to increase "burning rates.
Carbon black or other pigments known to the art may be added to provide opacity to the combustible composiion.
Although it is not intended that the invention be limited thereto, there is set forth herein below for purposes of illustration, examples of various consumable compositions and. methods for production thereof.
EXAMPLE I Compounds: In composition, percent Single base ball powder* 70.2 Dinormal propyladipate 27.8 2,4-tolylene dissocyanate 2.0 Carbon black (added) 0.02
38.0% nitrocellulose (12.6% nitrogen content) 1.0% diethylphthalate, 1.07 2-nitr0di hen lamine, and 0.1 dio tylphtliaiate (addedf. p y c Procedure The single base ball powder, dinormal propyladipate and carbon black are mixed together in a vertical sigma blade mixer at ambient temperature for about /2-1 hour until a homogeneous slurry is achieved. To the slurry is added the tolylene diisocyanate and the ingredients are again mixed for about V2 hour to ensure a homogeneous mixture. Thereafter the composition is mixed at an elevated temperature, approximately 90 F., until a casti- --ble viscosity is achieved (approximately 30,000 centipoise). The mixture is then cast into molds of preferred 'I 'he same as Example I except the diethylene glycol dinitrate is substituted for the dinormal propyladipate.
EXAMPLE III Compounds: In composition, percent Double base ball powder* 60.0 Triethylene glycol dinitrate 19.0 Nitroglycerine 19.0 2,4-tolylene diisocyanate 2.0 Carbon black (added) 0.02
*9.76% nitrocellulose, 8.59% nitroglycerine, 1.65% 2-nitrodiphenyl amlne and 0.53% carbon black (added).
Procedure The double base ball powder, triethylene glycol dinitrate, nitroglycerine and carbon black are mixed together at ambient temperature in a vertical sigma blade mixer for approximately one hour. The 2,4-tolylene diisocyanate is then added to the composition and mixed for /2 hour to ensure homogeneity. The temperature is elevated to about F. and the mixing continued'until a casting viscosity is achieved. The composition is poured into a selected mold and the samples then cured for 24 hours at 72 C.
"As in Example III.
Procedure The same as Example III with the substitution of trimethylolethane trinitrate instead of nitroglycerine.
EXAMPLE V Compounds: 7 In composition, percent Double base ball powder 1 60.0 l Casting solvent x 2 38.0 1 2,4-tolylene diisocyanate 2.0 j Carbon black (added) 0.2
JAs in Example III. 3 34.0% 1,2,4-butanetriol trlnitrate, =65.0% triethylene glycol dinitrate and 1.0% 2 nitro-diphenylamine.
Procedure I As in Example I with the substitution of solvent x instead of the'dinormal propyladipate. EXAMPLE v1 Compounds: In composition, percent 1 Double base ball powder* 68.0 t Casting solvent x* 30.0 2,4-tolylene diisocyanate 2.0 Carbon black (added) 0.2 l "As in Example V. Procedure l As in Example I with the substitution of solvent x instead of the dinormal propyladipate.
1 Although, in the above examples, foaming was accomlished at the mixing stage, it may also take place at the curing stage. This is accomplished by mixing the nitrocellulose base ball powder, liquid plasticizer and polyisocyariate at ambient temperature and pouring the homogeneous mixture into heated molds (approximately 72 C.) under 4000 p.s.i. At this elevated temperature foaming will occur while the composition is curing.
Further, although the preferred temperature to attain a casting viscosity is about 90 E, a temperature between 7590 F. may be used without any appreciable variation in foaming action. Above 90 F., curing will take place which is detrimental to any mixing.
The percent composition of the ingredients may be varied somewhat without any variation in performance. The nitrocellulose base ball powder may be varied from 50-75% with optimum results occurring in the 6070% range. The organic polyisocyanate because of variations in moisture content of the ingredients and because of the structural rigidity required, may be varied from 14%. Optimum results as to foaming and strength occur at about 2%. And finally the plasticizer may be varied from 5-50% with optimum results occurring between 27-38%.
Thusly through the practice of our invention a composition is produced which is combustible, essentially consumable (almost totally consumed when single base ball powder is used, totally consumed when double base ball powder is used), does not generate smoke and has the added advantage of strength due to the cross linking of nitrocellulose bonds.
From the above examples and disclosure it is apparent that compositions made in accordance with this invention are capable of being formed or shaped into tubes, solid cylinders or other shapes by the use of appropriate molds. The product resulting thereby is a combustible material suitable for use for such items as combustible cartridge cases, combustible primers, combustible initiators and other items where the combustion of the item in use is desirable or required.
We wish it to be understood that we do not desire to be limited to the exact details and compositions described in this specification for obvious modification will occur to a person skilled in the art.
We claim:
1. A process for producing a solid, crosslinked, cellular nitrocellulose base propellant composition which comprises:
Mixing an organic polyisocyanate selected from the group consisting of hexamethylene diisocyanate, 2,4- tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, m-phenylene diisocyanate, 3,3 bitolylene 4,4-diisocyanate, diphenylmethane 4,4 diisocyanate, dianisidine diisocyanate and 1,5-naphthalene diisocyanate with a finely divided nitrocellulose base propellant selected from the group consisting of single base ball powder and double base ball powder and an inert liquid organic plasticizer for said propellant to produce a slurry, the amount of said polyisocyanate being sufiicient to react with (l) the water normally present in said propellant and said plasticizer and (2) hydroxyl groups of the nitrocellulose propellant;
heating said slurry to react the polyisocyanate with (1) said water to generate carbon dioxide and produce a foamed viscous product and (2) hydroxyl groups of the nitrocellulose propellant to crosslink said nitrocellulose polymer, and curing the resultant product to produce a solid, crosslinked, cellular, nitrocellulose base propellant composition.
2. The process of claim 1 wherein the mixing and heating of the slurry are eflected simultaneously.
3. The process of claim 1 wherein the heating of the slurry takes place at the curing stage.
4. The process of claim 1 wherein the nitrocellulose base propellant and the plasticizer are pre-mixed prior to mixing with the organic polyisocyanate.
5. The process of claim 1 wherein the nitrocellulose base propellant, plasticizer and orgenic polyisocyanate are mixed simultaneously.
6. The process of claim 1 wherein the slurry is heated to a temperature of between 75-90" F. during mixing.
7. The process of claim 1 wherein the slurry is cured at about 72 C. for approximately 18 hours.
8. The process of claim 1 wherein the plasticizer is selected from the group consisting of phthalates, seba-' cates, adipates, glycol esters of higher fatty acids and oxidant-type liquids containing nitro, nitrate, nitrite and nitroso groups.
9. The process of claim 1 wherein carbon black is added to the slurry.
10. A solid cellular nitrocellulose base propellant composition suitable as a combustible cartridge case consisting essentially of the cross-linked reaction product of an organic polyisocyanate, selected from the group consisting of hexamethylene diisocyanate, 2,4-tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, m-phenylene diisocyante, 3,3-bitolylene-4,4-diisocyanate, diphenylmethane-4,4'-diisocyanate, dianisidine diisocyanate and 1,5-naphthalene diisocyanate, a nitrocellulose base propellant selected from the group consisting of single base ball powder and double base ball powder and an inert liquid organic plasticizer wherein said ingredients are present in the following percentages by weight: nitrocellulose base propellant 50%-75% organic polyisocyanate l%-4% and liquid organic plasticizer 5%50%.
11. The composition of claim 10 wherein the plasticizer is selected from the group consisting of sebacates, phthalates, adipates, glycol esters of higher fatty acids and oxidant-type liquids containing nitro, nitrate, nitrite and nitroso groups.
12. The composition of claim 10 wherein the organic polyisocyanate is selected from the group consisting of hexamethylene diisocyanate, 2,4-tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,-6-tolylene di isocyanate, m-phenylene diisocyanate, 3,3'-bitolylene-4,4'-
diisocyanate, diphenylmethane-4, 4'-diisocyanate, dianisidine diisocyanate and LS-naphthalene diisocyanate.
. 13. The process of claim 1 wherein the organic polyisocyanate is 2,4-tolylene diisocyanate.
14. The composition of claim 11) wherein the organic polyisocyanate is 2,4-tolylene diisocyanate.
15. A process for producing a solid cross linked, cellular nitrocellulose base propellant composition which comprises:
mixing between l%4% by weight of an organic poly- 3O isocyanate selected from the group consisting of hexarnethylene diisocyanate, 2,4-tolylene diisocyanate, mixtures of 2,4-tolylene diisocyanate and 2,6-
tolylene diisocyanate, mphenylene diisocyanate,
3,3-bitolylene 4,4 diisocyanate, diphenylmethane- 351 4,4-diisocyanate, dianisidine diisocyanate and 1,5-
. naphthalene diisocyanate 50%-75% by weight of a nitrocellulose base propellant selected from the group consisting of single base ball powder and double 1 base ball powder, and 5%5*0% by Weight of an inert liquid organic plasticizer to produce a slurry,
' the amount of said polyisocyanate being sufiicient to react with (l) the water normally present in said propellant and said plasticizer and (2) hydroxyl groups of the nitrocellulose propellant;
heating said slurry to react the polyisocyanate with 1) said water to generate carbon dioxide and produce a foamed viscous product and (2) hydroxyl groups of the nitrocellulose propellant to crosslink said nitrocellulose polymer, and
curing the resultant product to produce a solid, crosslinked, cellular, nitrocellulose base propellant composition.
References Cited UNITED STATES PATENTS 3,361,689 l/l968 Miegel et al. l49-l9 3,445 ,3 06 5/ 1969 Satriana 149-96 3,554,820 1/1971 Evans 149l9 X CARL D. QUARFORTH, Primary Examiner S. J. LECHERT, JR., Assistant Examiner US. Cl. X.R.
US00173676A 1971-08-20 1971-08-20 Cellular nitrocellulose based composition and method of making Expired - Lifetime US3711343A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17367671A 1971-08-20 1971-08-20

Publications (1)

Publication Number Publication Date
US3711343A true US3711343A (en) 1973-01-16

Family

ID=22633050

Family Applications (1)

Application Number Title Priority Date Filing Date
US00173676A Expired - Lifetime US3711343A (en) 1971-08-20 1971-08-20 Cellular nitrocellulose based composition and method of making

Country Status (1)

Country Link
US (1) US3711343A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873517A (en) * 1974-01-17 1975-03-25 Us Navy Modified nitrocellulose particles
EP0005112A1 (en) * 1978-04-13 1979-10-31 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Propulsive charge for ammunition and process for charging cartridges
US4214927A (en) * 1977-11-30 1980-07-29 Nippon Oil And Fats Co., Ltd. Granular propellant
US4267132A (en) * 1974-05-28 1981-05-12 The United States Of America As Represented By The Secretary Of The Navy Method for high strength double base solventless gun propellant
US4326901A (en) * 1978-09-21 1982-04-27 Societe Nationale Des Poudres Et Explosifs Fragmentable charges of propelland powder coated with polyvinyl nitrate, and the process for their manufacture
US4444606A (en) * 1980-11-14 1984-04-24 Societe Nationale Des Poudres Et Explosifs Process for the manufacture of fine propellant powders by granulation, and powders thus obtained
EP0124398A1 (en) * 1983-03-28 1984-11-07 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Compressed propellant charge for munition and process for its manufacture
US4659402A (en) * 1977-12-14 1987-04-21 Hercules Incorporated Cross-linked double base propellant having improved low temperature mechanical properties
US6066213A (en) * 1998-09-18 2000-05-23 Atlantic Research Corporation Minimum smoke propellant composition
US6126763A (en) * 1998-12-01 2000-10-03 Atlantic Research Corporation Minimum smoke propellant composition
US20050066835A1 (en) * 2001-03-14 2005-03-31 Anders Hafstrand Propellant powder charge for barrel weapon
US20120260814A1 (en) * 2008-04-25 2012-10-18 Alliant Techsystems Inc. Advanced Muzzle Loader Ammunition
US8597444B1 (en) * 2007-05-23 2013-12-03 The United States Of America As Represented By The Secretary Of The Army Foamed celluloid combustible material
WO2018235112A1 (en) * 2017-06-23 2018-12-27 Simmel Difesa S.P.A. Composition for single-base propelling powder for ammunition and ammunition provided with such composition
RU2754341C1 (en) * 2021-01-25 2021-09-01 Федеральное казенное предприятие «Государственный научно-исследовательский институт химических продуктов» (ФКП «ГосНИИХП») Россия Spherical powder for small arms cartridges

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873517A (en) * 1974-01-17 1975-03-25 Us Navy Modified nitrocellulose particles
US4267132A (en) * 1974-05-28 1981-05-12 The United States Of America As Represented By The Secretary Of The Navy Method for high strength double base solventless gun propellant
US4214927A (en) * 1977-11-30 1980-07-29 Nippon Oil And Fats Co., Ltd. Granular propellant
US4659402A (en) * 1977-12-14 1987-04-21 Hercules Incorporated Cross-linked double base propellant having improved low temperature mechanical properties
FR2422925A1 (en) * 1978-04-13 1979-11-09 France Etat PROPULSIVE LOADING OF AMMUNITION
EP0005112A1 (en) * 1978-04-13 1979-10-31 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Propulsive charge for ammunition and process for charging cartridges
US4326901A (en) * 1978-09-21 1982-04-27 Societe Nationale Des Poudres Et Explosifs Fragmentable charges of propelland powder coated with polyvinyl nitrate, and the process for their manufacture
US4444606A (en) * 1980-11-14 1984-04-24 Societe Nationale Des Poudres Et Explosifs Process for the manufacture of fine propellant powders by granulation, and powders thus obtained
EP0124398A1 (en) * 1983-03-28 1984-11-07 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Compressed propellant charge for munition and process for its manufacture
US6066213A (en) * 1998-09-18 2000-05-23 Atlantic Research Corporation Minimum smoke propellant composition
US6126763A (en) * 1998-12-01 2000-10-03 Atlantic Research Corporation Minimum smoke propellant composition
US20050066835A1 (en) * 2001-03-14 2005-03-31 Anders Hafstrand Propellant powder charge for barrel weapon
US8597444B1 (en) * 2007-05-23 2013-12-03 The United States Of America As Represented By The Secretary Of The Army Foamed celluloid combustible material
US20120260814A1 (en) * 2008-04-25 2012-10-18 Alliant Techsystems Inc. Advanced Muzzle Loader Ammunition
US9377277B1 (en) 2008-04-25 2016-06-28 Vista Outdoor Operations Llc Advanced muzzle loader ammunition
WO2018235112A1 (en) * 2017-06-23 2018-12-27 Simmel Difesa S.P.A. Composition for single-base propelling powder for ammunition and ammunition provided with such composition
CN110914224A (en) * 2017-06-23 2020-03-24 西梅尔迪菲萨股份有限公司 Composition for single-base propellant powder for ammunition and ammunition provided with such composition
CN110914224B (en) * 2017-06-23 2023-01-10 西梅尔迪菲萨股份有限公司 Composition for single-base propellant powder for ammunition and ammunition provided with such composition
RU2754341C1 (en) * 2021-01-25 2021-09-01 Федеральное казенное предприятие «Государственный научно-исследовательский институт химических продуктов» (ФКП «ГосНИИХП») Россия Spherical powder for small arms cartridges

Similar Documents

Publication Publication Date Title
US3711343A (en) Cellular nitrocellulose based composition and method of making
US4657607A (en) Process for the solvent-free manufacture of compound pyrotechnic products containing a thermosetting binder and products thus obtained
US3198677A (en) Foamed polyurethane gas-generating compositions containing inorganic oxidizer
US3689331A (en) Nitrocellulose base compositions and method for making same
US3609115A (en) Propellant binder
US3245849A (en) Solid propellant compositions containing polyurethane resins of low cure temperature
US3711344A (en) Processing of crosslinked nitrocellulose propellants
US3956890A (en) Solid propellant binder and propellant
US3362859A (en) Gas-generating compositions and their preparation
US4298411A (en) Crosslinked smokeless propellants
US4216039A (en) Smokeless propellant compositions having polyester or polybutadiene binder system crosslinked with nitrocellulose
US3793099A (en) Solid propellant with polyurethane binder
US3214304A (en) Gas-generating compositions containing coolants and methods for their use
US3141294A (en) Propulsion method employing resonance suppressor
US3655836A (en) Process for preparation of molded propellant charges from smokeless powder and nonvolatile binders
US3695952A (en) Solid propellant compositions containing hydroxymethyl-terminated polydienes
US3822154A (en) Suppression of unstable burning using finely divided metal oxides
US3993514A (en) Gas generating compositions containing ammonium sulfate acceleration force desensitizer
US3726729A (en) Solid propellant compositions having a nitrocellulose-hydroxyl-terminated polybutadiene binder and method of preparing the same
US3923564A (en) Double base propellant with thorium containing ballistic modifier
US3905846A (en) Composite modified double base propellant with metal oxide stabilizer
US4659402A (en) Cross-linked double base propellant having improved low temperature mechanical properties
US3692597A (en) Polyurethane propellant compositions and their preparation
US3236704A (en) Propellant composition
US3907619A (en) Solution cast double base propellants and method