JPH01272783A - Enameled base plate and production thereof - Google Patents

Enameled base plate and production thereof

Info

Publication number
JPH01272783A
JPH01272783A JP10023888A JP10023888A JPH01272783A JP H01272783 A JPH01272783 A JP H01272783A JP 10023888 A JP10023888 A JP 10023888A JP 10023888 A JP10023888 A JP 10023888A JP H01272783 A JPH01272783 A JP H01272783A
Authority
JP
Japan
Prior art keywords
layer
enamel
base plate
substrate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10023888A
Other languages
Japanese (ja)
Inventor
Masanori Itou
政律 伊藤
Yoshio Kataoka
片岡 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10023888A priority Critical patent/JPH01272783A/en
Publication of JPH01272783A publication Critical patent/JPH01272783A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/02Coating with enamels or vitreous layers by wet methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To produce an enameled base plate having an enamel layer controlled in heat conductivity by coating a metallic base plate with both an inner layer high in porosity having large blister diameter and an outer layer low in porosity having small blister diameter. CONSTITUTION:A first layer (inner layer) having about 50-200mum thickness is electrodeposited with electrophoresis by immersing a metallic base plate in slurry wherein the crystallized enamel frits having 10-20mum average particle diameter and comparatively large particle diameter are dispersed. Then while this electrodeposited layer is not dried, the base plate is immersed in slurry having particle diameter smaller than the above-mentioned slurry wherein the crystallized enamel frits having 0.5-5mum average particle diameter and small particle diameter are dispersed and a second (outer layer) having about 5-50mum thickness is electrodeposited thereon. Furthermore after drying the base plate electrodeposited with the first and second layers, it is calcined at about 800-950 deg.C to form the enamel layer made of two-layer ceramic on the metallic base plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特性を向上させたホウロウ基板に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an enamel substrate with improved characteristics.

更に詳しくは、熱伝導率を調節したホウロウ層を有する
ホウロウ基板に関し、特にサーマルプリンタヘッド用の
基板に応用した場合には、熱の拡散をコントロールし、
印字効率を向上させたホウロウ基板に関する。
More specifically, regarding an enamel substrate having an enamel layer with adjusted thermal conductivity, it is particularly useful for controlling heat diffusion when applied to a substrate for a thermal printer head.
This invention relates to an enamel substrate with improved printing efficiency.

〔従来の技術〕[Conventional technology]

サーマルプリンタヘッド用基板に要求される特性として
は、発熱回路に電流を流したとき数7FL sec或い
はそれ以下の極めて短時間で300〜400℃の高温に
昇温し、電流を切ったときは同程度の速さで短時間に常
温まで降温する特性が必要とされている。
The characteristics required of a substrate for a thermal printer head are that when current is passed through the heating circuit, the temperature rises to a high temperature of 300 to 400°C in an extremely short time of several 7 FL sec or less, and when the current is turned off, the temperature remains the same. There is a need for properties that allow the temperature to drop to room temperature in a short period of time at a certain speed.

これに対し、現在主にアルミナ基板が用いられているが
、上述の要求特性に対し、アルミナ基板の熱伝導率が高
過ぎ、短時間昇温が困難な欠点をもっている。そこで、
この欠点を除くため、アルミナ基板表面に熱伝導率の低
いRFJのガラス層を設けたのち回路を形成して使用し
ている。
In contrast, alumina substrates are currently mainly used, but the thermal conductivity of alumina substrates is too high for the above-mentioned required characteristics, making it difficult to raise the temperature in a short period of time. Therefore,
In order to eliminate this drawback, an RFJ glass layer with low thermal conductivity is provided on the surface of the alumina substrate, and then a circuit is formed and used.

しかし、この様にガラス層を設けたアルミナ基板におい
ては、通電によるon、offが繰り返し行われると、
次第に基材のアルミナに蓄熱され、降温性が悪くなる欠
点を持っている。このため現在は、このアルミナ基板に
放熱板を取り付けるなどして使用している。
However, in an alumina substrate provided with a glass layer in this way, if it is repeatedly turned on and off by energization,
It has the disadvantage that heat gradually accumulates in the alumina base material, resulting in poor cooling performance. For this reason, currently, a heat sink is attached to this alumina substrate.

これを解決するため、金属コア上にホウロウ層を設けた
ホウロウ基板が用いられる傾向にある。
To solve this problem, there is a tendency to use an enamel substrate in which an enamel layer is provided on a metal core.

金属コアは熱伝導性が大きいため降温性の問題を解決し
得る。
Since the metal core has high thermal conductivity, it can solve the problem of temperature drop.

サーマルプリンタヘッド用にホウロウ基板を用いた公知
例としては特開昭62−109,984号公報がある。
A known example of using an enamel substrate for a thermal printer head is JP-A-62-109,984.

これは結晶化ガラスの懸濁液を用いて、ガラス粉末を金
R基体上に電析し、焼成して、絶縁ホウロウ基板を形成
したものである。
This is an insulating enamel substrate formed by electrodepositing glass powder onto a gold R substrate using a suspension of crystallized glass and firing it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ホウロウ基板の場合、前記のごとく、表面のガラスが蓄
熱層となり、電流を切った時には、コアの金属に熱が逃
げるので、ザーマルプリンタヘッド用基板に向いた構造
となっている。従って通常のサーマルプリンタヘッド用
としては前記公知のホウロウ基板のままで使用できる。
In the case of an enameled substrate, as mentioned above, the glass on the surface acts as a heat storage layer, and when the current is turned off, heat escapes to the metal core, making it suitable for use as a substrate for thermal printer heads. Therefore, the above-mentioned known enamel substrate can be used as is for a normal thermal printer head.

ホウロウ基板をサーマルプリンタヘッド用の基板として
用いる際、いろいろな特性が要求される。
When using an enameled substrate as a substrate for a thermal printer head, various characteristics are required.

■耐酸性、耐熱性・・・結晶化ガラスホウロウを用いれ
ば良好である。0表面平滑性・・・微粒ガラスを用いる
ことにより良好なものが得られる。■放熱性・・・基板
全体としては放熱性が良好である必要があるが、ホウロ
ウ基板は金属コア上にホウロウを施しているので全体的
には良好である。■表面蓄熱層・・・基板表面には熱伝
導率の小さい蓄熱層が必要である。基板表面に形成され
た発熱体に電流を流した時に、瞬間的に温度を十分に上
昇させるためである。ただし電流を切った時に、直ぐに
温度が下がるように、この層はあまり厚くなく、熱伝導
率も適当な値をもつことが必要である。
■Acid resistance, heat resistance... Good if crystallized glass enamel is used. 0 Surface smoothness: Good surface smoothness can be obtained by using fine glass. ■Heat dissipation property: The board as a whole needs to have good heat dissipation property, and the enamel board has good heat dissipation properties as a whole because the enamel is applied on the metal core. ■Surface heat storage layer: A heat storage layer with low thermal conductivity is required on the substrate surface. This is to instantaneously and sufficiently raise the temperature when a current is passed through the heating element formed on the surface of the substrate. However, this layer must not be very thick and must have an appropriate thermal conductivity so that the temperature drops immediately when the current is turned off.

通常のサーマルプリンタヘッド用としては、公知のホウ
ロウ基板のままで使用できるが、更に効率を上げる、即
ちより少ない電力で、より高速で印字するためには、ガ
ラスの熱伝導率を下げる必要がある。
For normal thermal printer heads, the known enamel substrate can be used as is, but in order to further increase efficiency, that is, print faster with less power, it is necessary to lower the thermal conductivity of the glass. .

しかし熱伝導率を下げるため、熱伝導率の低い材質のガ
ラスに変更すると耐酸性や耐熱性が不足してしまうとい
う烈点がある。
However, in order to lower thermal conductivity, changing to glass made of a material with low thermal conductivity has the disadvantage that acid resistance and heat resistance will be insufficient.

本発明の目的は、表面平滑性、耐酸性、耐熱性を保持し
ながら、ホウロウ層の熱伝導率を低くした、効率の高い
サーマルプリンタヘッド用として好適なホウロウ基板を
提供することである。
An object of the present invention is to provide an enamel substrate suitable for use in a highly efficient thermal printer head, which has a low thermal conductivity of the enamel layer while maintaining surface smoothness, acid resistance, and heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決するため鋭意研究を行っ
た。その結果、ホウロウ層を2層にし、上層には耐酸性
、耐熱性、平滑性の良いガラスを使用すると共に下層に
熱伝S率の小さいガラスを使用することによって解決し
得ること、熱伝導率の小さいガラスとしてはガラス中に
泡径の大きな気泡を多く保持させることによって解決し
得ることをみいだし本発明を完成した。
The present inventors conducted extensive research to solve the above problems. As a result, the problem can be solved by having two enamel layers, using glass with good acid resistance, heat resistance, and smoothness for the upper layer, and glass with low heat conductivity S coefficient for the lower layer. The present invention has been completed by discovering that the problem can be solved by retaining a large number of bubbles with a large diameter in the glass.

すなわち本発明は金属基板上で、泡径の大きな気孔率の
高い内層と該内層より泡径の小さな気孔率の低い外層と
で被覆されてなるホウロウ基板である。
That is, the present invention is an enamel substrate formed by covering a metal substrate with an inner layer having a large bubble diameter and a high porosity, and an outer layer having a small bubble diameter and a low porosity than the inner layer.

またその製造方法としては、平均粒径10〜20μmと
粒径の比較的大きな結晶化ホウロウフリットを分散させ
たスラリー中に金属基板を浸漬し、第1層を電気泳動に
より電着させた後、該電着層を乾燥させることなく直ち
に、前記スラリーよりも粒径が小さく、平均粒径0.5
〜5μmの小さな結晶化ホウロウフリットを分@させた
スラリー中に前記基板を浸漬し、第2層を電着させるN
@工程と、前記第11ilと第2FMとを電着後、焼成
する工程とを有することを特徴とする前記のボウロウ基
板の製造方法である。
In addition, the manufacturing method includes immersing a metal substrate in a slurry in which crystallized enamel frit with a relatively large average particle size of 10 to 20 μm is dispersed, and then electrodepositing the first layer by electrophoresis. Immediately without drying the electrodeposited layer, the particle size is smaller than that of the slurry, and the average particle size is 0.5.
The substrate is immersed in a slurry containing small crystallized enamel frits of ~5 μm, and a second layer is electrodeposited with N.
The method for manufacturing the above-mentioned bowlou substrate is characterized by comprising a step and a step of firing the 11il and the second FM after electrodeposition.

外層の泡径の小さな気孔率の低いホウロウ層を形成させ
るには、平均粒径が0.5〜5μmと微粒の結晶化ガラ
スを用いればよい。
In order to form an enamel layer with small bubble diameter and low porosity as an outer layer, fine crystallized glass having an average particle size of 0.5 to 5 μm may be used.

反対に内層のホウロウ層の熱伝導率を低くするには、勿
論熱伝導率そのものが小さい材質のガラスを使用すれば
よいが、このようななガラスは概して耐酸性や耐熱性が
劣るケースが多いので、本発明では、焼成後、大きな気
泡(ボイド)を多く含むガラス層を形成するガラスを使
用する。気泡を多く含むガラス層を形成させるためには
、電着時に平均粒径が10〜20μmと大きな結晶化ガ
ラスを使用するのが必要で、泡径が最大で約50μm、
気孔率は10%以上とすることができる。
On the other hand, to lower the thermal conductivity of the inner enamel layer, you can of course use glass that has a low thermal conductivity, but such glass generally has poor acid resistance and heat resistance in many cases. Therefore, in the present invention, a glass is used that forms a glass layer containing many large bubbles (voids) after firing. In order to form a glass layer containing many bubbles, it is necessary to use a large crystallized glass with an average particle size of 10 to 20 μm during electrodeposition, and the maximum bubble size is about 50 μm.
The porosity can be 10% or more.

これによって熱伝導率を下げることができるのである。This allows the thermal conductivity to be lowered.

ここで粒径を10〜20μmとしたのは粒計が10μm
未満であると、泡径と気孔率が小さくなるため熱伝導率
が下がらず、20μmを超えるとホーロー表面の事情性
に悪影響を与えるためである。もちろん気泡を多く含ま
せるためには、発泡性ガラスを使用してもよい。
Here, the particle size is 10 to 20 μm because the particle size is 10 μm.
This is because if it is less than 20 μm, the bubble diameter and porosity become small, so that the thermal conductivity does not decrease, and if it exceeds 20 μm, it will adversely affect the condition of the enamel surface. Of course, foamable glass may be used to contain more air bubbles.

焼成後の膜厚としては内Fy4(下層)が50〜200
μm1外層(上層)が5〜50μm程度の厚さとするこ
とが好ましい。
The inner Fy4 (lower layer) has a film thickness of 50 to 200 after firing.
It is preferable that the outer layer (upper layer) has a thickness of about 5 to 50 μm.

この2層コーティングを行なうに当っては電気泳動法に
よるffi着が有効である。すなわち、電着法はつきま
わり性が良いので、全面均一の厚さに付着させることが
でき、特に縁部に厚く着くようなことがないばかりでな
く、上層と下層それぞれを任意の厚さにできるので熱伝
導率の調整が容易であることによる。電着の際は、まず
下層を電着し、これを乾燥させずに、すぐに別の電着浴
に入れて、上層を電着する。−度乾燥させると、再び浴
に入れられたときに、ガラス層がひび割れ、剥離してし
まうからである。また下層を一度乾燥、焼成してしまっ
た場合には、基板表面に絶縁層ができるので上層を再び
N@することが不可能になる。
In performing this two-layer coating, ffi deposition by electrophoresis is effective. In other words, the electrodeposition method has good throwing power, so it can be deposited to a uniform thickness over the entire surface, and not only does it avoid thick deposits on the edges, but also allows the upper and lower layers to be made to any desired thickness. This is because the thermal conductivity can be easily adjusted. During electrodeposition, the lower layer is first electrodeposited, and without drying, it is immediately placed in a separate electrodeposition bath and the upper layer is electrodeposited. This is because if the glass layer is dried for a second time, the glass layer will crack and peel off when it is placed in the bath again. Furthermore, if the lower layer is once dried and fired, an insulating layer is formed on the surface of the substrate, making it impossible to apply nitrogen again to the upper layer.

ガラス微粒子の電着について更に詳しく説明すると、ガ
ラス材料は高温で先づ溶解され、冷却器で冷却して、ガ
ラスセラミックスのカレットを得る。これをボールミル
等の粉砕機で粉砕する。この後、粒径の大きいものをあ
る程度取り除き、さらにボールミルにガラスセラミック
ス粉末とイソプロピルアルコールを入れ、ガラスセラミ
ックスの重層累積粒度分布における平均粒径(50wt
%値)が10〜20μmになるまで時間をかけてミル引
きして懸濁液(スリップ)を作り、電気泳動槽に入れ、
電圧50〜600Vでガラスセラミックスを電気泳動電
着させる。この後乾燥することなく、直ちに別個の電気
泳動槽に平均粒径0.5〜5μmになるまでミル引きし
たスリップを満たし、これに移しかえ、引続ぎ電着を行
い、焼成後の膜厚に換算して、下層50〜200μm、
上層5〜50μmとなる時間電着を行う。
To explain the electrodeposition of glass fine particles in more detail, the glass material is first melted at a high temperature and then cooled in a cooler to obtain a glass ceramic cullet. This is pulverized using a pulverizer such as a ball mill. After that, some large particles were removed, and glass ceramic powder and isopropyl alcohol were added to a ball mill, and the average particle size in the multilayer cumulative particle size distribution of glass ceramics (50 wt.
% value) is 10 to 20 μm to create a suspension (slip), and put it in an electrophoresis tank.
Glass ceramics are electrophoretically electrodeposited at a voltage of 50-600V. After this, without drying, immediately fill a separate electrophoresis tank with the milled slip to an average particle size of 0.5 to 5 μm, transfer it to this tank, perform electrodeposition, and adjust the film thickness after firing. In terms of lower layer 50 to 200 μm,
Electrodeposition is performed for a time such that the upper layer has a thickness of 5 to 50 μm.

基板を引き上げ、乾燥した後、800〜950℃で焼成
し、コア金属上にガラスセラミックスの平滑な2層のホ
ウロウ層を得る。
After the substrate is pulled up and dried, it is fired at 800 to 950°C to obtain two smooth enamel layers of glass ceramics on the core metal.

この絶縁基板上に薄膜で発熱抵抗体、リード電極、耐摩
耗層を形成してサーマルヘッドを作製する。
A heating resistor, lead electrodes, and a wear-resistant layer are formed as thin films on this insulating substrate to produce a thermal head.

〔実施例〕〔Example〕

以下に実施例を記載して、本発明を具体的に説明するが
、本発明はこれによって何等限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto in any way.

表面平滑なステンレス板を洗浄後、2層コーティング、
焼成を行い、ガラスを剥離して、レーザーフラッシュ法
によって熱伝導率を測定した。
After cleaning the stainless steel plate with a smooth surface, two-layer coating is applied.
After firing, the glass was peeled off and the thermal conductivity was measured by a laser flash method.

通常は金属コアとしてホウロウ用鋼板を用い、脱脂、酸
洗、Niメツキなどの峙処理を行った後コーティング、
焼成を行うが、ここで平滑なステンレス板を用いたのは
、ガラスを剥離し易くするためである。
Usually, a steel plate for enameling is used as the metal core, and after surface treatment such as degreasing, pickling, and Ni plating, coating is performed.
Firing is performed, and the reason why a smooth stainless steel plate is used here is to make it easier to peel off the glass.

平滑なステンレス板を洗浄した後、粒径が大きな(平均
粒径15μm)結晶化ガラス(特公昭61−2970号
公報に示されるBad。
After cleaning a smooth stainless steel plate, a crystallized glass with a large particle size (average particle size 15 μm) (Bad shown in Japanese Patent Publication No. 61-2970) is prepared.

S t 02.B2O3,voo系ガラス)を電着によ
ってコーティングした。ひきつづいて、同じ組成の粒径
の小さな結晶化ガラス(平均粒径3μTrL)を電着し
、乾燥、焼成(850℃、10分間)した。
S t 02. B2O3, VOO glass) was coated by electrodeposition. Subsequently, crystallized glass having the same composition and smaller particle size (average particle size 3 μTrL) was electrodeposited, dried, and fired (850° C., 10 minutes).

膜厚は焼成後で第1層(下層)が200μ、第2層(上
層)が50μmとなるようにした。
The film thickness was such that the first layer (lower layer) was 200 μm and the second layer (upper layer) was 50 μm after firing.

このガラスをステンレス板より剥離し、レーザーフラッ
シュ法によって熱伝導率を測定したところ、0.002
4cal /c−sec −”Cであった。
When this glass was peeled off from a stainless steel plate and its thermal conductivity was measured using the laser flash method, it was found to be 0.002.
4 cal/c-sec-"C.

同じ組成のガラスで平均粒径9μmのガラスを1層だけ
電着、焼成したものの場合は熱伝導率は0.0029c
al /z−sec ・’Cであルノテコレに比べて本
実施例の場合は約17%熱伝導率を低下させることがで
きた。
In the case of glass of the same composition, with only one layer of glass with an average particle size of 9 μm electrodeposited and fired, the thermal conductivity is 0.0029c.
al /z-sec ・'C In this example, the thermal conductivity could be lowered by about 17% compared to Lunotekore.

(比較例) 実施例において第1層の結晶化ガラスの平均粒径を8μ
mおよび21μmとした他は実施例通りとし、ガラス層
をステンレス板より剥離し、レーザーフラッシュ法によ
って熱伝導率を測定したとこる平均粒径8μmの場合に
は熱伝導率は0、0030Cal /cII−sec 
 、℃となり、2層にした効果はみられなかった。また
平均粒径を21μmとした場合には熱伝導率は0.00
23cal/cm・sec ・℃となり目的を達するが
、表面平滑性が劣化する。
(Comparative example) In the example, the average grain size of the first layer of crystallized glass was 8 μm.
The procedure was the same as in the example except that the glass layer was peeled off from the stainless steel plate and the thermal conductivity was measured by the laser flash method.When the average particle size was 8 μm, the thermal conductivity was 0.0030 Cal/cII. -sec
, °C, and no effect of having two layers was observed. Furthermore, when the average particle size is 21 μm, the thermal conductivity is 0.00.
The temperature was 23 cal/cm·sec·°C, which achieved the objective, but the surface smoothness deteriorated.

また第21の結晶化ガラスの平均粒径を0.3μmおよ
び7μmとした他は、実施例通りに行い、ガラス層をス
テンレス板より剥離し、レーザーフラッシュ法によって
熱伝導率を測定したところ、両者共に0.0024ca
l /3−se(e”cとなり熱伝導率の面では満足す
べきものであったが、平均粒径0.3μmでは平均気泡
径は小さくなるものの、焼成時の軟化流動時間が短くな
り、脱泡しにくくなるためか、平滑な表面が得られなか
った。
In addition, the procedure was carried out as in the example except that the average particle size of the 21st crystallized glass was 0.3 μm and 7 μm, and the glass layer was peeled off from the stainless steel plate and the thermal conductivity was measured by the laser flash method. Both 0.0024ca
1/3-se (e"c, which was satisfactory in terms of thermal conductivity. However, with an average particle size of 0.3 μm, the average bubble diameter becomes smaller, but the softening and flow time during firing becomes shorter, and desorption becomes more difficult. A smooth surface could not be obtained, probably because it was difficult to form bubbles.

また平均粒径7μmとした場合には、生成する平均気泡
径が大きくなり、平滑な表面が得られなかった。
Further, when the average particle size was set to 7 μm, the average bubble size generated was large and a smooth surface could not be obtained.

(発明の効果) ホウロウ基板の表面の耐酸性、耐熱性、平滑性などの表
面の性質をそのままに保持しながら、ガラス層全体の熱
伝導率を小さくすることができた。
(Effects of the Invention) It was possible to reduce the thermal conductivity of the entire glass layer while maintaining the surface properties of the enamel substrate, such as acid resistance, heat resistance, and smoothness.

またその値をある範囲内で自由に変えることができた。Moreover, the value could be changed freely within a certain range.

従って該基板をサーマルプリンタヘッドに用いた場合、
より少ない電力で、より高速で印字できることになり、
ホウロウ基板による迅速な放熱性と相まって極めてBr
Ie率な印字を可能にした。
Therefore, when this substrate is used in a thermal printer head,
This means you can print faster and with less power.
Combined with rapid heat dissipation due to the enamel substrate, extremely Br
Enables Ie rate printing.

実用的効果の大きい発明である。This invention has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のホウロウ基板の断面の133倍顕微鏡
写真を図で表したものである。 出願人代理人  藤  本  博  売名 1 目
FIG. 1 is a diagram illustrating a 133x microscopic photograph of a cross section of the enamel substrate of the present invention. Applicant's agent Hiroshi Fujimoto Public name 1

Claims (1)

【特許請求の範囲】 1、金属基板上で泡径の大きな気孔率の高い内層と該内
層より泡径の小さな気孔率の低い外層とで被覆されてな
るホウロウ基板。 2、平均粒径10〜20μmと粒径の比較的大きな結晶
化ホウロウフリットを分散させたスラリー中に金属基板
を浸漬し、第1層を電気泳動により電着させた後、該電
着層を乾燥させることなく直ちに、前記スラリーよりも
粒径が小さく、平均粒径0.5〜5μmの小さな結晶化
ホウロウフリットを分散させたスラリー中に前記基板を
浸漬し、第2層を電着させる電着工程と、前記第1層と
第2層とを電着後焼成する工程とを有することを特徴と
する請求項1記載のホウロウ基板の製造方法。
[Scope of Claims] 1. An enamel substrate formed by covering a metal substrate with an inner layer having large bubble diameters and high porosity, and an outer layer having smaller bubble diameters and lower porosity than the inner layer. 2. A metal substrate is immersed in a slurry in which crystallized enamel frit with a relatively large average particle size of 10 to 20 μm is dispersed, and the first layer is electrodeposited by electrophoresis. Immediately, without drying, the substrate is immersed in a slurry in which small crystallized enamel frits having a particle size smaller than that of the slurry and an average particle size of 0.5 to 5 μm are dispersed, and an electrodeposition process is carried out to electrodeposit a second layer. 2. The method of manufacturing an enameled substrate according to claim 1, further comprising a step of depositing the first layer and the second layer and then firing the first layer and the second layer after electrodeposition.
JP10023888A 1988-04-25 1988-04-25 Enameled base plate and production thereof Pending JPH01272783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10023888A JPH01272783A (en) 1988-04-25 1988-04-25 Enameled base plate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10023888A JPH01272783A (en) 1988-04-25 1988-04-25 Enameled base plate and production thereof

Publications (1)

Publication Number Publication Date
JPH01272783A true JPH01272783A (en) 1989-10-31

Family

ID=14268672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10023888A Pending JPH01272783A (en) 1988-04-25 1988-04-25 Enameled base plate and production thereof

Country Status (1)

Country Link
JP (1) JPH01272783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934637A (en) * 2009-06-30 2011-01-05 山东华菱电子有限公司 Thermal print head and preparation method thereof
JP2011162426A (en) * 2010-02-15 2011-08-25 Ikebukuro Horo Kogyo Kk Glass lining composition
JP2015025185A (en) * 2013-07-29 2015-02-05 Toto株式会社 Enameled article, and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319270A (en) * 1986-07-11 1988-01-27 Matsushita Electric Ind Co Ltd Thermal head and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319270A (en) * 1986-07-11 1988-01-27 Matsushita Electric Ind Co Ltd Thermal head and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934637A (en) * 2009-06-30 2011-01-05 山东华菱电子有限公司 Thermal print head and preparation method thereof
JP2011162426A (en) * 2010-02-15 2011-08-25 Ikebukuro Horo Kogyo Kk Glass lining composition
JP2015025185A (en) * 2013-07-29 2015-02-05 Toto株式会社 Enameled article, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6389435A (en) Enamel composition and substrate coated therewith
JPS63203775A (en) Plating treatment of substrate
US3922386A (en) Process for the manufacture of small heat-generating printed circuits
JPH01272783A (en) Enameled base plate and production thereof
JPS59141289A (en) Method of producing coated board for electronic device
JPH0920580A (en) Method of metallization of ferrite using surface reduction
US3653946A (en) Method of depositing an adherent gold film on the surfaces of a suitable substrate
JPH0331485A (en) Enameled substrate and thermal head or circuit parts using the same
JPS6156637B2 (en)
JPH09142971A (en) Formation of coating layer on alumina substrate
JP2004131302A (en) Conductive ceramic and its manufacturing process
JPS62260096A (en) Sealing treatment of porous film
JPH04296087A (en) Enameled board and manufacture thereof
JPH09142970A (en) Formation of glass coating layer
JPH02267286A (en) Enameled substrate
JPH01272192A (en) Ceramics substrate
JPH0243379A (en) Insulating enamel substrate and production thereof
JPH09156147A (en) Method for forming glaze layer of end surface type thermal head substrate
JPH0347977A (en) Production of circuit parts
JPH0959785A (en) Production of enameled substrate
JPH02106808A (en) Conductive paste, electronic circuit parts using same and manufacture thereof
JPH05262584A (en) Modification of substrate surface
JPH02217263A (en) Manufacture of thermal head
JPH01214090A (en) High breakdown strength enamelled board
JPS63205985A (en) Hybrid integrated circuit device