JPH02267286A - Enameled substrate - Google Patents

Enameled substrate

Info

Publication number
JPH02267286A
JPH02267286A JP8622989A JP8622989A JPH02267286A JP H02267286 A JPH02267286 A JP H02267286A JP 8622989 A JP8622989 A JP 8622989A JP 8622989 A JP8622989 A JP 8622989A JP H02267286 A JPH02267286 A JP H02267286A
Authority
JP
Japan
Prior art keywords
substrate
layer
glass
hollow
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8622989A
Other languages
Japanese (ja)
Inventor
Ichiro Tanahashi
棚橋 一郎
Masahiro Hiraga
将浩 平賀
Masaki Ikeda
正樹 池田
Yasuo Mizuno
水野 康男
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8622989A priority Critical patent/JPH02267286A/en
Publication of JPH02267286A publication Critical patent/JPH02267286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an enameled substrate whose coating layer has a smooth surface and superior characteristics as a substrate for a thermal head by forming an enamel layer on the surface of a metal substrate and a coating layer of glass or ceramics on the surface of the enamel layer. CONSTITUTION:An Ni plating layer 2 is formed on the surface of a substrate 1 of a metal such as stainless steel and the substrate 1 is immersed in a slurry consisting of fine glass particles and an alcohol soln. DC voltage is impressed between the substrate 1 and a counter electrode to supply electric current and an enamel layer 3 made of crystallized glass is formed on the Ni plating layer 2 by electrophoresis and electrodeposition. The enameled substrate is dipped in a mixed soln., e.g., consisting of tetraethoxysilane, methanol, water and hydrochloric acid and a glass or ceramic layer 4 of SiO2, Al2O3 or MgO-B2O3- SiO2 is formed by drying and sintering to produce a substrate 8 for a thermal head.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サーマルヘッド用基板等に用いるホーロ基板
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hollow substrate used for a thermal head substrate or the like.

従来の技術 従来の技術として例えば特願昭E11−252212号
に開示されているようなサーマルヘッド用絶縁ホーロ基
板を例に挙げ説明する。
2. Description of the Related Art As a conventional technology, an insulating hollow substrate for a thermal head as disclosed in Japanese Patent Application No. E11-252212 will be described as an example.

このホーロ基板8aは第2図に示すようにステンレス鋼
板1a上に電解ニッケルメッキ層2a1さらにホーロガ
ラス3aを被覆した構成から成る。
As shown in FIG. 2, this hollow substrate 8a has a structure in which a stainless steel plate 1a is coated with an electrolytic nickel plating layer 2a1 and a hollow glass 3a.

またこの基板8aの製造方法としてはまず調製したガラ
スフリットをボールミルで粉砕し平均粒径が2〜3μm
の電気泳動電着(電着)用スラIJ−とし、このスラリ
ーにステンレス鋼板などの金属基材1aを浸漬、対極と
金属基材1a間に直流電圧を印加して帯電したガラスフ
リット粒子を金属基材1a上に電着する。その後、充分
に乾燥後、焼成してサーマルヘッド用絶縁ホーロ基板8
aとする。このような方法で形成したサーマルヘッド用
絶縁ホーロ基板8aの表面粗度は、中心線平均粗さRa
で0.05〜0.088mであり、従来のホーロ基板(
Ra0.15〜0.3μm)に比べて、平滑性に優れて
いる。
In addition, as a manufacturing method for this substrate 8a, firstly, the prepared glass frit is ground in a ball mill so that the average particle size is 2 to 3 μm.
A metal substrate 1a such as a stainless steel plate is immersed in the slurry IJ- for electrophoretic electrodeposition (electrodeposition), and a DC voltage is applied between the counter electrode and the metal substrate 1a to transfer the charged glass frit particles to the metal. It is electrodeposited onto the base material 1a. After that, after sufficiently drying, the insulating hollow substrate 8 for the thermal head is fired.
Let it be a. The surface roughness of the thermal head insulating hollow substrate 8a formed by such a method is the center line average roughness Ra.
The distance is 0.05 to 0.088m, and the distance is 0.05 to 0.088m.
(Ra0.15 to 0.3 μm) has excellent smoothness.

発明が解決しようとする課題 上記構成のホーロ基板8aの表面に厚膜印刷法あるいは
スパッタリング等の薄膜技術を用いて発熱抵抗体8as
 電極5aをパターン形成してサーマルヘッドの導電回
路を形成する際、ホーロ基板8aの表面平滑性がいまだ
充分でないため精度の高いファインなパターン形成がで
きない。
Problem to be Solved by the Invention The heating resistor 8as is formed on the surface of the hollow substrate 8a having the above structure using a thin film technique such as thick film printing or sputtering.
When patterning the electrodes 5a to form a conductive circuit of the thermal head, it is not possible to form a fine pattern with high accuracy because the surface smoothness of the hollow substrate 8a is still insufficient.

また発熱抵抗体6、電極5、あるいはオーバコート層7
を形成する場合、これらの構成材料とホーロ基板層とが
反応し良好な特性のサーマルヘッドができないという問
題があった。
Also, the heating resistor 6, the electrode 5, or the overcoat layer 7
When forming a thermal head, there is a problem in that these constituent materials and the hollow substrate layer react with each other, making it impossible to form a thermal head with good characteristics.

課題を解決するための手段 上記課題を解決するために本発明は、金属基村上にホー
ロ層を形成し、さらにこのホーロ層の表面にガラスある
いはセラミックスから成る被覆層を形成した構成から成
ることを特徴とする。ガラスあるいはセラミックスから
成る被覆層はゾル−ゲル法を用いて形成されたものが前
記被服層は810a、Al90g、あるいはMgO−B
iOs−8IO2からなるものが、ホーロ層は結晶化ガ
ラスからなるものが、又ホーロ層は電気泳動電着法を用
いて形成されたものが夫々好適である。
Means for Solving the Problems In order to solve the above problems, the present invention comprises a structure in which a hollow layer is formed on a metal substrate, and a coating layer made of glass or ceramics is further formed on the surface of this hollow layer. Features. The coating layer made of glass or ceramics is formed using a sol-gel method.
It is preferable to use iOs-8IO2, the hollow layer to be formed from crystallized glass, and the hollow layer to be formed by electrophoretic electrodeposition.

作   用 本発明のホーロ基板は、金属基材にホーロ層を形成し、
さらにこのホーロ層の表面にガラスあるいはセラミック
スから成る被覆層を形成した構成から成るものであるの
で、前記被服層が表面滑性に優れ、かつ抵抗体、電極、
あるいはオーバコート層との反応を抑えることができ良
好な特性を得ることができる。
Function The hollow substrate of the present invention forms a hollow layer on a metal base material,
Furthermore, since the structure is such that a coating layer made of glass or ceramics is formed on the surface of this hollow layer, the coating layer has excellent surface smoothness and is suitable for resistors, electrodes,
Alternatively, reaction with the overcoat layer can be suppressed and good characteristics can be obtained.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

〈第1実施例〉 板上のステンレス金属基材1を脱脂・水洗・酸洗・水洗
・ニッケルメッキ拳水洗して前処理を行った後、平均粒
径が7μmのガラス粒子とアルコール溶液とからなるス
ラリー中に浸漬して、対極と金属基材1間に直流電圧を
印加して第1表に示す組成の結晶性ガラス粒子を金属基
材1上に150μm電着した。その後、室温で乾燥し9
00℃で焼成してホーロ基板本体8を形成した。第1図
に示すようにこの基板本体8上に二酸化珪素から成る被
覆層4を400nm形成しさらに図に示したような構成
のサーマルヘッドを形成した。第1図は本実施例のホー
ロ基板を用いたサーマルヘッドの断面図で、1は金属基
材、2はニッケルメッキ層、3はホーロ層、4はガラス
被覆層、5は電極、6は発熱抵抗体、7はオーバーコー
ト層である。
〈First Example〉 After performing pretreatment by degreasing, washing with water, pickling, washing with water, and nickel plating, the stainless steel metal substrate 1 on a plate was treated with glass particles having an average particle size of 7 μm and an alcohol solution. A DC voltage was applied between the counter electrode and the metal substrate 1 to electrodeposit crystalline glass particles having a composition shown in Table 1 to a thickness of 150 μm on the metal substrate 1. Then, dry at room temperature.
The hollow substrate main body 8 was formed by firing at 00°C. As shown in FIG. 1, a coating layer 4 made of silicon dioxide was formed to a thickness of 400 nm on this substrate body 8, and a thermal head having the structure shown in the figure was further formed. FIG. 1 is a cross-sectional view of a thermal head using a hollow substrate of this embodiment, where 1 is a metal base material, 2 is a nickel plating layer, 3 is a hollow layer, 4 is a glass coating layer, 5 is an electrode, and 6 is a heat generating layer. The resistor 7 is an overcoat layer.

次にガラス被覆層4の形成方法について述べる。Next, a method for forming the glass coating layer 4 will be described.

まずテトラエトキシシラン、メタノール、水、そして加
水分解用触媒としての塩酸から成る混合液にホーロ基板
本体8を浸漬し、引っ張り速度1mm/1秒で引き上げ
た後、室温で乾燥、さらに100゛Cで乾燥後、500
℃で焼成する工程を3回繰り返すことにより400nm
の二酸化珪素被膜層4を形成した。電極5、抵抗体6の
バターニング、エツチングも非常に良好でありガラス被
覆層4の無いのもと比ベパターンの精度が向上した。
First, the hollow substrate body 8 was immersed in a mixed solution consisting of tetraethoxysilane, methanol, water, and hydrochloric acid as a hydrolysis catalyst, pulled up at a pulling speed of 1 mm/1 second, dried at room temperature, and then heated at 100°C. After drying, 500
400nm by repeating the process of firing at ℃ three times.
A silicon dioxide coating layer 4 was formed. The patterning and etching of the electrode 5 and the resistor 6 were also very good, and the precision of the pattern was improved compared to the case without the glass coating layer 4.

サーマルヘッドとしての特性は比較例の後にまとめて挙
げる。なお、テトラエトキシシランの替わりにアルミニ
ウムプロポキシドを用いて酸化アルミニウム被覆層を形
成してもほぼ二酸化珪素被膜と同等な特性が得られた。
The characteristics as a thermal head are summarized after the comparative examples. Note that even when aluminum propoxide was used instead of tetraethoxysilane to form the aluminum oxide coating layer, properties almost equivalent to those of the silicon dioxide coating were obtained.

第1表 く第2実施例〉 第1実施例と同様な構成、方法を用いてホーロ基板本体
8を形成した。本実施例ではMgO−h 03−510
2系ガラス被覆層4を600nm形成した。ガラス被覆
層4は、にgO,BO,SIOの原料にそれぞれMg(
OEt)、B(0−r+Bu)、5l(OEt)を用い
た。上記金属アルコキシドとメタノール、水、そして加
水分解用触媒としての塩酸から成る混合液にホーロ基板
本体8を浸漬し、引っ張り速度1mm/1秒で引き上げ
た後、室温で乾燥、さらに100℃で乾燥後、500℃
で焼成する工程を3回繰り返すことにより800 nm
のMgO−Ba0a−5ift系ガラス被覆層4を形成
した。電極5、抵抗体6のパターニング、エツチングも
実施例1と同様非常に良好でありガラス被覆層4の無い
のもと比ベコアインなものができた。
Second Example shown in Table 1> A hollow substrate main body 8 was formed using the same configuration and method as in the first example. In this example, MgO-h 03-510
A 2-type glass coating layer 4 was formed to a thickness of 600 nm. The glass coating layer 4 contains Mg (
OEt), B(0-r+Bu), and 5l(OEt) were used. The hollow substrate main body 8 was immersed in a mixed solution consisting of the metal alkoxide, methanol, water, and hydrochloric acid as a hydrolysis catalyst, pulled up at a pulling speed of 1 mm/1 second, dried at room temperature, and then dried at 100°C. ,500℃
800 nm by repeating the firing process three times.
A MgO-Ba0a-5ift glass coating layer 4 was formed. The patterning and etching of the electrode 5 and the resistor 6 were also very good as in Example 1, and compared to the original without the glass coating layer 4, a core-in structure was obtained.

〈実施例3〉 実施例1と同様な構成、方法を用いてホーロ基板本体8
を形成した。本実施例では第2表に示す組成の結晶性ガ
ラス粒子を金属基材1上に150μm電着した。その後
、室温で乾燥し850 ”Cで焼成してホーロ基板本体
8を形成した。ホーロ基板本体8上の被覆層4は実施例
1と同様第1図に示すように二酸化珪素から成る被覆層
4を400nm形成し、さらに図に示したような構成の
サーマルヘッドを形成した。
<Example 3> Using the same configuration and method as in Example 1, hollow substrate main body 8
was formed. In this example, crystalline glass particles having the composition shown in Table 2 were electrodeposited onto the metal substrate 1 to a thickness of 150 μm. Thereafter, the hollow substrate main body 8 was formed by drying at room temperature and firing at 850''C.The coating layer 4 on the hollow substrate main body 8 was made of silicon dioxide as shown in FIG. 1, as in Example 1. was formed to have a thickness of 400 nm, and a thermal head having the configuration shown in the figure was further formed.

第2表 〈比較例1〉 ステンレス金属基板を脱脂・水洗φ酸洗・水洗・ニッケ
ルメッキ−水洗して前処理を行った後、平均粒径が7μ
mのガラス粒子とアルコール溶液とからなるスラリー中
に浸漬して、対極と金属基板間に直流電圧を印加して第
1表組成の結晶性ガラス粒子を金属基板上に150u、
m電着した。その後、室温で乾燥し900°Cで焼成し
てホーロ基板を形成した。第2図に示すようにこの基板
8a上に電極5、抵抗体6、オーバーコート層7を形成
しサーマルヘッドを試作した。
Table 2 (Comparative Example 1) Stainless steel metal substrate was degreased, washed with water, φ pickled, washed with water, and nickel plated.After pretreatment by washing with water, the average particle size was 7μ.
The crystalline glass particles having the composition shown in Table 1 were placed on the metal substrate at 150 μm by immersing them in a slurry consisting of glass particles of m and an alcohol solution and applying a DC voltage between the counter electrode and the metal substrate.
m was electrodeposited. Thereafter, it was dried at room temperature and fired at 900°C to form a hollow substrate. As shown in FIG. 2, an electrode 5, a resistor 6, and an overcoat layer 7 were formed on this substrate 8a to fabricate a thermal head.

〈比較例2〉 ステンレス金属基板を脱脂・水洗−酸洗・水洗・ニッケ
ルメッキ拳水洗して前処理を行った後、平均粒径が7μ
mのガラス粒子とアルコール溶液とからなるスラリー中
に浸漬して、対極と金属基板間に直流電圧を印加して第
2表組成の結晶性ガラス粒子を金属基板上に150μm
電着した。その後、室温で乾燥し850℃で焼成してホ
ーロ基板を形成した。第2図に示すようにこの基板8a
上に電極5、抵抗体6、オーバーコート層7を形成シサ
ーマルヘッドを試作した。
<Comparative Example 2> After pretreatment of a stainless steel metal substrate by degreasing, water washing, pickling, water washing, and nickel plating, the average particle size was 7 μm.
The crystalline glass particles having the composition shown in Table 2 were placed on the metal substrate with a thickness of 150 μm by immersing them in a slurry consisting of glass particles of m and an alcohol solution and applying a DC voltage between the counter electrode and the metal substrate.
Electrodeposited. Thereafter, it was dried at room temperature and fired at 850° C. to form a hollow substrate. As shown in FIG.
A shothermal head was fabricated by forming an electrode 5, a resistor 6, and an overcoat layer 7 thereon.

以上の実施例1〜3、比較例1〜2について、基板表面
上の中心線平均粗さRa1 サーマルヘッドの発熱抵抗
体の抵抗値バラツキ、サーマルヘッドの熱効率(OD 
濃度1.0のときの1ドツト当りの消費電力)を測定し
、比較した。この結果を第3表、第4表、に示す。
Regarding the above Examples 1 to 3 and Comparative Examples 1 to 2, the center line average roughness Ra1 on the substrate surface, the resistance value variation of the heating resistor of the thermal head, the thermal efficiency of the thermal head (OD
The power consumption per dot at a density of 1.0) was measured and compared. The results are shown in Tables 3 and 4.

第3表 第4表 本発明のホーロ基板は、上記のようなサーマルヘッドの
みならずその他の電気回路基板に広く応用することがで
きる。
Table 3 Table 4 The hollow board of the present invention can be widely applied not only to the above-mentioned thermal head but also to other electric circuit boards.

発明の詳細 な説明したように本発明によれば従来より表面平滑性に
優れ、かつ電極、抵抗体と反応しない良好な特性を示す
ホーロ基板を得ることができ、このホーロ基板を用いる
ことにより良好な特性を示すサーマルヘッド等を作成す
ることができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, it is possible to obtain a hollow substrate that has superior surface smoothness than the conventional one and exhibits good characteristics of not reacting with electrodes and resistors. It is possible to create thermal heads etc. that exhibit unique characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるホーロ基板を使用し
たサーマルヘッドの断面図、第2図は従来のホーロ基板
を使用したサーマルヘッドの断面図である。 151.金属基材、201.ニッケルメッキ層、3.。 、ホーロ層、4.、、ガラス(セラミックス)被覆層、
S89.電極、8010発熱抵抗体、?、、、オーバー
コート層、800.ホーロ基板本体。
FIG. 1 is a sectional view of a thermal head using a hollow substrate according to an embodiment of the present invention, and FIG. 2 is a sectional view of a thermal head using a conventional hollow substrate. 151. Metal base material, 201. Nickel plating layer, 3. . , hollow layer, 4. , glass (ceramics) coating layer,
S89. Electrode, 8010 heating resistor, ? , , overcoat layer, 800. Hollow board body.

Claims (5)

【特許請求の範囲】[Claims] (1)金属基材上にホーロ層を形成し、さらにこのホー
ロ層の表面にガラスあるいはセラミックスから成る被覆
層を形成したことを特徴とするホーロ基板。
(1) A hollow substrate characterized in that a hollow layer is formed on a metal base material, and a coating layer made of glass or ceramics is further formed on the surface of this hollow layer.
(2)ガラスあるいはセラミックスから成る被覆層がゾ
ル−ゲル法を用いて形成されたものであることを特徴と
する請求項1記載のホーロ基板。
(2) The hollow substrate according to claim 1, wherein the coating layer made of glass or ceramics is formed using a sol-gel method.
(3)ガラスあるいはセラミックスから成る被覆層がS
iO_2、Al_2O_3、あるいはMgO−B_2O
_3−SiO_2からなるものであることを特徴とする
請求項1記載のホーロ基板。
(3) The coating layer made of glass or ceramics is S
iO_2, Al_2O_3, or MgO-B_2O
The hollow substrate according to claim 1, characterized in that it is made of _3-SiO_2.
(4)ホーロ層が結晶化ガラスから成ることを特徴とす
る請求項1記載のホーロ基板。
(4) The hollow substrate according to claim 1, wherein the hollow layer is made of crystallized glass.
(5)ホーロ層が電気泳動電着法を用いて形成されたも
のであることを特徴とする請求項1記載のホーロ基板。
(5) The hollow substrate according to claim 1, wherein the hollow layer is formed using an electrophoretic electrodeposition method.
JP8622989A 1989-04-05 1989-04-05 Enameled substrate Pending JPH02267286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8622989A JPH02267286A (en) 1989-04-05 1989-04-05 Enameled substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8622989A JPH02267286A (en) 1989-04-05 1989-04-05 Enameled substrate

Publications (1)

Publication Number Publication Date
JPH02267286A true JPH02267286A (en) 1990-11-01

Family

ID=13880963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8622989A Pending JPH02267286A (en) 1989-04-05 1989-04-05 Enameled substrate

Country Status (1)

Country Link
JP (1) JPH02267286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658706A (en) * 1992-08-13 1994-03-04 Matsushita Electric Ind Co Ltd Strain sensor
CN112877751A (en) * 2021-01-06 2021-06-01 中国石油天然气集团有限公司 Composite coating for inner surface of bent pipe for volume fracturing and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658706A (en) * 1992-08-13 1994-03-04 Matsushita Electric Ind Co Ltd Strain sensor
CN112877751A (en) * 2021-01-06 2021-06-01 中国石油天然气集团有限公司 Composite coating for inner surface of bent pipe for volume fracturing and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPS61121501A (en) Dielectric resonator and its production
JPH02267286A (en) Enameled substrate
JPH05331660A (en) Copper metallizing method
JPH0331485A (en) Enameled substrate and thermal head or circuit parts using the same
JPH0347977A (en) Production of circuit parts
JPH05151829A (en) Coating film member made of mineral material
JPS58118186A (en) Crystalline porcelain board
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
JPS6221732A (en) Enameled matter with heterogeneous structure
JPH01272783A (en) Enameled base plate and production thereof
JP2542640B2 (en) Method of manufacturing hollow substrate for forming thin film circuit
JPS5837988A (en) Electric insulating board
JP2734654B2 (en) Manufacturing method of hollow substrate and thermal head and motor bearing using the hollow substrate
JP2549135B2 (en) Thermal head
JPH0488694A (en) Enameled foil substrate, electronic component provided therewith, and manufacture thereof
JP2511236B2 (en) Sealing method for thermal spray coating and coating composite
JPS58181868A (en) Crystallized enamel base plate
JPS63206303A (en) Ozonizer
JPH0316746A (en) Substrate and thermal head having the same substrate
JPS60225770A (en) Thernal head
JPH02301574A (en) Heat accumulating enameled substrate and production thereof
JPS6149832B2 (en)
JPH0238964A (en) Production of thin film oxygen sensor
JPH0222148B2 (en)
JPH03112193A (en) Manufacture of printed-circuit board