JPH0331787B2 - - Google Patents
Info
- Publication number
- JPH0331787B2 JPH0331787B2 JP518785A JP518785A JPH0331787B2 JP H0331787 B2 JPH0331787 B2 JP H0331787B2 JP 518785 A JP518785 A JP 518785A JP 518785 A JP518785 A JP 518785A JP H0331787 B2 JPH0331787 B2 JP H0331787B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- mask
- vapor deposition
- powder
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 33
- 239000000843 powder Substances 0.000 claims description 18
- 238000007740 vapor deposition Methods 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 7
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 7
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- 238000001771 vacuum deposition Methods 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 23
- 239000010408 film Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
産業上の利用分野
この発明は、スパツタリング装置、あるいは、
真空蒸着装置による蒸着膜の形成に用いる真空蒸
着法に関する。
従来の技術
従来、基板面の必要な箇所に、部分的に蒸着膜
を形成させるのに、次のような方法が用いられて
いる。
(1) 全面蒸着した基板の必要部分をレジストで覆
い、不要な部分をエツチングによつて除去、し
かる後レジストを剥離して、必要部分を露出さ
せる。
(2) 基板の非蒸着面を、ガラス、アルミナ、金属
等の耐熱性の板でマスクし蒸着する。
発明が解決しようとする問題点
基板への蒸着物質がシリコン、銅、アルミニウ
ムのように、エツチング可能な物質は、上記従来
の技術(1)の方法で目的を達することができるが、
炭化ケイ素、炭化チタン、窒化ケイ素等のエツチ
ング不可能なセラミツクスあるいは、エツチング
可能な物質でも、エツチング時に下層の物質が影
響を受けるようなものに対しては、工法上種々の
欠かんをもつ、上記従来の技術(2)の方法が採用さ
れている。
以下、この問題点を薄膜型サーマルヘツドを例
にして述べる。
サーマルヘツドの発熱体基板は、大きく分け
て、発熱体層、電導体層、保護被膜層とそれぞれ
異つた働きをする三種類の薄膜をアルミナ製基板
上に一体に蒸着積層したものである。まず発熱体
層は、長尺基板長さ方向中央面に、約100μの間
隔で、短冊状に形成、次に、この発熱体には、外
部の駆動回路に接続するための電導体を、この発
熱体の配列と交直する方向にそれぞれに形成、最
後に、この電導体の外部回路接続部以外の部分
は、耐摩耗性、防蝕性保護膜で覆う構成となつて
いる。
このうち、発熱体層ならびに電導体層はエツチ
ングが可能な材料であるため、全面蒸着した後上
記従来の技術(1)の方法によつて部分形成させてい
るが、最上部の保護被膜層は、上記特性以外に耐
熱性、絶縁性を備えた材料でなければならず、従
つて炭化ケイ素、炭化チタン等のセラミツク系物
質が、上記従来の技術(2)の方法によつて、スパツ
タリングにより部分蒸着されている。
この従来の技術(2)は、スパツタリング時のス
パツタ蒸気の回り込みを防ぐため、マスク板は基
板により密着して装着しなければならないが、こ
のマスク板の装・脱着作業時に、あるいは、基板
が高温(約500℃)にさらされるスパツタ時に、
基板又はマスク板が熱変形を起して、両者の対面
部に異常な応力が発生し、基板に形成した、銅、
アルミ、金等からなる厚さ数ミクロン巾30〜80μ
の電導体を傷め断線に至しめる。とは逆に、
マスク板と基板の熱変形の方向が反対方向になつ
たとき、スパツタ蒸気は、この両者の間隙に回り
込み、接続部が不導体膜で覆われてしまう、等の
不良を発生させる欠点を有していた。
そこで本発明は、仮に基板に熱変形が起きて
も、マスクと基板が強い力で接触したり、反対に
両者間に間隙を生ずることのない可撓性のマスク
材を、傷み易い基板面に直接、付着形成させるこ
とによつて、従来の技術の欠点を解消する真空蒸
着法を提供することを目的とする。
問題点を解決するための手段
この問題点を解決するために本発明は、基板の
非蒸着面に直接、アルミノ珪酸塩を主成分とする
モンモリロナイト又はゼオライトの微粉末のどち
らか一方あるいは両方を単独に又は他の物質と共
に含む分散液を塗布乾燥して形成された再水和可
能な耐熱性塗布膜をマスク材とすることにより、
エツチング不能な蒸着物質の部分蒸着を可能なら
しめるようにしたものである。
作 用
本発明の塗膜状マスク材は、それ自身適度な付
着力を有するので、銅、金、タンタル、アルミナ
等の物質面をもつ基板に一体に密着するし、かつ
適度な可撓性も有する。そのために、基板が熱変
形を起しても、マスクとの間に間隙を生ずること
も、基板面を圧迫する力も生ずることはない。し
たがつて基板面を傷めることも、蒸気が回り込む
こともないわけである。
マスクとしての条件を備えるには、これのみで
は十分ではない。その主な条件を列挙すると、
(1) 一連の作業が完結するまで、マスクが剥れた
り崩壊飛散せず適度な付着力を有しているこ
と。
(2) サーマルヘツドの場合高温(400〜500℃)に
耐え、かつ亀裂を生じないこと。
(3) 悪害となる不純物(熱分解物)を生じないこ
と。
(4) 塗布膜の形成、剥離が下地を傷めることなく
容易にできること。
(5) 基板表面を変質させないこと。
本発明のマスク材は、これらの条件を満たすも
のである。
実施例
以下本発明の一実施例に従つて詳細に説明す
る。
本発明は前記の条件を満たす材料をいかに探し
出すかにすべてがあるといつてよい。このような
条件を満たす塗布膜式マスク材につき試験検討を
重ねたなかで、実用に適用しうるものの代表例
を、分散液の配合比のかたちで次表に示す。
Industrial Application Field This invention is directed to a sputtering device or
The present invention relates to a vacuum evaporation method used to form a deposited film using a vacuum evaporation apparatus. BACKGROUND ART Conventionally, the following method has been used to partially form a deposited film at required locations on a substrate surface. (1) Cover the necessary parts of the entire surface of the substrate with a resist, remove the unnecessary parts by etching, and then peel off the resist to expose the necessary parts. (2) Mask the non-evaporation surface of the substrate with a heat-resistant plate made of glass, alumina, metal, etc. and perform vapor deposition. Problems to be Solved by the Invention If the material deposited on the substrate is a material that can be etched, such as silicon, copper, or aluminum, the purpose can be achieved by the method of conventional technique (1) above.
For non-etchable ceramics such as silicon carbide, titanium carbide, and silicon nitride, or for materials that can be etched but where the underlying material is affected during etching, there are various deficiencies in the method. The method of conventional technology (2) is adopted. This problem will be explained below using a thin film type thermal head as an example. The heating element substrate of a thermal head is roughly divided into three types of thin films, each having a different function: a heating element layer, a conductive layer, and a protective film layer, which are laminated together by vapor deposition on an alumina substrate. First, the heating element layer is formed in the shape of strips at intervals of approximately 100μ on the longitudinal center surface of the long board.Next, this heating element is equipped with a conductor for connecting to an external drive circuit. The electrical conductors are formed in the direction perpendicular to the arrangement of the heating elements, and finally, the portions of the electrical conductors other than the external circuit connection portions are covered with a wear-resistant and corrosion-resistant protective film. Of these, the heating element layer and the conductive layer are made of materials that can be etched, so they are vapor-deposited on the entire surface and then partially formed using the conventional technique (1) above. However, the uppermost protective coating layer is In addition to the above characteristics, the material must also have heat resistance and insulation properties. Therefore, ceramic materials such as silicon carbide and titanium carbide are partially sputtered using the conventional technique (2) above. It is vapor-deposited. In this conventional technology (2), in order to prevent sputtering vapor from entering during sputtering, the mask plate must be attached closely to the substrate. (approximately 500℃)
When the substrate or mask plate undergoes thermal deformation, abnormal stress is generated in the facing area of the two, causing the copper,
Made of aluminum, gold, etc., several microns thick and 30 to 80 μm wide.
damage the electrical conductor and lead to disconnection. On the contrary,
When the directions of thermal deformation of the mask plate and the substrate are opposite to each other, spatter steam enters the gap between the two, which has the disadvantage of causing defects such as the connection portion being covered with a nonconducting film. was. Therefore, the present invention provides a flexible mask material that does not cause the mask and the substrate to come into contact with strong force or create a gap between them even if the substrate undergoes thermal deformation, on the easily damaged substrate surface. The object is to provide a vacuum deposition method which overcomes the drawbacks of the prior art by direct deposition. Means for Solving the Problem In order to solve this problem, the present invention provides for directly applying either or both of montmorillonite and zeolite fine powders containing aluminosilicate as a main component directly to the non-evaporated surface of the substrate. By using a rehydratable heat-resistant coating film formed by applying and drying a dispersion containing the water or other substances as a mask material,
This allows partial deposition of non-etchable deposition materials. Function The film-like mask material of the present invention has appropriate adhesion strength, so it can adhere to substrates having material surfaces such as copper, gold, tantalum, alumina, etc., and also has appropriate flexibility. have Therefore, even if the substrate undergoes thermal deformation, no gap is created between the substrate and the mask, and no force is generated that presses the substrate surface. Therefore, there is no damage to the substrate surface, and there is no chance of steam getting around. This alone is not sufficient to meet the requirements for a mask. The main conditions are as follows: (1) The mask must have a suitable adhesive strength without peeling off, disintegrating or scattering until the series of operations is completed. (2) In the case of a thermal head, it must be able to withstand high temperatures (400 to 500℃) and not cause cracks. (3) Do not generate harmful impurities (thermal decomposition products). (4) The coating film can be easily formed and peeled off without damaging the base. (5) Do not alter the quality of the substrate surface. The mask material of the present invention satisfies these conditions. Embodiment An embodiment of the present invention will be described in detail below. It can be said that the present invention lies entirely in how to find a material that satisfies the above conditions. After repeated tests and studies on coated mask materials that meet these conditions, representative examples of those that can be practically applied are shown in the table below in the form of dispersion ratios.
【表】
この表で、分散媒の配合割合は液の粘度に大き
く影響する。したがつて塗布の方法、粉末の性状
によつて定める必要がある。本表は分散液の性状
を理解するために一例を示したにすぎない。
次に本発明を構成する手順を、サーマルヘツド
を例に説明する。
撹拌機で十分に調合した分散液を、適度な粘度
に調整して、筆、スプレー、スクリーン印刷、ロ
ールコター、浸漬等の手段により、基板のマスク
部に塗布する。
塗布厚さは、分散液の性状、塗布の方法により
影響を受けるが、乾燥状態の厚みで、最低1μは
必要である。200μ以上に厚塗りすると、乾燥ム
ラにより亀裂を生ずるものがある。塗布後の乾燥
速度、取扱い易さなどからみて、30μ〜150μ程度
の厚みが望ましい。
次に乾燥であるが、分散液の原料物質であるモ
ンモリロナイト、カオリン等は粉末内に結晶水を
保有しており、通常の乾燥温度(200℃以下)で
は完全に除去できない。しかし、この結晶水の放
出温度は前者が約600℃、後者が約450℃であるた
め、これより低い温度で蒸着するのであれば、こ
の影響はさけられる。ただし、モンモリロナイト
は、この結晶水以外に多量の水分(約10%)を保
有する性質を有しており、この水は約170℃以上
に加熱しないと放出されない。
したがつて、モンモリロナイトを含有する分散
液に関しては、蒸着装置内への水分の持ち込み量
を少なくするために、あらかじめ、170℃以上の
温度で乾燥するのが望ましいわけであるが、この
ような高温だと不活性雰囲気でない限り、下地に
蒸着してある金属(銅)を酸化させてしまう。そ
こで、50℃の温度で乾燥を行い蒸着を試みた。そ
の結果、蒸着時真空度を低下させることもなく、
正常な蒸着膜を形成できた。マスク材中の水分は
蒸着前に行う基板の昇温加熱(400℃〜500℃)時
に完全に除かれたためと考えられる。
次にスパツタリング装置による蒸着であるが、
特別の操作を加えることなく、従来と同一の条件
で実施した。
蒸着を完了した基板は水中に浸漬し、マスク材
層を再水和することによつて剥離した。この場
合、超音波洗浄機を併用すると剥離が容易に行え
る。以上の操作を経て基板への部分蒸着は完結す
る。なお上記表の中で1の分散液を用いたものは
再水和をしなくても、マスク層を剥離できるとい
う特徴があるが、注意を怠たると装置から基板を
取出す際に、マスク層が剥離し、作業スペースを
汚すという問題をもつている。
次に、試験、検討の過程で知り得た、原材料の
主だつた性状を述べる。
上記の表に掲げたB粉末は、すべて基板面に比
較的容易に塗布膜を形成できるが、いずれも乾燥
後の状態においては個々の粒子の結合力が弱くわ
ずかな衝撃を加えただけで崩壊、粉末状で飛散
し、単独では実用に供し得ない。これに対し、A
粉末を水に分散し、塗布乾燥したものは、粒子間
の結合力が極めて強い。ただしモンモリロナイト
は微細なコロイド状物質からなるもので、単独で
用いた場合は種類(産地の違いによる不純物の混
入割合の相違、精製法の違い等)によつて乾燥時
亀裂を生じ(収縮率大のため)塗膜が形成できな
いものがある。
しかし、前記B粉末のごとき結合力の乏しい物
質を適量混合することによつて、お互の欠点を補
完し合い、マスク材としての適性を備えさせるこ
とができる。
A粉末に混合するB粉末の粒径は大きすぎると
塗布時あるいは作業中に、下地を傷める要因とな
るので、より小さい方が好ましいわけであるが極
端に小さいと(0.05μ以下)乾燥時、収縮がはげ
しく亀裂剥離を生ずる。
A粉末に配合して塗膜形成できる粉体として
は、上表Bの陶磁器、セラミツク用粉末以外に、
ガラス粉、耐火材粉、あるいはりん酸カルシウ
ム、硫酸バリウム、硫酸カルシウム等の水に不溶
な無機物質も利用し得る。
天然鉱物で、すでにA粉末を一部含む物質もあ
るが、このような粉末を用いることも本発明に含
まれる。
以上述べた無機材料以外に、分散液の塗布性を
改善する目的で、例えば低沸点の有機物(活面活
性剤、粘調剤)、あるいは粘度調整用に酸化マグ
ネシウム等のものを助剤として、混入することも
本発明の範囲に含まれる。
以上、サーマルヘツドを例に述べたが、本発明
は、集積回路、工具類、機械部品等にセラミツク
膜を部分蒸着するものにも適用できる。
発明の効果
本発明は、ゼオライトあるいはモンモリロナイ
トによつて適度な強度を持たせたマスク材を、こ
のマスク材自身が保有する付着力によつて、基板
に一体に密着させたものであるので、マスク材の
取付時に基板表面を傷めることも、マスクと基板
との間隙に蒸着気体が回り込むことなく部分蒸着
を行うことができる。
この蒸着の最終工程であるマスク材の剥離も、
再水和を行うことで容易にできるため基板を傷め
ることもない。また、マスク材の取付が塗布方式
であるため製造工程の自動化が行い易い。
本発明によつて、断線あるいはマワリ込み不良
が大巾に低下した。その結果を次に示す。[Table] In this table, the mixing ratio of the dispersion medium has a large effect on the viscosity of the liquid. Therefore, it is necessary to determine the method of application and the properties of the powder. This table merely shows an example for understanding the properties of the dispersion. Next, the procedure for configuring the present invention will be explained using a thermal head as an example. The dispersion liquid is sufficiently mixed with a stirrer, adjusted to an appropriate viscosity, and applied to the mask portion of the substrate by means such as brush, spray, screen printing, roll coater, and dipping. The coating thickness is affected by the properties of the dispersion and the coating method, but it should be at least 1 μm thick in a dry state. If applied thickly over 200μ, cracks may occur due to uneven drying. In terms of drying speed after application, ease of handling, etc., a thickness of about 30μ to 150μ is desirable. Next is drying. Montmorillonite, kaolin, etc., which are the raw materials for the dispersion, contain water of crystallization within their powders, which cannot be completely removed at normal drying temperatures (200°C or lower). However, since the release temperature of this crystal water is approximately 600° C. for the former and approximately 450° C. for the latter, this effect can be avoided if the vapor deposition is performed at a lower temperature. However, montmorillonite has the property of retaining a large amount of water (approximately 10%) in addition to this crystallized water, and this water is not released unless it is heated to approximately 170°C or higher. Therefore, for dispersions containing montmorillonite, it is desirable to dry them in advance at a temperature of 170°C or higher in order to reduce the amount of moisture carried into the vapor deposition equipment. Unless the atmosphere is inert, it will oxidize the metal (copper) deposited on the base. Therefore, we attempted vapor deposition by drying at a temperature of 50°C. As a result, there is no reduction in the degree of vacuum during vapor deposition.
A normal deposited film could be formed. This is thought to be because the moisture in the mask material was completely removed when the substrate was heated (400°C to 500°C) before vapor deposition. Next is vapor deposition using a sputtering device.
It was carried out under the same conditions as before without any special operations. After the vapor deposition was completed, the substrate was immersed in water, and the mask material layer was rehydrated and peeled off. In this case, peeling can be easily performed using an ultrasonic cleaner. Partial deposition on the substrate is completed through the above operations. In addition, the dispersion liquid No. 1 in the above table has the characteristic that the mask layer can be peeled off without rehydration, but if care is not taken, the mask layer may peel off when the substrate is removed from the equipment. It has the problem of peeling off and contaminating the work space. Next, I will describe the main properties of raw materials that I learned during the testing and study process. All of the B powders listed in the table above can form a coating film on the substrate surface relatively easily, but in the dry state, the bonding strength of individual particles is weak and they disintegrate with just a slight impact. , it scatters in powder form and cannot be put to practical use alone. On the other hand, A
When the powder is dispersed in water, applied and dried, the bond between the particles is extremely strong. However, montmorillonite is composed of a fine colloidal substance, and when used alone, it may crack during drying (high shrinkage rate) depending on the type (differences in the proportion of impurities mixed in due to different production areas, differences in refining methods, etc.). (because of this) a coating film cannot be formed on some products. However, by mixing an appropriate amount of a substance with poor bonding strength, such as the B powder, it is possible to compensate for each other's shortcomings and make the material suitable as a mask material. If the particle size of Powder B mixed with Powder A is too large, it may damage the substrate during application or work, so it is preferable to have a smaller particle size, but if it is extremely small (0.05μ or less), it will cause Shrinkage is severe and cracks and peeling occur. In addition to powders for ceramics and ceramics listed in Table B above, powders that can be mixed with powder A to form coatings include:
Glass powder, refractory material powder, or water-insoluble inorganic substances such as calcium phosphate, barium sulfate, calcium sulfate, etc. may also be used. There are natural minerals that already contain a portion of powder A, and the use of such powder is also included in the present invention. In addition to the above-mentioned inorganic materials, for the purpose of improving the coating properties of the dispersion, for example, organic substances with low boiling points (surfactants, viscosity agents), or substances such as magnesium oxide for viscosity adjustment may be mixed as auxiliaries. It is also within the scope of the present invention to do so. Although the thermal head has been described above as an example, the present invention can also be applied to integrated circuits, tools, mechanical parts, etc. in which ceramic films are partially deposited. Effects of the Invention In the present invention, a mask material made of zeolite or montmorillonite has a suitable strength and is tightly adhered to a substrate by the adhesive force of the mask material itself. Partial deposition can be performed without damaging the substrate surface when attaching the material, and without causing deposition gas to enter the gap between the mask and the substrate. The final step of this vapor deposition, the peeling off of the mask material, is also
This can be done easily by rehydration, so the substrate will not be damaged. Furthermore, since the mask material is attached by a coating method, it is easy to automate the manufacturing process. According to the present invention, the occurrence of wire breakage or warping defects has been greatly reduced. The results are shown below.
【表】
その他の効果として、蒸着マスクの厚みが従来
法のものより大巾に薄く(2mm→約100μへ)な
つたため、同一の厚みの蒸着膜を形成させるため
の蒸着時間が大巾に短縮(約35%)でき設備能力
が向上した。
また、マスクを支える保持金具が不要となつた
ため、蒸着時、この金具の表面に付着する蒸着物
が剥離飛散して起る、基板のピンホール不良が大
巾に低下した。[Table] Another effect is that the thickness of the evaporation mask is much thinner than that of the conventional method (from 2 mm to approximately 100μ), so the evaporation time to form a deposited film of the same thickness is greatly shortened. (approximately 35%) and improved equipment capacity. Furthermore, since a holding metal fitting to support the mask is no longer necessary, the number of pinhole defects in the substrate, which is caused by the vapor deposits adhering to the surface of the metal fitting peeling off and scattering during vapor deposition, has been greatly reduced.
Claims (1)
とする粉体を単独で、あるいは、少なくとも、前
記粉体の一方又は両方を含有する他物質との混合
物を、水に分散させた液を基板面上に塗布、乾燥
して得られる塗膜面を蒸着時のマスク部として、
基板上に蒸着膜を部分形成させることを特徴とし
た真空蒸着法。1. A solution prepared by dispersing a powder containing zeolite or montmorillonite as a main substance alone or a mixture with other substances containing at least one or both of the above powders in water is applied onto the substrate surface and dried. The resulting coating surface is used as a mask during vapor deposition.
A vacuum deposition method characterized by partially forming a deposited film on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP518785A JPS61163261A (en) | 1985-01-16 | 1985-01-16 | Vacuum deposition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP518785A JPS61163261A (en) | 1985-01-16 | 1985-01-16 | Vacuum deposition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61163261A JPS61163261A (en) | 1986-07-23 |
JPH0331787B2 true JPH0331787B2 (en) | 1991-05-08 |
Family
ID=11604220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP518785A Granted JPS61163261A (en) | 1985-01-16 | 1985-01-16 | Vacuum deposition method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61163261A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4548429B2 (en) | 2007-02-19 | 2010-09-22 | コニカミノルタビジネステクノロジーズ株式会社 | Roller having support member and image forming apparatus provided with the roller |
CN102978566B (en) * | 2012-12-14 | 2015-02-25 | 西北有色金属研究院 | Method for preparing vacuum physical vapor deposition plating pattern |
-
1985
- 1985-01-16 JP JP518785A patent/JPS61163261A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61163261A (en) | 1986-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60119788A (en) | Method of coating pattern of metal composition for dielectric green sheet together with sintering agent | |
JPH0583080B2 (en) | ||
JPS6354221B2 (en) | ||
US4582722A (en) | Diffusion isolation layer for maskless cladding process | |
JPH0331787B2 (en) | ||
US3653946A (en) | Method of depositing an adherent gold film on the surfaces of a suitable substrate | |
JP3025560B2 (en) | Ceramic wiring board and method of manufacturing the same | |
JPS63124555A (en) | Substrate for semiconductor device | |
JPS61208842A (en) | Semiconductor wafer supporting substrate | |
JPS63288091A (en) | Circuit board | |
JPS61245555A (en) | Terminal connecting structure for semiconductor | |
JPH03101291A (en) | Method of manufacturing conductive pattern | |
JPH0563108B2 (en) | ||
US4786674A (en) | Diffusion isolation layer for maskless cladding process | |
JP3687250B2 (en) | Manufacturing method of holding jig for metal-ceramic composite member and coating agent for holding jig | |
JPH01272192A (en) | Ceramics substrate | |
JPH01316456A (en) | Sputtering device | |
JPH01272783A (en) | Enameled base plate and production thereof | |
EP0030641A2 (en) | Insulating coating for ceramic substrate and method to form such a coating | |
JPH0212888A (en) | Enameled wiring board having high heat dissipating properties | |
JPS63296293A (en) | Formation of thick film circuit | |
JPS5952553B2 (en) | Thin film pattern formation method | |
JPH0232590A (en) | Manufacture of copper-organic insulating film wiring board | |
JPH07193348A (en) | Ceramic circuit board | |
JPH04111410A (en) | Circuit substrate and method for forming photoresist film for micro-circuit using the substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |