JPH07193348A - Ceramic circuit board - Google Patents

Ceramic circuit board

Info

Publication number
JPH07193348A
JPH07193348A JP32937393A JP32937393A JPH07193348A JP H07193348 A JPH07193348 A JP H07193348A JP 32937393 A JP32937393 A JP 32937393A JP 32937393 A JP32937393 A JP 32937393A JP H07193348 A JPH07193348 A JP H07193348A
Authority
JP
Japan
Prior art keywords
silicon nitride
film
nitride film
metal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32937393A
Other languages
Japanese (ja)
Inventor
Yuji Nagai
裕二 永井
Noboru Saeki
登 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP32937393A priority Critical patent/JPH07193348A/en
Publication of JPH07193348A publication Critical patent/JPH07193348A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly reliable ceramic circuit board for high-density mounting. CONSTITUTION:A ceramic circuit board comprises a silicon nitride film on a ceramic board. A film consisting of either of more than one kind of inorganic substances and more than one king of organic substances may be provided on the silicon nitride film and a film consisting of either of more than one kind of metallic substances and more than one kind of inorganic substances or more than one kind of organic substances may be provided between the ceramic board and the silicon nitride film. A metal film having one or more than two metal layers, which consist of at least one kind of a metallic substance, may be provided on the surface of the silicon nitride film or in the case where the film consisting of either of the inorganic substances and the organic substances is provided on the silicon nitride film, on the surface of the film. Accordingly, the formation of a wiring pattern, which has a wiring width of 10 to 30mum or thereabouts and consists of a metal conductor, is possible and the ceramic circuit board is high also in reliability and is suitable as a circuit board for high-density mounting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品の実装基板に
使用されるセラミック回路基板に関し、特に電子部品の
高密度実装に好適なセラミック回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic circuit board used as a mounting board for electronic parts, and more particularly to a ceramic circuit board suitable for high density mounting of electronic parts.

【0002】[0002]

【従来の技術】近年、種々の優れた特性により、電子部
品の高密度実装用の回路基板として注目されているセラ
ミック回路基板(本明細書では、セラミック回路基板と
は、電子部品のセラミック製実装基板のことを意味し、
単なるセラミック基板とは区別される。)は、アルミ
ナ、窒化アルミニウム、ムライト、ベリリアなどの焼結
体よりなるセラミック基板上に所望の配線パターンの金
属導体(配線)が被着されて形成されている。その金属
導体の形成方法として、一般に、銅箔を高温でセラミッ
ク基板に接着する方法(DBC)や、高融点金属或は金
属ペーストを印刷・焼成するメタライズ法(厚膜法)な
どが知られている。しかし、何れの方法によっても金属
導体の幅、即ち配線幅の最小値は数百μm程度であり、
数十μm以下の配線幅が要求される高密度実装には不適
である。
2. Description of the Related Art In recent years, due to various excellent characteristics, a ceramic circuit board which has attracted attention as a circuit board for high-density mounting of electronic components (in this specification, a ceramic circuit board is a ceramic mounting of electronic components). Means the board,
It is distinguished from a simple ceramic substrate. ) Is formed by depositing a metal conductor (wiring) having a desired wiring pattern on a ceramic substrate made of a sintered body such as alumina, aluminum nitride, mullite, beryllia. As a method of forming the metal conductor, a method of adhering a copper foil to a ceramic substrate at high temperature (DBC), a metallizing method (thick film method) of printing and firing a refractory metal or a metal paste, etc. are generally known. There is. However, the width of the metal conductor, that is, the minimum value of the wiring width is about several hundreds μm by any method,
This is unsuitable for high-density packaging that requires a wiring width of several tens of μm or less.

【0003】また、蒸着やスパッタ等の薄膜形成技術に
よりセラミック基板上に金属薄膜を形成し、フォトリソ
グラフィ技術及びエッチングによりその金属薄膜を所望
の配線パターンに成形する方法(薄膜法)も検討されて
いる。しかし、焼結したセラミック回路基板の表面には
大きさ数μmの凹凸が存在し、しかも各結晶粒界は極め
て鋭角的であるため、配線幅が狭いと断線する虞があ
る。特に、配線幅が数十μmの時にはその厚さは1μm
程度であるため、断線の危険性は極めて高い。そのた
め、この薄膜法によっても配線幅が100μm以下の金
属導体よりなる配線パターンを形成するのは困難であ
る。
Further, a method (thin film method) of forming a metal thin film on a ceramic substrate by a thin film forming technique such as vapor deposition or sputtering and forming the metal thin film into a desired wiring pattern by a photolithography technique and etching has been studied. There is. However, the surface of the sintered ceramic circuit board has irregularities with a size of several μm, and since each crystal grain boundary is extremely acute, there is a risk of disconnection if the wiring width is narrow. Especially when the wiring width is several tens of μm, the thickness is 1 μm.
The risk of wire breakage is extremely high because of the degree. Therefore, even with this thin film method, it is difficult to form a wiring pattern made of a metal conductor having a wiring width of 100 μm or less.

【0004】つまり、薄膜法において、配線幅が数十μ
m以下の金属導体を形成するには、蒸着等により金属薄
膜を形成する前にセラミック基板の表面を平坦化する必
要がある。その平坦化を行う有効な手段として、セラミ
ック基板の表面研磨法がある。
That is, in the thin film method, the wiring width is several tens μ
In order to form a metal conductor of m or less, it is necessary to flatten the surface of the ceramic substrate before forming the metal thin film by vapor deposition or the like. As an effective means for flattening the surface, there is a surface polishing method for a ceramic substrate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、セラミ
ック基板の表面を研磨すると、結晶粒界からの粒子の脱
落が起こり、2μm以上の大きさで1μm以上の深さの
穴(脱落痕跡)が生じてしまい、平滑な表面が得られな
い。それ故、脱落痕跡の生じた表面上に厚さ1μm程度
で配線幅が数十μmの金属導体を形成しても、断線する
危険性が極めて高くなってしまい、実際には配線幅が数
十μmで信頼性の高い高密度実装用のセラミック回路基
板が提供されるまでに至っていない。
However, when the surface of the ceramic substrate is polished, particles are dropped from the crystal grain boundaries, and holes (falling traces) having a size of 2 μm or more and a depth of 1 μm or more are generated. As a result, a smooth surface cannot be obtained. Therefore, even if a metal conductor having a thickness of about 1 μm and a wiring width of several tens of μm is formed on the surface where the drop trace is generated, the risk of disconnection becomes extremely high. It has not been possible to provide a ceramic circuit board for high-density mounting with high reliability of μm.

【0006】上述した研磨時における粒子の脱落は、熱
伝導性に優れ、半導体材料のシリコンに近い熱膨張係数
を有し(即ち、実装基板上へのシリコン半導体チップの
直接実装が可能となる。)、且つ無毒であるなどの特性
を有する窒化アルミニウムにおいては本質的な問題であ
り、避けることはできない。そのような問題点を内包す
るが故に、窒化アルミニウム基板上に微細な配線パター
ンを形成して高密度実装用の回路基板を得るのは極めて
困難である。
The dropout of particles during polishing as described above is excellent in thermal conductivity and has a thermal expansion coefficient close to that of silicon which is a semiconductor material (that is, a silicon semiconductor chip can be directly mounted on a mounting substrate. ) And non-toxic properties such as aluminum nitride are essential problems and cannot be avoided. Since such a problem is included, it is extremely difficult to form a fine wiring pattern on an aluminum nitride substrate to obtain a circuit board for high-density mounting.

【0007】また、窒化アルミニウムは、金属導体とし
て使用される金や銅やチタン等の金属との濡れ性が悪
く、それらとの密着力が低いという問題点があった。さ
らに、窒化アルミニウムは、大気中の水分と反応して加
水分解を起こし、アンモニアを発生させる。そして、そ
のアンモニアによって、金属導体が腐食してしまうとい
う問題点もあった。加えて、加水分解によって窒化アル
ミニウム基板の表面部分の電気抵抗が低下して絶縁性が
劣化してしまうという問題点もあった。
Further, aluminum nitride has a problem in that it has poor wettability with metals such as gold, copper and titanium used as metal conductors, and has low adhesion with them. Further, aluminum nitride reacts with water in the atmosphere to cause hydrolysis and generate ammonia. There is also a problem that the ammonia corrodes the metal conductor. In addition, there is a problem that the electrical resistance of the surface portion of the aluminum nitride substrate is lowered by the hydrolysis, and the insulating property is deteriorated.

【0008】一方、アルミナなどの酸化物系セラミック
においては、一般に、その熱膨張係数が上述した金属導
体として使用される金属の熱膨張係数と大きく異なるた
め、使用環境の温度変化が激しい場合や温度サイクルテ
スト(例えば、−40℃〜150℃)などにおいて、金
属導体がセラミック基板から剥離したり、断線したり、
或は熱応力によってセラミック基板にクラックが発生し
たりするなどの問題点があった。
On the other hand, in oxide-based ceramics such as alumina, the coefficient of thermal expansion generally differs greatly from the coefficient of thermal expansion of the metal used as the metal conductor described above. In a cycle test (for example, −40 ° C. to 150 ° C.), the metal conductor peels off from the ceramic substrate, is disconnected,
Alternatively, there is a problem that cracks are generated in the ceramic substrate due to thermal stress.

【0009】本発明は、上記問題点を解決するためにな
されたもので、その目的とするところは、焼結体よりな
るセラミック基板の平坦化された表面に金属導体よりな
る微細な配線パターンが形成された信頼性の高い高密度
実装用のセラミック回路基板を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a fine wiring pattern made of a metal conductor on a flattened surface of a ceramic substrate made of a sintered body. It is to provide a formed ceramic circuit board for high-density packaging with high reliability.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、従来の研磨法に代わって、金属導体を
形成する前のセラミック基板の表面を平坦化する方法を
開発すべく鋭意研究を重ねた結果、セラミック基板の表
面上に窒化珪素膜を形成することによって平坦な表面が
得られることを見い出した。
In order to achieve the above object, the present inventor should develop a method for flattening the surface of a ceramic substrate before forming a metal conductor, instead of the conventional polishing method. As a result of intensive studies, it was found that a flat surface can be obtained by forming a silicon nitride film on the surface of a ceramic substrate.

【0011】加えて、窒化珪素膜の熱膨張係数は、セラ
ミック基板の熱膨張係数に近いだけでなくシリコン(半
導体材料)の熱膨張係数にも近い。さらに、窒化珪素膜
は、水分と結合することがないために耐水性に優れるだ
けでなく、セラミック基板との密着性、及び本発明にお
いて窒化珪素膜と接することとなる金属物質や無機物質
や有機物質との密着性に優れるという特性を有してい
る。それ故、セラミック基板上に窒化珪素膜を形成する
ことは、高密度実装用のセラミック回路基板を提供する
上で極めて有効であることがわかり、本発明の完成に至
った。
In addition, the coefficient of thermal expansion of the silicon nitride film is not only close to the coefficient of thermal expansion of the ceramic substrate, but also close to that of silicon (semiconductor material). Further, the silicon nitride film is not only excellent in water resistance because it does not combine with water, but also has good adhesiveness to a ceramic substrate, and a metal substance, an inorganic substance or an organic substance which comes into contact with the silicon nitride film in the present invention. It has the property of excellent adhesion to substances. Therefore, it was found that forming a silicon nitride film on a ceramic substrate is extremely effective in providing a ceramic circuit substrate for high-density mounting, and completed the present invention.

【0012】即ち、本発明に係るセラミック回路基板
は、窒化珪素膜、例えば化学式SiNで表される化合
物、又は化学式SiNHで表される化合物などの窒化珪
素膜をセラミック基板上に備えていることを特徴とす
る。
That is, the ceramic circuit board according to the present invention comprises a silicon nitride film, for example, a silicon nitride film such as a compound represented by the chemical formula SiN or a compound represented by the chemical formula SiNH, on the ceramic substrate. Characterize.

【0013】また、前記窒化珪素膜上に、1種類以上の
無機物質又は1種類以上の有機物質の何れかよりなる膜
を備えていてもよいし、前記セラミック基板と前記窒化
珪素膜との間に、1種類以上の金属物質、1種類以上の
無機物質又は1種類以上の有機物質の何れかよりなる膜
を備えていてもよい。そして、前記窒化珪素膜の表面
上、或はその上に無機物質又は有機物質の何れかよりな
る前記膜が設けられている場合にはその膜の表面上に、
少なくとも1種類の金属物質よりなる1又は2以上の金
属層を有する金属膜を備えていてもよい。
A film made of one or more kinds of inorganic substances or one or more kinds of organic substances may be provided on the silicon nitride film, and between the ceramic substrate and the silicon nitride film. In addition, a film made of any one or more kinds of metal substances, one or more kinds of inorganic substances, or one or more kinds of organic substances may be provided. Then, on the surface of the silicon nitride film, or on the surface of the film made of an inorganic material or an organic material when the film is provided thereon,
A metal film having one or more metal layers made of at least one kind of metal substance may be provided.

【0014】[0014]

【作用】上記セラミック回路基板によれば、セラミック
基板上に窒化珪素膜、例えばSiN又はSiNHで表さ
れる化合物などの窒化珪素膜が形成されているため、一
般に入手可能なセラミック基板(焼結終了時点のまま
で、研磨等のされていない基板)の表面に存在する凹凸
は窒化珪素膜により被覆されて平坦な表面が得られ、配
線幅が30μmで厚さが0.3μm〜5μmの金属導体
よりなる配線パターンの形成が可能である。その際、窒
化珪素膜の厚さは、一般に入手可能なセラミック基板の
平均粗度Raが0.4μmで、最大粗度Rmaxが4μ
mであることから、4μm以上の厚さであれば十分であ
る。
According to the above-mentioned ceramic circuit board, since a silicon nitride film, for example, a silicon nitride film such as a compound represented by SiN or SiNH, is formed on the ceramic substrate, a generally available ceramic substrate (sinter finished As it is, unevenness existing on the surface of the substrate (not polished) is covered with a silicon nitride film to obtain a flat surface, and the metal conductor has a wiring width of 30 μm and a thickness of 0.3 μm to 5 μm. It is possible to form a wiring pattern made of At that time, as for the thickness of the silicon nitride film, the average roughness Ra of a generally available ceramic substrate is 0.4 μm, and the maximum roughness Rmax is 4 μm.
Since it is m, a thickness of 4 μm or more is sufficient.

【0015】また、予め基板表面を研磨して平坦化した
セラミック基板を用いた場合には、研磨により基板表面
に生じる粒子の脱落痕跡が窒化珪素膜により埋められる
ので、配線幅が10μmで厚さが0.3μm〜5μmの
金属導体よりなる配線パターンの形成が可能である。こ
の場合、セラミック基板上に窒化珪素膜等を形成する段
階で、既に基板表面が平坦になっているため、形成する
窒化珪素膜等の厚さを薄くすることができ、セラミック
基板の特性を有効に利用することができる。
In the case of using a ceramic substrate whose substrate surface has been polished and flattened in advance, the traces of particle dropouts produced on the substrate surface by polishing are filled with the silicon nitride film, so that the wiring width is 10 μm. It is possible to form a wiring pattern made of a metal conductor having a thickness of 0.3 μm to 5 μm. In this case, since the surface of the substrate is already flat when the silicon nitride film or the like is formed on the ceramic substrate, the thickness of the silicon nitride film or the like to be formed can be reduced, and the characteristics of the ceramic substrate can be effectively used. Can be used for.

【0016】また、前記窒化珪素膜上に、無機物質又は
有機物質の膜が設けられていれば、セラミック回路基板
の表面は、その無機物質又は有機物質の膜により平滑化
されるので、配線幅が10μmで厚さが0.3μm〜5
μmの金属導体よりなる配線パターンの形成が可能であ
る。
If a film of an inorganic material or an organic material is provided on the silicon nitride film, the surface of the ceramic circuit board is smoothed by the film of the inorganic material or the organic material, so that the wiring width is reduced. Is 10 μm and the thickness is 0.3 μm to 5
It is possible to form a wiring pattern made of a metal conductor of μm.

【0017】或は、前記セラミック基板と前記窒化珪素
膜との間に、金属物質、無機物質又は有機物質よりなる
膜が設けられていれば、その金属物質、無機物質又は有
機物質よりなる膜をセラミック基板上に形成した際に、
基板表面が平坦且つ平滑化される。それ故、さらにその
上に窒化珪素膜を形成することにより、配線幅が10μ
mで厚さが0.3μm〜5μmの金属導体よりなる配線
パターンの形成が可能である。
Alternatively, if a film made of a metal substance, an inorganic substance or an organic substance is provided between the ceramic substrate and the silicon nitride film, the film made of the metal substance, the inorganic substance or an organic substance is formed. When formed on a ceramic substrate,
The substrate surface is flat and smooth. Therefore, by further forming a silicon nitride film on it, the wiring width becomes 10 μm.
It is possible to form a wiring pattern made of a metal conductor having a thickness of m and a thickness of 0.3 μm to 5 μm.

【0018】加えて、上記金属物質等よりなる膜を介し
て設けられた窒化珪素膜上に直接金属導体よりなる配線
パターンを形成する場合には、シリコンの熱膨張係数と
の略一致、耐水性(非透水性)、アルカリ金属による汚
染防止、良好な金属導体との密着性、などの窒化珪素膜
の優れた特性を有効に利用することができるだけでな
く、金属物質等よりなる膜の材料を、熱膨張係数が適当
になるように選択することにより、セラミック基板と窒
化珪素膜の熱膨張係数の違いにより窒化珪素膜に生じ得
る熱応力が緩和されるという効果も期待される。
In addition, when a wiring pattern made of a metal conductor is directly formed on a silicon nitride film provided through a film made of the above-mentioned metal substance, the coefficient of thermal expansion of silicon is substantially the same and the water resistance is high. In addition to being able to effectively utilize the excellent properties of the silicon nitride film such as (non-water permeability), prevention of alkali metal contamination, and good adhesion to a metal conductor, the film material made of a metal substance or the like can be used. By selecting such that the coefficient of thermal expansion is appropriate, it is expected that the thermal stress that can occur in the silicon nitride film due to the difference in coefficient of thermal expansion between the ceramic substrate and the silicon nitride film is relaxed.

【0019】[0019]

【実施例】以下に、実施例1〜3及び従来例を挙げて本
発明の特徴とするところを明らかとする。
EXAMPLES The features of the present invention will be clarified below with reference to Examples 1 to 3 and conventional examples.

【0020】各実施例及び比較例においては、夫々、セ
ラミック基板として、市販のアルミナ基板(アルミナ純
度:95%)、窒化アルミニウム基板、ムライト基板を
用いた。各基板は、2インチ角の大きさで、厚さ0.6
35mmであった。また、それら各基板の表面を研磨した
ものと、研磨しないものとの2種類ずつ用意した。
In each of the examples and comparative examples, a commercially available alumina substrate (alumina purity: 95%), an aluminum nitride substrate, and a mullite substrate were used as the ceramic substrate. Each board has a size of 2 inches square and a thickness of 0.6.
It was 35 mm. In addition, two types were prepared, one for polishing the surface of each substrate and one for not polishing.

【0021】(実施例1)上記アルミナ基板上に、化学
式SiNHで表される化合物よりなる厚さ5μmの窒化
珪素膜を、レーザーを利用したCVD法(化学気相成長
法)により形成した。その際、原料ガスにはモノシラン
(SiH4)ガス及びアンモニアガスを用い、基板保持
温度を300℃とした。続いて、その窒化珪素膜付基板
上に、アルミニウム(Al)よりなる厚さ5μmの金属
層をスパッタリング法により蒸着した。その金属層上に
レジストを塗布し、フォトリソグラフィ技術及びウェッ
トエッチング法(ドライエッチング法でもよい。)によ
りその金属層の不要部分を除去して、長さ150mmで、
配線幅200μm、150μm、100μm、50μ
m、30μm、10μmの各金属導体を10個ずつ櫛形
状に形成した。同様にして、アルミニウム金属導体と同
じ形状及び寸法のクロム(Cr)、チタン(Ti)及び
銅(Cu)の各金属よりなる金属導体も形成した。
Example 1 A 5 μm thick silicon nitride film made of a compound represented by the chemical formula SiNH was formed on the alumina substrate by a CVD method (chemical vapor deposition method) using a laser. At that time, monosilane (SiH 4 ) gas and ammonia gas were used as source gases, and the substrate holding temperature was 300 ° C. Then, a metal layer of aluminum (Al) having a thickness of 5 μm was vapor-deposited on the substrate with the silicon nitride film by a sputtering method. A resist is applied on the metal layer, and unnecessary portions of the metal layer are removed by a photolithography technique and a wet etching method (a dry etching method may be used).
Wiring width 200μm, 150μm, 100μm, 50μ
m, 30 μm, and 10 μm each of the metal conductors were formed in a comb shape. Similarly, a metal conductor made of chromium (Cr), titanium (Ti), and copper (Cu) having the same shape and size as the aluminum metal conductor was also formed.

【0022】以上のようにして得られたアルミナ・セラ
ミック回路基板における各金属導体の電気抵抗を測定し
て断線の有無を調べた。そして、各金属種よりなる各配
線幅の金属導体群(各群のサンプル数は10個であ
る。)において、10個の導体サンプル全てに断線が生
じなかった群の配線幅のうち最小の幅を、本発明に係る
セラミック回路基板において形成可能な最小配線幅とし
た。また、この最小配線幅の金属導体群について、温度
サイクル試験(温度範囲:−40℃〜150℃、サイク
ル数:50)を行った後に、再び電気抵抗を測定して断
線の有無を調べた。最小配線幅の値と温度サイクル試験
で断線の生じなかった良品数を表1に示す。
The electrical resistance of each metal conductor in the alumina-ceramic circuit board obtained as described above was measured to check for the presence or absence of disconnection. Then, in the metal conductor group of each wiring width of each metal type (the number of samples of each group is 10), the minimum width of the wiring widths of the group in which no disconnection occurred in all 10 conductor samples. Is the minimum wiring width that can be formed in the ceramic circuit board according to the present invention. In addition, after performing a temperature cycle test (temperature range: −40 ° C. to 150 ° C., the number of cycles: 50) on the metal conductor group having the minimum wiring width, the electrical resistance was measured again and the presence or absence of disconnection was examined. Table 1 shows the value of the minimum wiring width and the number of non-defective products in which no disconnection occurred in the temperature cycle test.

【表1】 [Table 1]

【0023】窒化アルミニウム基板及びムライト基板に
ついても、上記アルミナ基板と同様に、各基板上に各金
属種よりなる各配線幅の金属導体群を形成し、各金属導
体の断線の有無を調べ、最小配線幅を求めるとともに、
その最小配線幅の金属導体群の温度サイクル試験後にお
ける良品数を求めた。その結果を表1に併せて示す。
As for the aluminum nitride substrate and the mullite substrate, similarly to the above-mentioned alumina substrate, a metal conductor group of each wiring width made of each metal type is formed on each substrate, and the presence or absence of disconnection of each metal conductor is checked to determine the minimum. While obtaining the wiring width,
The number of non-defective products after the temperature cycle test of the metal conductor group having the minimum wiring width was obtained. The results are also shown in Table 1.

【0024】(実施例2)上記アルミナ基板、上記窒化
アルミニウム基板、上記ムライト基板上に、夫々、厚さ
3μmの鉛の金属膜を形成し、さらにその上に化学式S
iNで表される化合物よりなる厚さ2μmの窒化珪素膜
を、夫々高周波スパッタ法により形成した。鉛の金属膜
の形成にあたっては、基板保持温度50℃及び電力30
0Wに設定し、窒化珪素膜の形成にあたっては、基板保
持温度50℃及び電力を500Wに設定した。
Example 2 A lead metal film having a thickness of 3 μm was formed on each of the alumina substrate, the aluminum nitride substrate, and the mullite substrate, and the chemical formula S was formed on the lead metal film.
A 2 μm thick silicon nitride film made of a compound represented by iN was formed by a high frequency sputtering method. When forming the lead metal film, the substrate holding temperature is 50 ° C. and the power is 30.
The temperature was set to 0 W, and when forming the silicon nitride film, the substrate holding temperature was set to 50 ° C. and the power was set to 500 W.

【0025】そして、上記実施例1と同じ手順で、上記
窒化珪素膜上に、アルミニウム、クロム、チタン及び銅
の各金属よりなる各配線幅の金属導体群を形成し、温度
サイクル試験の前後で断線の有無を調べて最小配線幅、
及びその最小配線幅の金属導体群の温度サイクル試験後
における良品数を求めた。その結果を表2に示す。但
し、本例においては、各金属導体の厚さを1μmとし
た。その他、各金属導体の形状、長さ及び配線幅等は上
記実施例1と同じとした。
Then, in the same procedure as in Example 1, a metal conductor group of each wiring width made of each metal of aluminum, chromium, titanium, and copper was formed on the silicon nitride film, and before and after the temperature cycle test. Check the presence of disconnection and check the minimum wiring width,
And the number of non-defective products of the metal conductor group having the minimum wiring width after the temperature cycle test. The results are shown in Table 2. However, in this example, the thickness of each metal conductor was 1 μm. In addition, the shape, length, wiring width, and the like of each metal conductor were the same as in Example 1 above.

【表2】 [Table 2]

【0026】(実施例3)上記アルミナ基板、上記窒化
アルミニウム基板、上記ムライト基板上に、夫々、化学
式SiNで表される化合物よりなる厚さ2μmの窒化珪
素膜を高周波スパッタ法により形成した。その際、基板
保持温度を200℃、電力を500Wとした。さらに、
その窒化珪素膜上に、シラノール(一般に、化学式Hn
Si(OH)4-n(nは0、1、2、3)で表され
る。)をエチルセルソルブに溶解した溶液をスピンコー
ト法により塗布し、乾燥、加熱処理を行って厚さ1μm
のシリコン酸化膜を形成した。一方、シリコン酸化膜に
代えて、窒化珪素膜上に、イミド樹脂を溶剤に溶かした
市販の溶液(日立化成製)をスピンコート法により塗布
し、乾燥、加熱処理を行って厚さ2μmのイミド樹脂膜
を形成した基板も用意した。
Example 3 A 2 μm thick silicon nitride film made of a compound represented by the chemical formula SiN was formed on each of the alumina substrate, the aluminum nitride substrate and the mullite substrate by a high frequency sputtering method. At that time, the substrate holding temperature was 200 ° C. and the power was 500 W. further,
On the silicon nitride film, silanol (generally the chemical formula H n
It is represented by Si (OH) 4-n (n is 0, 1, 2, 3). ) Was dissolved in ethyl cellosolve by a spin coating method, dried and heated to a thickness of 1 μm.
A silicon oxide film was formed. On the other hand, instead of the silicon oxide film, a commercially available solution (made by Hitachi Chemical Co., Ltd.) in which an imide resin is dissolved in a solvent is applied on the silicon nitride film by a spin coating method, dried and heat-treated to form an imide having a thickness of 2 μm. A substrate on which a resin film was formed was also prepared.

【0027】そして、上記上記実施例1と同じ手順で、
上記シリコン酸化膜或は上記イミド樹脂膜上に、アルミ
ニウム、クロム、チタン及び銅の各金属よりなる各配線
幅の金属導体群を形成し、温度サイクル試験の前後で断
線の有無を調べて最小配線幅、及びその最小配線幅の金
属導体群の温度サイクル試験後における良品数を求め
た。その結果を表3に示す。但し、本例においては、各
金属導体の厚さを1μmとした。その他、各金属導体の
形状、長さ及び配線幅等は上記実施例1と同じであっ
た。
Then, in the same procedure as in the above-mentioned first embodiment,
On the silicon oxide film or the imide resin film, a metal conductor group made of aluminum, chromium, titanium, and copper with each wiring width is formed, and the presence or absence of disconnection is checked before and after the temperature cycle test to determine the minimum wiring. The width and the number of non-defective products after the temperature cycle test of the metal conductor group having the minimum wiring width were obtained. The results are shown in Table 3. However, in this example, the thickness of each metal conductor was 1 μm. In addition, the shape, length, wiring width, and the like of each metal conductor were the same as in Example 1 above.

【表3】 [Table 3]

【0028】(従来例)比較として、上記アルミナ基
板、上記窒化アルミニウム基板、上記ムライト基板上
に、上記実施例1と同様に、アルミニウム、クロム、チ
タン及び銅の各金属よりなる各配線幅の金属導体群を形
成し、形成可能な最小配線幅、及びその最小配線幅の金
属導体群の温度サイクル試験後における良品数を求め
た。その結果を表4に示す。
(Prior art example) For comparison, on the alumina substrate, the aluminum nitride substrate, and the mullite substrate, as in the case of the first embodiment, a metal of each wiring width made of aluminum, chromium, titanium, and copper is used. After forming a conductor group, the minimum wiring width that can be formed and the number of non-defective products after the temperature cycle test of the metal conductor group having the minimum wiring width were obtained. The results are shown in Table 4.

【表4】 [Table 4]

【0029】上記実施例1〜3では、何れも、形成可能
な最小配線幅は10μm又は30μmであり高密度実装
用回路基板として好適であり、しかも温度サイクル試験
後においても全く断線が見られず、信頼性の高いことが
わかる。一方、従来例では、最小配線幅は、基板表面の
研磨を行っていないものでは100μmを超え、また研
磨したものでも50μmであり、しかも温度サイクル試
験後には断線も発生しているので、高密度実装用回路基
板として不適である。
In each of Examples 1 to 3, the minimum wiring width that can be formed is 10 μm or 30 μm, which is suitable as a circuit board for high-density mounting, and no disconnection is observed even after the temperature cycle test. , Found to be reliable. On the other hand, in the conventional example, the minimum wiring width exceeds 100 μm in the case where the substrate surface is not polished, and is 50 μm even in the case where the substrate surface is polished. Moreover, disconnection occurs after the temperature cycle test. Not suitable as a mounting circuit board.

【0030】なお、本発明は、上記各実施例により何等
制限されるものではない。例えば、何れの実施例におい
ても、窒化珪素膜は化学式SiNで表される化合物でも
化学式SiNHで表される化合物でもよいし、その他の
化学式で表される窒化珪素膜であってもよい。その際、
珪素と窒素の組成比、或は珪素と窒素とその他の元素の
組成比は特に問わない。
The present invention is not limited to the above embodiments. For example, in any of the embodiments, the silicon nitride film may be a compound represented by the chemical formula SiN, a compound represented by the chemical formula SiNH, or a silicon nitride film represented by any other chemical formula. that time,
The composition ratio of silicon and nitrogen or the composition ratio of silicon, nitrogen and other elements is not particularly limited.

【0031】また、窒化珪素膜の厚さは、CVD法やス
パッタリング法やその他の薄膜形成方法における形成条
件を種々選択することにより、セラミック基板の表面粗
度等に応じて任意に変えられる。
Further, the thickness of the silicon nitride film can be arbitrarily changed according to the surface roughness of the ceramic substrate by selecting various forming conditions in the CVD method, the sputtering method and other thin film forming methods.

【0032】さらに、実施例2では、セラミック基板と
金属導体との間に鉛の金属膜を介装させているが、鉛に
限らず、その他の金属物質や無機物質や有機物質でもよ
く、その膜の厚さも限定されない。そして、それら金属
物質や無機物質や有機物質は、2種類以上であってもよ
い。
Further, in the second embodiment, the lead metal film is interposed between the ceramic substrate and the metal conductor, but not limited to lead, other metal substances, inorganic substances or organic substances may be used. The thickness of the film is also not limited. And, the metal substance, the inorganic substance, and the organic substance may be two or more kinds.

【0033】さらにまた、実施例3では窒化珪素膜上に
シリコン酸化膜又はイミド樹脂膜を形成したが、酸化シ
リコンやイミド樹脂以外の種々の無機物質や有機物質よ
りなる膜を形成してもよく、その膜の厚さも限定されな
い。そして、それら無機物質や有機物質は、2種類以上
であってもよい。
Further, although the silicon oxide film or the imide resin film is formed on the silicon nitride film in the third embodiment, a film made of various inorganic or organic substances other than silicon oxide or imide resin may be formed. The thickness of the film is not limited either. And, these inorganic substances and organic substances may be two or more kinds.

【0034】また、セラミック基板と窒化珪素膜との間
に金属物質、無機物質又は有機物質の膜が設けられ、且
つ、窒化珪素膜上に無機物質又は有機物質の膜が設けら
れていても、上記各実施例における効果が得られるのは
いうまでもない。
Further, even if a film of a metal substance, an inorganic substance or an organic substance is provided between the ceramic substrate and the silicon nitride film, and an inorganic substance or an organic substance film is provided on the silicon nitride film, It goes without saying that the effects of the above-described embodiments can be obtained.

【0035】さらに、金属導体の金属種は、アルミニウ
ム、クロム、チタン、銅以外にも、金や銀やパラジウム
等の他の金属でもよいし、それら複数の金属層を積層し
て金属導体としてもよい。セラミック基板もアルミナ、
窒化アルミニウム、ムライトに限らない。
Further, the metal species of the metal conductor may be other metals such as gold, silver and palladium, in addition to aluminum, chromium, titanium and copper, or may be a metal conductor formed by laminating a plurality of these metal layers. Good. The ceramic substrate is also alumina,
Not limited to aluminum nitride and mullite.

【0036】[0036]

【発明の効果】本発明に係るセラミック回路基板によれ
ば、セラミック基板上に窒化珪素膜、例えばSiN又は
SiNHで表される化合物などの窒化珪素膜が形成さ
れ、その窒化珪素膜により表面が平坦になっているた
め、10μm〜30μm程度の配線幅の金属導体よりな
る配線パターンの形成が可能である。加えて、クラック
の発生や金属導体の剥離などによる金属導体の断線の危
険性もなく、高密度実装用の回路基板として好適であ
る。
According to the ceramic circuit board of the present invention, a silicon nitride film, for example, a silicon nitride film of a compound represented by SiN or SiNH is formed on the ceramic substrate, and the surface is flattened by the silicon nitride film. Therefore, it is possible to form a wiring pattern made of a metal conductor having a wiring width of about 10 μm to 30 μm. In addition, there is no risk of breaking of the metal conductor due to cracks or peeling of the metal conductor, which is suitable as a circuit board for high-density mounting.

【0037】また、セラミック基板の表面を研磨して、
窒化珪素膜等の厚さを薄くすることにより、セラミック
基板の特性を有効に利用することができる。さらに、シ
リコン半導体チップをセラミック回路基板上に直接実装
することができる。さらにまた、基板自体を湿気から保
護することができる。また、窒化珪素膜とシリコン酸化
膜との組合せによっては、セラミック基板の誘電率低下
という効果も期待される。さらには、セラミック基板か
らα線が発生される場合には、そのα線は窒化珪素膜に
より遮蔽されることとなるので、セラミック基板の材料
は特に規定されず、材料の選択にあたって制約を受けず
に済む。
Further, by polishing the surface of the ceramic substrate,
By reducing the thickness of the silicon nitride film or the like, the characteristics of the ceramic substrate can be effectively utilized. Further, the silicon semiconductor chip can be directly mounted on the ceramic circuit board. Furthermore, the substrate itself can be protected from moisture. Further, depending on the combination of the silicon nitride film and the silicon oxide film, the effect of lowering the dielectric constant of the ceramic substrate can be expected. Furthermore, when α-rays are generated from the ceramic substrate, the α-rays are shielded by the silicon nitride film, so the material of the ceramic substrate is not specified in particular, and there is no restriction when selecting the material. Complete.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素膜をセラミック基板上に備えて
いることを特徴とするセラミック回路基板。
1. A ceramic circuit substrate comprising a silicon nitride film on a ceramic substrate.
【請求項2】 前記窒化珪素膜上に、1種類以上の無機
物質又は1種類以上の有機物質の何れかよりなる膜を備
えていることを特徴とする請求項1記載のセラミック回
路基板。
2. The ceramic circuit board according to claim 1, further comprising a film made of one or more kinds of inorganic substances or one or more kinds of organic substances on the silicon nitride film.
【請求項3】 前記セラミック基板と前記窒化珪素膜と
の間に、1種類以上の金属物質、1種類以上の無機物質
又は1種類以上の有機物質の何れかよりなる膜を備えて
いることを特徴とする請求項1又は2記載のセラミック
回路基板。
3. A film made of any one or more kinds of metal substances, one or more kinds of inorganic substances, or one or more kinds of organic substances is provided between the ceramic substrate and the silicon nitride film. The ceramic circuit board according to claim 1 or 2, which is characterized in that.
【請求項4】 上面に、少なくとも1種類の金属物質よ
りなる1又は2以上の金属層を有する金属膜を備えてい
ることを特徴とする請求項1、2又は3記載のセラミッ
ク回路基板。
4. The ceramic circuit board according to claim 1, wherein the upper surface is provided with a metal film having one or more metal layers made of at least one kind of metal substance.
JP32937393A 1993-12-27 1993-12-27 Ceramic circuit board Pending JPH07193348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32937393A JPH07193348A (en) 1993-12-27 1993-12-27 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32937393A JPH07193348A (en) 1993-12-27 1993-12-27 Ceramic circuit board

Publications (1)

Publication Number Publication Date
JPH07193348A true JPH07193348A (en) 1995-07-28

Family

ID=18220727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32937393A Pending JPH07193348A (en) 1993-12-27 1993-12-27 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JPH07193348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101217A (en) * 2001-09-26 2003-04-04 Kyocera Corp Circuit substrate and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101217A (en) * 2001-09-26 2003-04-04 Kyocera Corp Circuit substrate and its manufacturing method
JP4688380B2 (en) * 2001-09-26 2011-05-25 京セラ株式会社 Circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0355998B1 (en) Glass ceramic substrate having electrically conductive film
US4901137A (en) Electronic apparatus having semiconductor device
JP2570617B2 (en) Via structure of multilayer wiring ceramic substrate and method of manufacturing the same
US4777060A (en) Method for making a composite substrate for electronic semiconductor parts
JPH02263445A (en) Aluminum nitride substrate and semiconductor using same
JP3890539B2 (en) Ceramic-metal composite circuit board
JPH0679989B2 (en) Method for forming copper electrode on aluminum nitride
JPH09283656A (en) Ceramic circuit board
JPS6022347A (en) Substrate for semiconductor element mounting
JPH07193348A (en) Ceramic circuit board
JPH07283499A (en) Compound board for electronic parts
JPH0477402B2 (en)
JPH0568877B2 (en)
US5040292A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
US4936010A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JPH02125728A (en) Composite base and its manufacture
JP4398576B2 (en) Resistor board
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
JPS59184586A (en) Circuit board for placing semiconductor element
JPH1065294A (en) Ceramic wiring board and manufacture thereof
JPH05129458A (en) Ceramic substrate and manufacture thereof, and ceramic wiring board using said ceramic substrate
US5164547A (en) Articles having a dielectric layer on a metal substrate having improved adhesion
JPH01272192A (en) Ceramics substrate
JPH0337319B2 (en)
JPS61245555A (en) Terminal connecting structure for semiconductor