JPH0316746A - Substrate and thermal head having the same substrate - Google Patents

Substrate and thermal head having the same substrate

Info

Publication number
JPH0316746A
JPH0316746A JP15178489A JP15178489A JPH0316746A JP H0316746 A JPH0316746 A JP H0316746A JP 15178489 A JP15178489 A JP 15178489A JP 15178489 A JP15178489 A JP 15178489A JP H0316746 A JPH0316746 A JP H0316746A
Authority
JP
Japan
Prior art keywords
substrate
glass
expansion coefficient
adhesive layer
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15178489A
Other languages
Japanese (ja)
Inventor
Ichiro Tanahashi
棚橋 一郎
Masahiro Hiraga
将浩 平賀
Masaki Ikeda
正樹 池田
Yasuo Mizuno
水野 康男
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15178489A priority Critical patent/JPH0316746A/en
Publication of JPH0316746A publication Critical patent/JPH0316746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a substrate having superior surface smoothness, physical and chemical stability, and easily controllable thermal conductivity by a method wherein, in a laminated material consisting of an adhesive layer on a metal substrate and a planar glass, the thermal expansion coefficients are made consistent with each other. CONSTITUTION:Lead glass powder (an expansion coefficient of 110X10<-7>) is printed on a stainless steel plate 1 (an expansion coefficient of 114X10<-7>) together with an organic binder and burned to form an adhesive layer 2. Furthermore, thereon a soda-lime glass 3 (an expansion coefficient of 110X10<-7>) superior surface smoothness (average roughness height in the center line, Ra of 0.006) is disposed, burned, and bonded. In a thermal head using a substrate produced in this manner, the patterning and etching of electrodes 4 and heating elements 5 is remarkably enhanced, thus resulting in an improved pattern accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はサーマルヘッド等に用いられる基板およびこの
基板を用いた物品に関すん 従来の技術 従来の基板として例えば特願昭61−252212号に
開示されているようなサーマルヘッド用の絶縁ホー口基
板を例に挙げ説明すも この基板は第2図に示すようにステンレス鋼板等の金属
基体1上にニッケルメッキ層7、ホーロガラス層8を被
覆した構成から戒も この基板の製造方法としてはまず
調整したガラスフリットをボールミルで粉砕して平均粒
径が2〜3μmの電気泳動電着(電着)用スラリーとし
 このスラリーにステンレス鋼板等の金属基体lを浸鷹
 対極と金属基体1との間に直流電圧を印加して帯電し
たガラスフリット粒子を金属基体l上に電著すもこのよ
うな方法で形威したサーマルヘッド用基板の表面粗皮(
友 中心線平均粗さRaで0.05〜0.08μmであ
り従来のホーロ基板(Ra; 0.15 〜0.3,u
m)に比べて極めて平滑性に優れていも 発明が解決しようとする課題 上記構戊の基板表面に圧膜印刷法あるいはスパッタリン
グ等の薄膜技術を用いて、第2図に示すような電極4、
発熱抵抗体5、オーバーコート層6をパターン形威しサ
ーマルヘッドの導電回路を形成する過程において、基板
の表面平滑性が充分でないたべ 精度の高いファインな
パターン形戊ができなL1 また電極4、抵抗体5、あるいはオーバコート層6など
の構戒材料とホーロ基板とが反応し 良好な特性のサー
マルヘッドができな鶏 さらに基板の熱伝導率の制御が極めて困難であるという
課題がありtも 課題を解決するための手段 上記課題を解決するために本発明は 金属基体上に接着
材層と板状のガラスとから戒る積層構戊を有しかつ積層
構戒物の熱膨張係数がそれぞれ整合している基板を構或
すも 作   用 本発明の基板は金属基体上に接着材層と板状のガラスと
から或る積層構或を有しかつ積層構成物の熱膨張係数が
それぞれ整合しているの玄 基板の表面平滑性に優れ 
物理化学的に安定かつ熱伝導率の制御容易な基板を得る
ことができも実施例 以下本発明の実施例について説明すも く第1実施例〉 第1図に示したように厚さ2mmのステンレス鋼板1 
(膨張係数114X 10−’)上にガラス転移点40
5t,軟化点520℃の粒径lOμm以下の鉛系ガラス
粉末(膨張係数110X 10−’)を5wt%の有機
バインダーと共に印刷L,. 800℃の温度で20分
間焼戒し 40μmの接着材層2を形威しt4さらにそ
の上に厚さ50μmの表面平滑に優れたく中心線平均粗
さRaが0. 006)ソーダ石灰ガラス(膨張係数1
10X 10−’)を設置L  800℃で10分間焼
或し ソーダ石灰ガラスから或る板状のガラス3を接着
しtら このようにして作威した基板上に第1図に示した構戊断
面を有するサーマルヘッドを試作し1,4は電徴 5は
発熱抵抗恢 6はオーバーコート層であも 電極4、発
熱抵抗体5のパターニング、エッチングも非常に良好で
あり従来の構或のも゛のに比べパターン精度が向上しt
も く第2実施例〉 第1実施例と同様に厚さ2mmのステンレス鋼板1 (
膨張係数114x 10−’)上にガラス転移点405
t,軟化点520℃の粒径lOμm以下の鉛系ガラス粉
末(膨張係数110x 10−▼)を5wt%の有機バ
インダー、ステンレス製微粉末(粒径10μm以下)1
0wt%と共に混合後印刷L  800℃の温度で20
分間焼或し40μmの接着材層2を形戊しtも  さら
にその上に厚さ50μmの表面平滑に優れた(中心線革
均粗さRaが0. 006)ソーダ石灰ガラス(膨張係
数110X to−’)を設置L,  800℃で10
分間焼戊し ソーダ石灰ガラスから戒る板状のガラス3
を接着し1,このようにして作威した基板上に第1図に
示した構戒断面を有するサーマルヘッドを試作しtラ電
極4、発熱抵抗体5のバターニング、エッチングも非常
に良好であり従来の構或のものに比べバターン精度が向
上し九 く第3実施例〉 第1実施例と同様に厚さ2mmのステンレス鋼板1 (
膨張係数114X10−▼〉上にガラス転移点390a
 軟化点450℃の粒径lOμm以下の鉛系ガラス粉末
(膨張係数118X 10−’)を、 5wt%の有機
バインダー、ステンレス製微粉末(粒径10μm以下)
10wt%.適当量の有機溶媒(プロパロール)と共に
混合眞 スプレイL 650℃の温度で20分間焼戒L
A 40μmの接着材層2を形戒し1,  さらにその
上に厚さ50μmの表面平滑に優れた(中心線平均粗さ
Raが0. 006)ソーダ石灰ガラス(膨張係数11
0XIO一▼)を設置IA 650℃で10分間焼威し
 ソーダ石灰ガラスから或る板状のガラス3を接着しt
ら このようにして作威した基板上に第1図に示した構戒断
面を有するサーマルヘッドを試作し1,電極4、発熱抵
抗体5のパターニング、エッチングも非常に良好であり
、従来の構或のものに比べパターン精度が向上した く第4実施例〉 第l実施例と同様に厚さ2mmのステンレス鋼板l (
膨張係数114X 10−’)上にガラス転移点390
′tl,,軟化点450℃の粒径lOμm以下の鉛系ガ
ラス粉末(膨張係数118X 10−’)を、 5wt
%の有機バインダー、ステンレス製繊維(直径10μ臥
長さ1mm以下)  1 0 wt!%.適当量の有機
溶媒(プロパロール)と共に混合後、スブレイL,65
0℃の温度で20分間焼或I− 40μmの接着材層2
を形成し丸 さらにその上に厚さ50μmの表面平滑に
優れた(中心線平均粗さRaが0. 006)ソーダ石
灰ガラス(膨張係数110x 10−’)を設置L−6
50℃でlO分間焼威し ソーダ石灰ガラスから戊る板
状のガラス3を接着しtも このようにして作或した基板上に第1図に示した構戒断
面を有するサーマルヘッドを試作した電極4、発熱抵抗
体5のバターニング、エッチングも非常に良好であり従
来の構或のものに比べパターン精度が向上しtら く第5実施例〉 第1実施例と同様に厚さ2mmのステンレス鋼板1 (
膨張係数114X 10−’)上にエボキシ樹脂とシリ
カ微粉末からなる(膨張係数115X 10−’)を塗
布L,,  30μmの接着材層2を形成L さらにそ
の上に厚さ50μmの表面平滑に優れたく中心線平均粗
さRaが0. 006)ソーダ石灰ガラス(膨張係数1
10×10−’)を設置L,,  250℃で10分間
焼或し ソーダ石灰ガラスから或る板状のガラス3を接
着したこのようにして作戊した基板上に第1図に示した
構戒断面を有するサーマルヘッドを試作した電極4、発
熱抵抗体5のパターニング、エッチングも非常に良好で
あり従来の構或のものに比べパターン精度が向上しt4 く第6実施例〉 第1実施例と同様な厚さ2mmのステンレス鋼板1 (
膨張係数114X 10−’)を説服 水洗 酸丸ニッ
ケルメッキ、水洗し前処理を行った抵 平均粒径が5μ
mのガラス転移点390a 軟化点450℃の鉛系ガラ
ス粉末(膨張係数118X 10”’)とプロパロール
溶液とからなるスラリー中に浸漬して、対極とステンレ
ス鋼板1に直流電圧を印加して鉛系ガラス粉末をステン
レス鋼板lに30μm電着し?=  これを室温で乾燥
後、650℃の温度で20分間焼戒し 26μmの接着
材層2を形威し丸 さらにその上に厚さ50μmの表面
平滑に優れた(中心線平均粗さRaが0. 006)ソ
ーダ石灰ガラス(膨張係数110X 10−’)を設置
し 650℃でlO分間焼戊し  ソーダ石灰ガラスか
ら或る板状のガラス3を接着した このようにして作威した基板上に第1図に示した構成断
面を有するサーマルヘッドを試作しtも電極4、発熱抵
抗体5のパターニング、エッチングも非常に良好であり
従来の構或のものに比べパターン精度が向上し氾 く比較例〉 厚さ2mmのステンレス鋼板l (膨張係数l14×1
0−’)を脱服 水九 酸丸 ニッケルメッキ、水洗し
前処理を行った徴 平均粒径が2.5μmのガラス粒子
からなるスラリー中に浸漬して、k転移点390’u 
 軟化点450℃の鉛系ガラス粉末(膨張係数118X
 10−’)とプロパロール溶液とからなるスラリー中
に浸漬して、対極とステンレス鋼板lに直流電圧を印加
して第1表に示す組戒の結晶性ガラス粒子をステンレス
鋼板1に150μm電着した これを室温で乾燥i  
900℃の温度で20分間焼戊して基板を形成した そ
の後第2図に示すようにこの基板上に電極4、発熱抵抗
体5、オーバーコート層6を形戊しサーマルヘッドを試
作しtら 第1表 第2表 第3表 以上の実施例1〜5と比較例について基板表面上の中心
線平均粗さR, サーマルヘッドの発熱抵抗体5の抵抗
値バラつき、サーマルヘッドの熱効率(OD濃度1.0
の時の1ドット当りの消費電力)を測定しtラ  この
結果を第2表 第3表に示す。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a substrate used in a thermal head, etc., and an article using this substrate. This will be explained by taking as an example an insulated hole-hole substrate for a thermal head, as shown in FIG. As for the manufacturing method of this substrate, first, the prepared glass frit is ground in a ball mill to form a slurry for electrophoretic electrodeposition (electrodeposition) with an average particle size of 2 to 3 μm. A direct current voltage is applied between the counter electrode and the metal substrate 1, and the charged glass frit particles are electrolyzed onto the metal substrate 1.
The center line average roughness Ra is 0.05 to 0.08 μm, and it is different from the conventional hollow substrate (Ra; 0.15 to 0.3, u
Problem to be Solved by the Invention Even though the surface of the substrate is extremely smooth compared to the electrode 4 shown in FIG.
In the process of patterning the heating resistor 5 and overcoat layer 6 to form the conductive circuit of the thermal head, the surface smoothness of the substrate is insufficient, making it impossible to form a fine pattern with high accuracy. There is also the problem that the thermal conductivity of the substrate is extremely difficult to control due to the reaction between the resistor 5 or overcoat layer 6 and other structural materials and the hollow substrate, making it impossible to form a thermal head with good characteristics. Means for Solving the Problems In order to solve the above problems, the present invention has a laminated structure consisting of an adhesive layer and a sheet of glass on a metal substrate, and the thermal expansion coefficients of the laminated structures are respectively The substrate of the present invention has a laminated structure consisting of an adhesive layer and a sheet of glass on a metal base, and the coefficients of thermal expansion of the laminated structures are matched, respectively. Excellent surface smoothness of the substrate
As shown in FIG. 1, a substrate with a thickness of 2 mm can be obtained. stainless steel plate 1
(Expansion coefficient 114X 10-') and glass transition point 40
Printing L,. After baking at a temperature of 800°C for 20 minutes, a 40 μm thick adhesive layer 2 is formed, and on top of that, a 50 μm thick adhesive layer 2 with an excellent surface smoothness and a center line average roughness Ra of 0. 006) Soda lime glass (expansion coefficient 1
10X 10-') was baked at 800°C for 10 minutes, and a plate-shaped glass 3 made of soda-lime glass was glued onto the substrate thus created to form the structure shown in Figure 1. A thermal head with a cross section was prototyped, and 1 and 4 were electrical symbols, 5 was a heating resistor, and 6 was an overcoat layer.The patterning and etching of the electrodes 4 and heating resistor 5 were also very good, compared to the conventional structure. The pattern accuracy is improved compared to ゛.
Second Example> As in the first example, a stainless steel plate 1 with a thickness of 2 mm (
Expansion coefficient 114 x 10-') and glass transition point 405
t, lead-based glass powder (expansion coefficient 110x 10-▼) with a softening point of 520°C and a particle size of 10 μm or less, an organic binder of 5 wt%, and stainless steel fine powder (particle size of 10 μm or less) 1
Printing after mixing with 0wt% L 20 at a temperature of 800℃
An adhesive layer 2 of 40 μm thickness was formed by baking for a minute, and on top of that was formed a soda lime glass (expansion coefficient 110X to -') installed L, 10 at 800℃
Minute baking Plate glass 3 different from soda lime glass
1. On the substrate thus prepared, a thermal head having the cross section shown in Fig. 1 was fabricated as a prototype, and the patterning and etching of the electrode 4 and heating resistor 5 were very good. 3rd Embodiment> Similar to the 1st embodiment, a stainless steel plate 1 with a thickness of 2 mm (
Glass transition point 390a on expansion coefficient 114X10-▼〉
Lead-based glass powder (expansion coefficient 118 x 10-') with a softening point of 450°C and a particle size of 10 μm or less, 5 wt% organic binder, and stainless steel fine powder (particle size of 10 μm or less)
10wt%. Mix with an appropriate amount of organic solvent (proparol), spray L, and burn for 20 minutes at a temperature of 650°C.
A 40 μm adhesive layer 2 is applied 1, and on top of that is a 50 μm thick soda lime glass with excellent surface smoothness (center line average roughness Ra of 0.006) (expansion coefficient 11).
0XIO1▼) was installed IA and burned at 650℃ for 10 minutes, and a certain plate-shaped glass 3 was glued from soda lime glass.
We fabricated a prototype thermal head with the structural cross section shown in Figure 1 on the substrate created in this way, and found that the patterning and etching of the electrodes 4 and heating resistor 5 were very good, compared to the conventional structure. Fourth Embodiment In order to improve the pattern accuracy compared to the previous example, a 2 mm thick stainless steel plate l (
Expansion coefficient 114X 10-') and glass transition point 390
'tl,, 5wt of lead-based glass powder (expansion coefficient 118X 10-') with a softening point of 450°C and a particle size of 10 μm or less
% organic binder, stainless steel fiber (diameter 10μ, length 1mm or less) 10 wt! %. After mixing with an appropriate amount of organic solvent (proparol), Soubrei L, 65
Baked for 20 minutes at a temperature of 0°C. Adhesive layer 2 of 40 μm.
Further, on top of that, soda lime glass (expansion coefficient 110 x 10-') with a thickness of 50 μm and excellent surface smoothness (center line average roughness Ra of 0.006) was installed L-6
After baking at 50°C for 10 minutes, a plate-shaped glass 3 made from soda-lime glass was adhered, and a thermal head having the cross-section shown in Figure 1 was fabricated on the thus prepared substrate. The patterning and etching of the electrode 4 and heating resistor 5 are also very good, and the pattern accuracy is improved compared to the conventional structure. Steel plate 1 (
Apply a layer of epoxy resin and fine silica powder (expansion coefficient: 115 x 10-') onto the surface (with an expansion coefficient of 114 x 10-'), form an adhesive layer 2 with a thickness of 30 μm, and then smooth the surface with a thickness of 50 μm on top. Excellent center line average roughness Ra of 0. 006) Soda lime glass (expansion coefficient 1
10 x 10-') was baked at 250°C for 10 minutes, and the structure shown in Figure 1 was placed on the substrate made in this way, on which a certain plate-shaped glass 3 was glued from soda-lime glass. The patterning and etching of the electrode 4 and the heating resistor 5 of which a prototype thermal head having a cross section was made was very good, and the pattern accuracy was improved compared to the conventional structure.6th Example〉 First Example Stainless steel plate 1 with a thickness of 2 mm similar to (
Expansion coefficient: 114 x 10-') Washed with water Acid round nickel plated, washed with water and pretreated, average particle size is 5μ
glass transition point 390a, softening point 450°C, lead-based glass powder (expansion coefficient 118 x 10''') and proparol solution. A 30 μm thick glass powder was electrodeposited on a stainless steel plate, dried at room temperature, and then burned at a temperature of 650°C for 20 minutes. Soda lime glass (expansion coefficient: 110 x 10-') with excellent surface smoothness (center line average roughness Ra: 0.006) was installed and annealed at 650°C for 10 minutes to produce a plate-shaped glass 3 from soda lime glass. A prototype thermal head having the cross section shown in Fig. 1 was fabricated on the thus-produced substrate bonded to the substrate. Comparative example with improved pattern accuracy compared to a certain one > 2 mm thick stainless steel plate l (expansion coefficient l14 x 1
0-') was taken off. Water Nine acid pills were nickel plated, washed with water, and pretreated. Immersed in a slurry consisting of glass particles with an average particle size of 2.5 μm, and the k transition point was 390'u.
Lead-based glass powder with a softening point of 450℃ (expansion coefficient 118X)
10-') and a proparol solution, and a DC voltage was applied to the counter electrode and the stainless steel plate 1 to electrodeposit crystalline glass particles having a thickness of 150 μm as shown in Table 1 on the stainless steel plate 1. Dry this at room temperature.
A substrate was formed by baking at a temperature of 900°C for 20 minutes. Then, as shown in Fig. 2, an electrode 4, a heating resistor 5, and an overcoat layer 6 were formed on this substrate, and a thermal head was prototyped. Table 1 Table 2 Table 3 Regarding the above Examples 1 to 5 and comparative examples, center line average roughness R on the substrate surface, resistance value variation of the heating resistor 5 of the thermal head, thermal efficiency of the thermal head (OD concentration 1.0
The results are shown in Tables 2 and 3.

発明の効果 以上説明したように本発明によれば 基板の表面平滑性
に優れ 物理化学的に安定かつ熱伝導率の制御容易な基
板を得ることができも またサーマルヘッドとしたとき、抵抗値バラッキの減少
と熱効率を向上させることができも
Effects of the Invention As explained above, according to the present invention, a substrate with excellent surface smoothness, physicochemical stability, and easy control of thermal conductivity can be obtained, and when used as a thermal head, there is no resistance value variation. It can also reduce and improve thermal efficiency

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における基板を使用したサー
マルヘッドの構戊断面は 第2図は従来の基板を使用し
たサーマルヘッドの構戒断面図であも 1・・・ステンレスR楓 2・・・接着材# 3・・・
板状のガラ入
Fig. 1 is a cross-sectional view of a thermal head using a substrate according to an embodiment of the present invention, and Fig. 2 is a cross-sectional view of a thermal head using a conventional substrate. ...Adhesive material #3...
Plate-shaped container

Claims (4)

【特許請求の範囲】[Claims] (1)金属基体上に接着材層と板状のガラスとから成る
積層構成を有しかつ積層構成物の熱膨張係数がそれぞれ
整合していることを特徴とする基板。
(1) A substrate characterized in that it has a laminated structure consisting of an adhesive layer and a plate-shaped glass on a metal substrate, and the thermal expansion coefficients of the laminated structures are matched.
(2)接着材層が、スプレィ法、印刷法、電気泳動電着
法のいずれかにより形成され、板状のガラスより低軟化
点を有する鉛系ガラス等のガラスあるいは樹脂であるこ
とを特徴とする請求項1記載の基板。
(2) The adhesive layer is formed by spraying, printing, or electrophoretic electrodeposition, and is made of glass such as lead-based glass or resin, which has a lower softening point than sheet glass. The substrate according to claim 1.
(3)接着材層に熱伝導性の良好な金属粉末あるいは金
属繊維を混合したことを特徴とする請求項2記載の基板
(3) The substrate according to claim 2, wherein the adhesive layer contains metal powder or metal fibers having good thermal conductivity.
(4)金属基体上に接着材層と板状のガラスとから成る
積層構成を有しかつ積層構成物の熱膨張係数がそれぞれ
整合している基板を用いたことを特徴とするサーマルヘ
ッド。
(4) A thermal head characterized by using a substrate having a laminated structure consisting of an adhesive layer and a plate-shaped glass on a metal base, and in which the coefficients of thermal expansion of the laminated structures are matched.
JP15178489A 1989-06-14 1989-06-14 Substrate and thermal head having the same substrate Pending JPH0316746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178489A JPH0316746A (en) 1989-06-14 1989-06-14 Substrate and thermal head having the same substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178489A JPH0316746A (en) 1989-06-14 1989-06-14 Substrate and thermal head having the same substrate

Publications (1)

Publication Number Publication Date
JPH0316746A true JPH0316746A (en) 1991-01-24

Family

ID=15526225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178489A Pending JPH0316746A (en) 1989-06-14 1989-06-14 Substrate and thermal head having the same substrate

Country Status (1)

Country Link
JP (1) JPH0316746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081167A (en) * 2012-07-12 2017-05-18 コーニング インコーポレイテッド Laminated structure and method of manufacturing laminated structure
JP2018197187A (en) * 2018-07-12 2018-12-13 日本電気硝子株式会社 Tablet shaped sealing material, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081167A (en) * 2012-07-12 2017-05-18 コーニング インコーポレイテッド Laminated structure and method of manufacturing laminated structure
US11225052B2 (en) 2012-07-12 2022-01-18 Corning Incorporated Laminated structures and methods of manufacturing laminated structures
JP2018197187A (en) * 2018-07-12 2018-12-13 日本電気硝子株式会社 Tablet shaped sealing material, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPS6236977B2 (en)
US3252831A (en) Electrical resistor and method of producing the same
US5484467A (en) Process for the production of decorative glass ceramic articles
JPH0316746A (en) Substrate and thermal head having the same substrate
JPH0449277B2 (en)
JPH0331485A (en) Enameled substrate and thermal head or circuit parts using the same
JPH0347977A (en) Production of circuit parts
JPH0316940A (en) Base plate, production thereof and thermal head using same base plate
JP2648341B2 (en) Manufacturing method of thin film oxygen sensor
JPH02267286A (en) Enameled substrate
JPH0316747A (en) Substrate and thermal head having the same substrate
JPS63271815A (en) Superconductive composite ceramic body and its manufacture
JPH0227832B2 (en) SERAMITSUKUSUKIBAN
JP3171407B2 (en) Thermal head substrate and method of manufacturing the same
CN1349371A (en) Electromolded electrothermal alloy element and its making process
JPS59113417A (en) Electrode spacer for display device
KR900006976B1 (en) Electrically condcutive circuit board and method of producing the same
JPS60220507A (en) Transparent conductive film and method of forming same
JPS58173882A (en) Substrate for circuit and printed circuit unit
JPH01272783A (en) Enameled base plate and production thereof
JPH0338093A (en) Manufacture of enamel substrate and circuit substrate and thermal head using same substrate
JPH0482294A (en) Manufacture of circuit board
JPH0416958B2 (en)
KR920005760B1 (en) Thermal head and production thereof
JPH02260606A (en) Manufacture of resistor