JP2003101217A - Circuit substrate and its manufacturing method - Google Patents

Circuit substrate and its manufacturing method

Info

Publication number
JP2003101217A
JP2003101217A JP2001294749A JP2001294749A JP2003101217A JP 2003101217 A JP2003101217 A JP 2003101217A JP 2001294749 A JP2001294749 A JP 2001294749A JP 2001294749 A JP2001294749 A JP 2001294749A JP 2003101217 A JP2003101217 A JP 2003101217A
Authority
JP
Japan
Prior art keywords
main surface
circuit board
insulating substrate
layer
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001294749A
Other languages
Japanese (ja)
Other versions
JP4688380B2 (en
Inventor
Tomohide Hasegawa
智英 長谷川
Akihisa Makino
晃久 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001294749A priority Critical patent/JP4688380B2/en
Publication of JP2003101217A publication Critical patent/JP2003101217A/en
Application granted granted Critical
Publication of JP4688380B2 publication Critical patent/JP4688380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a circuit substrate which has a high joining strength of a wiring circuit layer to a sintered material and which does not bring about a fault even when a plating layer is formed, and to provide a method for inexpensively manufacturing the same. SOLUTION: The circuit substrate comprises an insulating substrate 1 containing a silicon nitride as a main crystal phase, a flat pattern layer 3 provided on the main surface 2 of an insulating substrate 1, and a wiring circuit layer 5 provided on an opposed main surface 4 disposed at an opposite side to the main surface 2, In the substrate, the surface roughness Rmax of the main surface 2 is 5 to 10 μm, and the main surface 4 has smaller surface roughness Rmax than that of the main surface 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低コストで、量産
性に優れた回路基板の製造方法及びそれを用いて作製さ
れた、各種絶縁基板材料や半導体収納用パッケージ材料
等に好適に用いることのできる回路基板及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in a method of manufacturing a circuit board that is low in cost and excellent in mass productivity, and various insulating substrate materials and semiconductor storage package materials manufactured using the method. The present invention relates to a circuit board and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年半導体素子の高集積化に伴い、半導
体装置から発生する熱も増加しており、該半導体装置の
誤動作をなくす為には、このような熱を装置外に速やか
に放出する基板が必要となっている。
2. Description of the Related Art In recent years, the heat generated from a semiconductor device has increased with the high integration of semiconductor elements, and in order to prevent malfunction of the semiconductor device, such heat is quickly released to the outside of the device. A substrate is needed.

【0003】しかしながら、従来から用いられてきた各
種絶縁基板や半導体収納用パッケージ等のアルミナ材料
は、熱伝導率が約20W/mKと低い事からそれに代わ
るものとして、120W/mK以上の熱伝導率を有し、
高強度・高信頼性の窒化珪素が注目されている。
However, since the thermal conductivity of alumina materials such as various insulating substrates and semiconductor housing packages that have been conventionally used is as low as about 20 W / mK, a thermal conductivity of 120 W / mK or more is an alternative. Have
Attention has been paid to silicon nitride, which has high strength and high reliability.

【0004】このような高熱伝導率を有する窒化珪素に
対して、配線回路層も熱放散に寄与するため、高熱伝導
化が試みられている。例えば、大電力半導体装置に用い
られる半導体素子Siで生じる熱を放散するため、窒化
珪素の表面にCu、Au及びAg等の金属板を接合した
回路基板が、特開2001−94016号公報に提案さ
れている。
With respect to silicon nitride having such high thermal conductivity, the wiring circuit layer also contributes to heat dissipation, so that high thermal conductivity has been attempted. For example, a circuit board in which a metal plate such as Cu, Au, and Ag is bonded to the surface of silicon nitride in order to dissipate heat generated in a semiconductor element Si used in a high-power semiconductor device is proposed in Japanese Patent Laid-Open No. 2001-94016. Has been done.

【0005】しかし、このような金属板と窒化珪素質焼
結体の熱膨張率差が大きいため、配線回路層が窒化珪素
質焼結体との密着性が低く、剥離することがあり、その
結果、熱が十分に放散されず、半導体素子が誤動作を起
こすという問題が生じた。
However, since the difference in the coefficient of thermal expansion between the metal plate and the silicon nitride sintered body is large, the wiring circuit layer has a low adhesion to the silicon nitride sintered body and may peel off. As a result, the problem that the heat is not sufficiently dissipated and the semiconductor element malfunctions occurs.

【0006】そこで、表面粗さを粗くすることによっ
て、アンカー効果の寄与を大きくし、上記の金属板と窒
化珪素質焼結体との接合強度を高めたセラミック回路基
板が特開平11−268968号公報に提案されてい
る。
Therefore, a ceramic circuit board in which the contribution of the anchor effect is increased by increasing the surface roughness to increase the bonding strength between the metal plate and the silicon nitride sintered body is disclosed in JP-A-11-268968. Proposed in the gazette.

【0007】また、窒化珪素質基板の表面に、酸化珪素
や酸化アルミニウム等の酸化物層を点在させることによ
り、金属板と酸化物層間に反応層が生成するため、金属
板との接合強度を高めることが特開平11−34317
8号公報に記載されている。
Further, by interspersing an oxide layer of silicon oxide, aluminum oxide or the like on the surface of the silicon nitride substrate, a reaction layer is formed between the metal plate and the oxide layer, so that the bonding strength with the metal plate is high. 11-34317
No. 8 publication.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
11−268968号に記載された回路基板は、表面粗
さが大きいため、メッキ工程においてメッキ成分が配線
回路層間の基板表面の凸凹に残留し、配線間のメッキ付
着による外観不良、配線間ショートといった不具合が発
生するという問題があった。
However, since the circuit board described in JP-A No. 11-268968 has a large surface roughness, the plating component remains in the unevenness of the board surface between the wiring circuit layers in the plating step, There is a problem that defects such as poor appearance due to adhesion of plating between wirings and short-circuiting between wirings occur.

【0009】また、特開平11−343178号公報に
記載の接合方法は、基板上に酸化物層を形成させなくて
はならず、しかも酸化物層を島状に形成するため、酸化
物のペースト作製や印刷工程が付加され、かつ工程が煩
雑になり、コストが高くなるという問題があった。
Further, according to the bonding method described in Japanese Patent Laid-Open No. 11-343178, an oxide layer must be formed on a substrate, and since the oxide layer is formed in an island shape, the oxide paste is used. There is a problem that the manufacturing and printing steps are added, the steps are complicated, and the cost is increased.

【0010】従って、本発明の目的は、配線回路層と焼
結体との接合強度が高く、且つメッキ層を形成しても不
具合が生じない回路基板及びそれを低コストで作製する
製造方法を提供する。
Therefore, an object of the present invention is to provide a circuit board which has a high bonding strength between a wiring circuit layer and a sintered body and which does not cause a problem even when a plating layer is formed, and a manufacturing method for manufacturing the circuit board at low cost. provide.

【0011】[0011]

【課題を解決するための手段】本発明は、窒化珪素焼結
体の表面粗さを制御することで、金属板と焼結体との接
合強度を高めることができ、且つメッキ工程を経ても不
具合が生じず、低コストの回路基板を得ることができる
という知見に基づくものである。
According to the present invention, the bonding strength between a metal plate and a sintered body can be increased by controlling the surface roughness of the silicon nitride sintered body, and even after a plating step. This is based on the finding that a low-cost circuit board can be obtained without causing a defect.

【0012】即ち、本発明の回路基板は、窒化珪素を主
結晶相とする絶縁基板と、該絶縁基板の主面に設けられ
た平面パターン層と、前記主面の反対側に位置する対向
主面に設けられた配線回路層とを具備する回路基板にお
いて、前記主面の表面粗さR maxが5〜10μmであっ
て、前記対向主面が前記主面よりも小さい表面粗さRm
axを有することを特徴とするものである。
That is, the circuit board of the present invention is mainly composed of silicon nitride.
An insulating substrate having a crystalline phase and a main surface of the insulating substrate
The flat pattern layer and the opposite side opposite to the main surface
In a circuit board having a wiring circuit layer provided on the main surface
And the surface roughness R of the main surface maxIs 5-10 μm
And the surface roughness R is such that the facing main surface is smaller than the main surface.m
axIt is characterized by having.

【0013】特に、前記対向主面の表面粗さRmaxが1
〜3μmであることが好ましい。これにより、配線回路
層と十分な接合強度を確保するとともに、配線回路層を
形成した後のメッキ工程における活性液の残留によるメ
ッキ付着を防止し、配線間のショートによる不良をさら
に少なくすことができる。
Particularly, the surface roughness R max of the facing main surface is 1
It is preferably ˜3 μm. As a result, sufficient bonding strength with the wiring circuit layer can be secured, and plating adhesion due to residual active liquid in the plating process after forming the wiring circuit layer can be prevented, and defects due to short circuits between wirings can be further reduced. it can.

【0014】また、前記絶縁基板の最小厚みが0.3〜
0.7mmであることが好ましい。これにより、絶縁基
板の割れを防止するとともに、熱放散能力に優れた回路
基板を得ることが出来る。
The minimum thickness of the insulating substrate is 0.3 to
It is preferably 0.7 mm. As a result, it is possible to prevent the insulating substrate from cracking and obtain a circuit board having excellent heat dissipation capability.

【0015】さらに、前記絶縁基板の室温強度が800
MPa以上、熱伝導率が60W/mK以上であることが
好ましい。これにより、絶縁基板の割れを防止するとと
もに、熱放散能力に優れた回路基板を得ることが出来
る。
Further, the room temperature strength of the insulating substrate is 800.
It is preferable that the pressure is at least MPa and the thermal conductivity is at least 60 W / mK. As a result, it is possible to prevent the insulating substrate from cracking and obtain a circuit board having excellent heat dissipation capability.

【0016】また、本発明の回路基板の製造方法は、窒
化珪素を主体とし、表面粗さRmaxが3〜5μmに制御
された主面と、該主面の反対側に対向して位置し、前記
主面よりも小さい表面粗さRmaxを有する対向主面とを
具備する成形体を作製し、焼成により前記主面の表面粗
さRmaxが5〜10μmになるように前記成形体を焼成
し、得られた焼結体の前記主面に平面パターン層を形成
するとともに、前記対向主面に配線回路層を形成するこ
とを特徴とするものである。
In the method for manufacturing a circuit board according to the present invention, silicon nitride is mainly used, and the main surface whose surface roughness R max is controlled to 3 to 5 μm is located opposite to the main surface. A molded body having an opposing main surface having a surface roughness R max smaller than that of the main surface, and firing the molded body so that the main surface has a surface roughness R max of 5 to 10 μm. It is characterized in that a flat pattern layer is formed on the main surface of the sintered body obtained by firing, and a wiring circuit layer is formed on the opposing main surface.

【0017】これにより、回路基板の主面の表面粗さR
maxを5〜10μmに制御することが可能となるととも
に、前記対向主面が前記主面よりも小さい表面粗さを有
する回路基板を安価に製造することができる。
As a result, the surface roughness R of the main surface of the circuit board is
It is possible to control max to 5 to 10 μm, and it is possible to inexpensively manufacture a circuit board in which the facing main surface has a surface roughness smaller than that of the main surface.

【0018】特に、絶縁基板上にロウ材を載せ、該ロウ
材の上にCu、Al及びAgのうち少なくとも1種の金
属箔及び/又は金属板を載置し、しかる後に加熱によっ
て接合することにより前記配線回路層及び/又は前記平
面パターン層を形成することが好ましい。これにより、
比抵抗が低く、熱放散能力に優れ、且つ接合強度が高い
回路基板を得ることが出来る。
In particular, a brazing material is placed on an insulating substrate, and a metal foil and / or a metal plate of at least one of Cu, Al and Ag is placed on the brazing material, and then bonded by heating. It is preferable to form the wiring circuit layer and / or the plane pattern layer by This allows
It is possible to obtain a circuit board having low specific resistance, excellent heat dissipation capability, and high bonding strength.

【0019】また、絶縁基板上にCu、Al及びAgの
うち少なくとも1種を含む金属ペーストを塗布し、しか
る後に加熱して前記配線回路層及び/又は前記平面パタ
ーン層を形成することが好ましい。これにより、微細配
線の形成が可能となり、且つ低コストで回路基板を得る
ことが出来る。
Further, it is preferable that a metal paste containing at least one of Cu, Al and Ag is coated on the insulating substrate and then heated to form the wiring circuit layer and / or the plane pattern layer. As a result, fine wiring can be formed, and a circuit board can be obtained at low cost.

【0020】[0020]

【発明の実施の形態】本発明の回路基板を、図1を用い
て説明する。
DETAILED DESCRIPTION OF THE INVENTION The circuit board of the present invention will be described with reference to FIG.

【0021】図1は、本発明の回路基板の一例を示す概
略断面図である。本発明の回路基板は、絶縁基板1の主
面2に平面パターン層3が設けられ、主面2の反対側の
面である対向主面4に配線回路層5が設けられている。
FIG. 1 is a schematic sectional view showing an example of the circuit board of the present invention. In the circuit board of the present invention, the plane pattern layer 3 is provided on the main surface 2 of the insulating substrate 1, and the wiring circuit layer 5 is provided on the opposing main surface 4 which is the surface opposite to the main surface 2.

【0022】そして、本発明によれば、絶縁基板1の主
面2の表面粗さRmaxが5〜10μmであることが重要
である。表面粗さRmaxが5μmに満たない場合、主面
2の表面の凹凸が小さいため、アンカー効果が十分働か
ず、絶縁基板1と平面パターン層3の接合強度が十分で
はなく、また、10μmを越える場合、凸凹が大きくな
るため、絶縁基板1と平面パターン3間にボイドが発生
し、熱放散能力の低下や接合信頼性の低下という問題が
生じる。
According to the present invention, it is important that the surface roughness R max of the main surface 2 of the insulating substrate 1 is 5 to 10 μm. If the surface roughness R max is less than 5 μm, the unevenness of the surface of the main surface 2 is small, the anchor effect does not work sufficiently, the bonding strength between the insulating substrate 1 and the plane pattern layer 3 is not sufficient, and 10 μm is set. When it exceeds, the unevenness becomes large, so that a void is generated between the insulating substrate 1 and the plane pattern 3, and there arises a problem that the heat dissipation capability is lowered and the joint reliability is lowered.

【0023】特に、絶縁基板1と面積の大きな平面パタ
ーン層3の接合強度を高めるの点で、主面の表面粗さR
maxが7〜9μmであることが好ましい。
Particularly, in terms of increasing the bonding strength between the insulating substrate 1 and the plane pattern layer 3 having a large area, the surface roughness R of the main surface is R.
It is preferable that max is 7 to 9 μm.

【0024】また、対向主面4の表面粗さRmaxが主面
2の表面粗さRmaxよりもが小さいことも重要である。
これは、大面積の平面パターン層3と絶縁基板1との接
合強度を高めるとともに、配線回路層5の配線間へのメ
ッキ付着を低減するためである。この表面粗さの大小関
係が成立しないと、大面積の平面パターン層3の絶縁基
板1との接合強度が低くなり、剥離が生じやすくなり、
また、配線回路層5間にメッキが付着し、配線間がショ
ートするという問題が生じる。
Further, the surface roughness R max of the opposing major surface 4 is also important that is smaller than the surface roughness R max of the main surface 2.
This is to increase the bonding strength between the large-area flat pattern layer 3 and the insulating substrate 1 and reduce the adhesion of plating between the wirings of the wiring circuit layer 5. If the magnitude relation of the surface roughness is not established, the bonding strength of the large-area plane pattern layer 3 with the insulating substrate 1 becomes low and peeling easily occurs.
Further, there is a problem in that plating adheres between the wiring circuit layers 5 and short-circuits between the wirings.

【0025】なお、主面に設けられる平面パターン層3
は後述するように放熱性を改善するために設けられたも
のであり、電気が流れないため、主面の平面パターンが
形成されてない部位にメッキが付着してもショートの恐
れは全く無い。
The plane pattern layer 3 provided on the main surface
Since it is provided to improve heat dissipation as will be described later, since electricity does not flow, there is no possibility of short-circuiting even if plating adheres to a portion of the main surface where the planar pattern is not formed.

【0026】本発明によれば、対向主面4の表面粗さR
maxが1〜3μm、特に1.5〜2.5μmであること
が好ましい。3μmより大きい場合、対向主面4の凸凹
部分に活性Pd等のメッキ液が入り込んでその隙間に残
留し、Ni等の金属メッキが付着して外観不良や配線間
ショートが発生しやすくなる。また、1μmより小さい
と、絶縁基板1と配線回路層5との密着性が小さくなる
傾向があり、剥離が生じやすく、熱放散性が低下する傾
向がある。
According to the present invention, the surface roughness R of the opposing main surface 4 is
It is preferable that max is 1 to 3 μm, and particularly 1.5 to 2.5 μm. When the thickness is larger than 3 μm, the plating solution such as active Pd enters the convex and concave portions of the opposing main surface 4 and remains in the gap, and the metal plating such as Ni adheres, which easily causes poor appearance and short circuit between wirings. On the other hand, when the thickness is less than 1 μm, the adhesion between the insulating substrate 1 and the wiring circuit layer 5 tends to be small, peeling is likely to occur, and the heat dissipation tends to be deteriorated.

【0027】また、絶縁基板1は、窒化珪素を主結晶相
とする焼結体であり、これにより、高熱伝導率を有し、
高い強度を有する絶縁基板が実現できる。このような絶
縁基板1の熱伝導率は、60W/mK以上、特に70W
/mK以上、更には80W/mK以上であることが好ま
しい。熱伝導率を高めることによって、絶縁基板1内部
及び/又は表面において発生する熱の放散を速やかに行
うことができる。
The insulating substrate 1 is a sintered body containing silicon nitride as a main crystal phase, and has a high thermal conductivity.
An insulating substrate having high strength can be realized. The thermal conductivity of such an insulating substrate 1 is 60 W / mK or more, especially 70 W.
/ MK or more, more preferably 80 W / mK or more. By increasing the thermal conductivity, the heat generated inside and / or on the insulating substrate 1 can be quickly dissipated.

【0028】主結晶相の粒界相は、例えば希土類元素
(RE)、Mg及びSiを用いることができるが、特
に、Si34−RE23−SiO2系結晶相を粒界相と
して存在させることが、60W/mK以上の高い熱伝導
率を有し、回路基板の熱放散性を高めるために好まし
い。
As the grain boundary phase of the main crystal phase, for example, rare earth element (RE), Mg and Si can be used. In particular, the grain boundary phase of Si 3 N 4 —RE 2 O 3 —SiO 2 type crystal phase can be used. It is preferable that it is present in order to have a high thermal conductivity of 60 W / mK or more and to enhance the heat dissipation of the circuit board.

【0029】また、絶縁基板1と平面パターン層3、絶
縁基板1と配線回路層5のそれぞれの密着性を高めるた
め、少なくとも主面2及び対向主面4における粒界相が
メリライト相を含むことが好ましい。
In order to improve the adhesion between the insulating substrate 1 and the plane pattern layer 3 and between the insulating substrate 1 and the wiring circuit layer 5, at least the grain boundary phase in the main surface 2 and the opposing main surface 4 contains a melilite phase. Is preferred.

【0030】さらに、絶縁基板1は、厚みを小さくして
も割れ難くするため、室温強度が800MPa以上、特
に850MPa以上であることが好ましい。なお、室温
強度の測定は、JISR1601に基づき、縦45m
m、横4mm、厚み3mmの試料形状を3点曲げ強度で
測定したものである。
Further, the insulating substrate 1 preferably has a room temperature strength of 800 MPa or more, particularly 850 MPa or more, in order to make it difficult to crack even if the thickness is reduced. In addition, the measurement of room temperature strength is 45 m in length based on JISR1601.
The sample shape of m, width 4 mm, and thickness 3 mm was measured by three-point bending strength.

【0031】半導体素子の実装時等の製造工程における
ハンドリングによる割れを防止して不良発生を抑制する
ため、また、熱放散性をさらに高めるため、最小厚みが
0.3〜0.7mm、特に0.35〜0.635mmで
あることが好ましい。
In order to prevent cracking due to handling in the manufacturing process such as mounting of semiconductor elements to suppress defects and further improve heat dissipation, the minimum thickness is 0.3 to 0.7 mm, especially 0 mm. It is preferably 0.35 to 0.635 mm.

【0032】平面パターン層3は、Cu、AlおよびA
gのうち少なくとも1種であることが好ましい。これら
の金属は、熱伝導率が高く、絶縁基板1や配線回路層5
及び絶縁基板1に搭載される半導体素子で生じる熱の放
散性を高めることができ、半導体素子の温度が過剰に高
くなるのを防ぎ、誤動作を防止することが容易となるた
めである。
The plane pattern layer 3 is made of Cu, Al and A.
It is preferably at least one of g. These metals have high thermal conductivity, and the insulating substrate 1 and the wiring circuit layer 5 are
Also, the heat dissipation of the semiconductor element mounted on the insulating substrate 1 can be improved, the temperature of the semiconductor element can be prevented from becoming excessively high, and malfunction can be easily prevented.

【0033】また、配線回路層5は、低抵抗であるC
u、AlおよびAgのうち少なくとも1種であることが
好ましい。これらのうち、熱伝導率、コスト及び取り扱
いやすさからCuが特に好ましい。配線回路層5がWや
Mo等の高抵抗金属からなる場合、1A以上、特に10
A以上の大電流を印加した場合に配線回路層5自体の発
熱により断線等を招くことがあるためである。
The wiring circuit layer 5 has a low resistance C.
At least one of u, Al and Ag is preferable. Among these, Cu is particularly preferable in terms of thermal conductivity, cost and ease of handling. When the wiring circuit layer 5 is made of a high resistance metal such as W or Mo, it is 1 A or more, especially 10
This is because when a large current of A or more is applied, the wiring circuit layer 5 itself may generate heat, which may cause disconnection or the like.

【0034】さらに、平面パターン層3及び上記の金属
からなる箔又は板であることが好ましい。これによって
放熱性を高めることができる。また配線回路層5も、上
記の金属からなる箔又は板であることが好ましい。これ
により、放熱性を高めるとともに、大電流を流したとき
の抵抗を小さくすることができ、発熱量をより小さくで
きる。
Further, the plane pattern layer 3 and a foil or plate made of the above metal are preferable. This can improve heat dissipation. The wiring circuit layer 5 is also preferably a foil or plate made of the above metal. As a result, the heat dissipation can be improved, and the resistance when a large current is applied can be reduced, and the amount of heat generation can be further reduced.

【0035】平面パターン層3は、熱放散の役割を果た
すために、絶縁基板1の主面2に設けられたものであ
り、熱放散能力を高めるため、主面1の全面積に対して
80%以上、特に90〜99%を平面パターン層3が占
有することが好ましい。
The plane pattern layer 3 is provided on the main surface 2 of the insulating substrate 1 to play the role of heat dissipation, and in order to enhance the heat dissipation capability, the flat pattern layer 3 is 80% of the total area of the main surface 1. %, Especially 90 to 99% is preferably occupied by the plane pattern layer 3.

【0036】配線回路層5は、所望のパターン形状に、
電気信号や電流が流れる配線回路が設けられている。特
に、大電流が流れても発熱を抑制するため、配線回路層
5の厚みは0.1mm以上、更には0.2mm以上であ
ることが好ましい。
The wiring circuit layer 5 has a desired pattern shape.
A wiring circuit through which electric signals and current flow is provided. Particularly, in order to suppress heat generation even when a large current flows, the thickness of the wiring circuit layer 5 is preferably 0.1 mm or more, and more preferably 0.2 mm or more.

【0037】また、配線回路層5の一部には半導体素子
が搭載されている場合もあり、半導体素子で発生した熱
を配線回路層5、絶縁基板1を通り、主面2及び又は平
面パターン層3から放出するため、配線回路層5での熱
抵抗を小さくするため、配線回路層5の厚みは1mm以
下、特に0.5mm以下であることが好ましい。
In addition, a semiconductor element may be mounted on a part of the wiring circuit layer 5, and heat generated in the semiconductor element passes through the wiring circuit layer 5, the insulating substrate 1, the main surface 2 and / or the plane pattern. Since it is released from the layer 3, the thickness of the wiring circuit layer 5 is preferably 1 mm or less, particularly preferably 0.5 mm or less in order to reduce the thermal resistance in the wiring circuit layer 5.

【0038】このように構成された回路基板は、高強度
且つ高熱放散という特徴を有し、IGBTやMOS−F
ET等のパワーデバイス実装回路基板等に好適に用いる
ことができる。
The circuit board constructed in this way has the characteristics of high strength and high heat dissipation, and is suitable for IGBTs and MOS-Fs.
It can be suitably used for a power device mounting circuit board such as ET.

【0039】次に、本発明の回路基板の製造方法につい
て図2を用いて説明する。
Next, a method of manufacturing the circuit board of the present invention will be described with reference to FIG.

【0040】まず、絶縁基板11を作製する。この絶縁
基板11は窒化珪素質焼結体からなるため、窒化珪素粉
末及び焼結助剤粉末を用意する。窒化珪素粉末として平
均粒子径0.1〜1.5μm、α率80%以上の窒化珪
素粉末を準備する。また、窒化珪素粉末中の不純物酸素
量が0.5〜3.0質量%のものが望ましい。
First, the insulating substrate 11 is manufactured. Since this insulating substrate 11 is made of a silicon nitride sintered material, a silicon nitride powder and a sintering aid powder are prepared. A silicon nitride powder having an average particle diameter of 0.1 to 1.5 μm and an α ratio of 80% or more is prepared as the silicon nitride powder. Further, it is desirable that the amount of impurity oxygen in the silicon nitride powder is 0.5 to 3.0 mass%.

【0041】また、焼結助剤は、希土類元素化合物、M
g化合物、Si化合物、Al化合物等の公知のものを用
いることが出来る。これらの化合物は、焼成によって酸
化物を形成しうる酸化物、炭酸塩や酢酸塩などであるこ
とが望ましい。焼結助剤の添加量は、少なすぎると焼結
不良で熱伝導率や強度が低下して問題となり、また、多
すぎると焼成において液相がしみ出し、重ね合わせた成
形体同士が付着しやすいため、添加する助剤によって適
正な量を加えることが好ましい。
The sintering aid is a rare earth element compound, M
Known compounds such as g compounds, Si compounds, and Al compounds can be used. These compounds are preferably oxides, carbonates, acetates and the like that can form oxides by firing. If the addition amount of the sintering aid is too small, the sintering will be defective and the thermal conductivity and strength will decrease, and if it is too large, the liquid phase will ooze out during firing, and the formed bodies will be stuck together. Since it is easy, it is preferable to add an appropriate amount depending on the auxiliary agent to be added.

【0042】具体的には、希土類元素化合物であれば酸
化物換算で3〜20質量%、特に10〜15質量%、M
g化合物であれば酸化物換算で0.5〜5質量%、特に
1〜3質量%、Si化合物であれば酸化物換算で0.1
〜7質量%、特に0.1〜4質量%、Al化合物であれ
ば酸化物換算で0.35〜0.5質量%、特に0.37
〜0.47量%、更に0.4〜0.45質量%であるこ
とが好ましい。
Specifically, in the case of a rare earth element compound, it is 3 to 20% by mass, particularly 10 to 15% by mass, in terms of oxide, M
If it is a g compound, it is 0.5 to 5 mass% in terms of oxide, especially 1 to 3 mass%, and if it is a Si compound, it is 0.1 in terms of oxide.
˜7% by mass, especially 0.1 to 4% by mass, and if it is an Al compound, it is 0.35 to 0.5% by mass in terms of oxide, especially 0.37.
˜0.47% by mass, more preferably 0.4 to 0.45% by mass.

【0043】なお、上記の焼結助剤量は単独で添加した
場合の量であり、上記の化合物を複数組み合わせて用い
る場合、それぞれの添加量が上記の範囲からはずれても
差し支えない。組み合わせた場合には、強度や熱伝導率
等の特性を考慮して最適な量に決定すれば良い。
The above-mentioned amount of the sintering aid is the amount when added alone, and when a plurality of the above compounds are used in combination, the addition amount of each may deviate from the above range. When combined, the optimum amount may be determined in consideration of characteristics such as strength and thermal conductivity.

【0044】次に、上記の粉末に有機バインダと溶媒と
を加え、スラリーを調製し、ドクターブレード法等でシ
ート状成形体(以下グリーンシートと言う)を作製す
る。その際に、グリーンシートの主面の表面粗さRmax
(主)を3〜5μmになるように制御し、主面と反対側
に対向して存在する対向主面の表面粗さRmax(向)
を、主面の表面粗さRmax(主)よりも小さくすること
が重要である。
Next, an organic binder and a solvent are added to the above powder to prepare a slurry, and a sheet-shaped compact (hereinafter referred to as a green sheet) is produced by a doctor blade method or the like. At that time, the surface roughness R max of the main surface of the green sheet
(Main) is controlled so as to be 3 to 5 μm, and the surface roughness R max (direction) of the facing main surface existing opposite to the main surface is present.
Is smaller than the surface roughness R max (main) of the main surface.

【0045】なお、グリーンシートの表面粗さの制御
は、例えば、ドクターブレード法による成形の場合、ス
ラリー乾燥温度、成型速度及び離形紙表面粗さ等がグリ
ーンシートの表面粗さに大きな影響を及ぼすため、これ
らの条件を調整して、グリーンシートを作製すればよ
い。
In the control of the surface roughness of the green sheet, for example, in the case of molding by the doctor blade method, the slurry drying temperature, the molding speed and the surface roughness of the release paper have a great influence on the surface roughness of the green sheet. Therefore, the green sheet may be produced by adjusting these conditions.

【0046】Rmax(主)を3〜5μmにすることによ
って、焼成工程においてグリーンシートを重ねたままで
も固着しないという利点があり、Rmax(主)>R
max(向)という大小関係にすることにより、配線間に
おけるメッキ付着を防止し、且つ大面積の平面パターン
の絶縁基板との剥離が生じ難く出来る。
By setting R max (main) to 3 to 5 μm, there is an advantage that the green sheets are not fixed even when stacked in the firing process, and R max (main)> R
By setting the magnitude relationship of max (direction), it is possible to prevent plating from adhering between wirings and to prevent peeling from a large-area planar pattern insulating substrate.

【0047】また、Rmax(向)は、3μmより小さい
ことが好ましく、特に0.5〜1.0μmが、焼成後の
表面粗さを小さくでき、その結果、メッキ付着によるシ
ョート不良を削減する点で好ましい。なお、本発明にお
ける表面粗さRmaxの測定は、接触式の表面粗さ測定器
にて、JIS B0601−1982に基づいて基準長
さ2.5mmにおける最大高さを測定し、Rmaxの値と
した。
Further, R max (direction) is preferably smaller than 3 μm, and particularly 0.5 to 1.0 μm can reduce the surface roughness after firing, and as a result, reduce short-circuit defects due to adhesion of plating. It is preferable in terms. In addition, the measurement of the surface roughness R max in the present invention is performed by measuring the maximum height at a reference length of 2.5 mm with a contact-type surface roughness measuring device based on JIS B0601-1982, and measuring the value of R max . And

【0048】得られたグリーンシートは、単層のまま用
いても良いし、複数のグリーンシートを積層しても良
い。このグリーンシートを所望により、弱酸化性雰囲気
中900℃にて、脱脂処理をする。そして、窒素などの
非酸化性雰囲気中で、1650〜1800℃、特に16
80〜1750℃の温度で焼成する。
The obtained green sheet may be used as a single layer or a plurality of green sheets may be laminated. If desired, this green sheet is degreased at 900 ° C. in a weakly oxidizing atmosphere. Then, in a non-oxidizing atmosphere such as nitrogen, 1650 to 1800 ° C., especially 16
Baking at a temperature of 80 to 1750 ° C.

【0049】焼成は、グリーンシートの主面が焼成によ
って表面粗さRmaxが5〜10μmになるように焼成条
件を制御することが重要である。表面粗さを制御するた
めには、焼成温度、保持時間、雰囲気及び降温時間等の
焼成条件の調整を行えば良い。
In the firing, it is important to control the firing conditions so that the main surface of the green sheet has a surface roughness R max of 5 to 10 μm. In order to control the surface roughness, the firing conditions such as the firing temperature, the holding time, the atmosphere and the temperature lowering time may be adjusted.

【0050】また、焼成終了直後に、ガラス相の結晶化
を行うため、1500℃まで60℃/時間以下の降温速
度で徐冷し、その後、ヒーターの加熱を停止し、相対密
度が95%以上、特に98%以上、更には99%以上を
達成することができる。
Immediately after the firing, in order to crystallize the glass phase, the glass is gradually cooled to 1500 ° C. at a temperature lowering rate of 60 ° C./hour or less, then the heating of the heater is stopped, and the relative density is 95% or more. In particular, 98% or more, and even 99% or more can be achieved.

【0051】なお、グリーンシートを焼成炉に入れる際
に、グリーンシートの主面と他のグリーンシートの対向
主面とが接するように積み重ねる、換言すれば、全ての
グリーンシートの主面が下になるように積み重ね、或い
は上になるように積み重ね、焼成を行うことができる。
本発明で用いるグリーンシートの主面の表面粗さがR
maxが5〜10μmであるため、敷き粉を用いずに積み
重ねて焼成しても積み重ねたグリーンシートが付着する
ことがない。このように一度の焼成で数多くのグリーン
シートを焼成することができるため、製造コストをさら
に低下できる。
When the green sheet is put in the firing furnace,
The main surface of the green sheet and the other green sheet
Stack so that the main surface is in contact, in other words, all
Stack with the main surface of the green sheets facing down, or
Can be stacked and fired on top.
The surface roughness of the main surface of the green sheet used in the present invention is R.
maxIs 5-10 μm, so it can be piled up without using bedding
Stacked green sheets adhere even if stacked and fired
Never. In this way, many greens can be fired once.
Sheets can be fired, which reduces manufacturing costs.
Can be reduced to

【0052】このようにして得られた焼結体を所望に形
状に切断して絶縁基板11を作製し、絶縁基板11の主
面12に平面パターン層13を、対向主面14に配線回
路層15を形成する。これらの形成には、公知の形成方
法を用いることができるが、高い接合強度を有するた
め、活性金属を含有するロウ材を用いることが好まし
い。
The sintered body thus obtained is cut into a desired shape to produce an insulating substrate 11, and a plane pattern layer 13 is formed on the main surface 12 of the insulating substrate 11 and a wiring circuit layer is formed on the opposing main surface 14. Form 15. Although a known forming method can be used for forming these, it is preferable to use a brazing material containing an active metal since it has a high bonding strength.

【0053】例えば、Cu−Ag−Ti、Cu−Au−
Ti等の活性金属を含有するロウ材と低抵抗金属を含む
ペーストを塗布し、800〜900℃で加圧しながら焼
き付けを行って、接着層13aの上に金属層13bを形
成する。さらに、金属層13bの上に無電解メッキ法に
よりNi等のメッキ層13cを形成して回路基板を得る
ことができる。
For example, Cu-Ag-Ti, Cu-Au-
A brazing material containing an active metal such as Ti and a paste containing a low resistance metal are applied and baked at 800 to 900 ° C. under pressure to form a metal layer 13 b on the adhesive layer 13 a. Further, the circuit board can be obtained by forming the plating layer 13c of Ni or the like on the metal layer 13b by the electroless plating method.

【0054】また、金属箔及び/又は金属板を絶縁基板
11へ接合するには、Cu−Ag−Ti、Cu−Au−
Tiなどの活性金属を含有するロウ材のペーストを塗布
し、厚さ0.1mm以上の金属箔あるいは金属板を載置
し、800〜900℃で加圧しながら接合した後、金属
箔や金属板にレジスト塗布、露光、現像、エッチング処
理、レジスト剥離などの手法によって、所定の回路パタ
ーンを有する配線回路層15を形成する。例えば、接合
層15aを介して金属箔又は金属板からなる金属層15
bが形成される。その後、無電メッキ法によりNi等の
メッキ層15cを形成して配線回路層15を有する回路
基板を得ることができる。
To bond the metal foil and / or the metal plate to the insulating substrate 11, Cu-Ag-Ti, Cu-Au-
After applying a paste of a brazing material containing an active metal such as Ti, a metal foil or metal plate having a thickness of 0.1 mm or more is placed and bonded under pressure at 800 to 900 ° C., and then a metal foil or metal plate. Then, the wiring circuit layer 15 having a predetermined circuit pattern is formed by a method such as resist coating, exposure, development, etching treatment, and resist stripping. For example, the metal layer 15 made of a metal foil or a metal plate via the bonding layer 15a.
b is formed. Then, a plating layer 15c of Ni or the like is formed by electroless plating to obtain a circuit board having the wiring circuit layer 15.

【0055】また、Ti、ZrおよびHfの群から選ば
れる少なくとも1種の活性金属を含むロウ材によって金
属箔や金属板を絶縁基板11に接合することもできる。
例えば、絶縁基板11の主面12に平面パターン層15
として設けられる金属箔及び/又は金属板は、Cu、A
lおよびAgの群から選ばれる少なくとも1種の高熱伝
導性金属からなることが望ましく、この金属板を絶縁基
板11に対して、上記のロウ材によって絶縁基板11に
接合することにより、絶縁基板11に接合層15aを介
して金属層15bが高い接合強度で接合することができ
る。
It is also possible to bond the metal foil or the metal plate to the insulating substrate 11 with a brazing material containing at least one active metal selected from the group consisting of Ti, Zr and Hf.
For example, the planar pattern layer 15 is formed on the main surface 12 of the insulating substrate 11.
The metal foil and / or the metal plate provided as are Cu, A
It is desirable that the metal plate is made of at least one kind of high thermal conductive metal selected from the group consisting of 1 and Ag. By bonding this metal plate to the insulating substrate 11 with the above brazing material, the insulating substrate 11 can be formed. The metal layer 15b can be bonded with high bonding strength via the bonding layer 15a.

【0056】さらに、図2に示した回路基板に対して、
半導体素子を搭載するもともできる。即ち、図3に示す
ように、配線回路層25上に半田ペーストを塗布した
後、自動実装装置等にて実装し、300〜400℃で加
熱して半導体素子27を接合する。
Further, with respect to the circuit board shown in FIG.
It is also possible to mount a semiconductor element. That is, as shown in FIG. 3, after applying a solder paste on the wiring circuit layer 25, the wiring circuit layer 25 is mounted by an automatic mounting device or the like and heated at 300 to 400 ° C. to bond the semiconductor element 27.

【0057】さらにまた、本発明の回路基板をヒートシ
ンクなどに実装する場合には、Pb−Sn共晶半田など
の半田ペーストを平面パターン層上に塗布し、300〜
400℃でロウ付けすればよい。
Furthermore, when the circuit board of the present invention is mounted on a heat sink or the like, a solder paste such as Pb-Sn eutectic solder is applied on the plane pattern layer to form
It may be brazed at 400 ° C.

【0058】このように回路基板を製造することによ
り、配線回路層と焼結体との接合強度が高く、且つメッ
キ層を形成しても不具合が生じない回路基板を低コスト
で提供することができる。
By manufacturing the circuit board in this way, it is possible to provide a circuit board having a high bonding strength between the wiring circuit layer and the sintered body and having no problem even if the plating layer is formed at a low cost. it can.

【0059】[0059]

【実施例】原料粉末として、1μm以下の粒子が粒度分
布にて累積で40〜60%、平均粒子径が0.8〜1.
2μm、且つ累積質量比90%における粒子径(D9
0)が2〜5μm、酸素量が1.0質量%、α率87%
の直接窒化法により製造された窒化珪素原料粉末を用意
した。
EXAMPLE As raw material powder, particles having a particle size of 1 μm or less are accumulated in a particle size distribution of 40 to 60%, and an average particle diameter is 0.8 to 1.
Particle diameter at 2 μm and a cumulative mass ratio of 90% (D9
0) is 2 to 5 μm, the amount of oxygen is 1.0% by mass, and the α ratio is 87%.
A raw material powder of silicon nitride manufactured by the direct nitriding method was prepared.

【0060】また、焼結助剤として、純度99%、平均
粒子径1μmのEr23、純度99%、平均粒子径1μ
mのY23、純度99%、平均粒子径1μmのYb
23、純度99%、平均粒子径3μmのMgO、純度9
9%、平均粒子径1μmのMgCO3、純度99%、平
均粒子径1μmのAl23、純度99%、平均粒子径1
μmのAlNを準備した。
Further, as a sintering aid, Er 2 O 3 having a purity of 99% and an average particle size of 1 μm, a purity of 99% and an average particle size of 1 μm
m Y 2 O 3 , purity 99%, average particle size 1 μm Yb
2 O 3 , 99% purity, MgO having an average particle size of 3 μm, purity 9
9%, MgCO 3 having an average particle diameter of 1 μm, purity 99%, Al 2 O 3 having an average particle diameter of 1 μm, purity 99%, average particle diameter 1
A μm AlN was prepared.

【0061】上記の原料粉末を表1の組成となるように
調合し、アクリル樹脂バインダとトルエンを溶媒として
添加して混練後、ドクターブレード法により厚み0.0
3〜0.4mmのグリーンシートを成形し、適宜積層、
切断することにより80×115mm、厚みが0.8m
m、直径12mm、厚さ5mmの円板状の成形体を作製
した。
The above raw material powders were blended so as to have the composition shown in Table 1, acrylic resin binder and toluene were added as a solvent, and the mixture was kneaded.
Form a green sheet of 3 to 0.4 mm and stack it appropriately,
80 × 115mm and 0.8m thickness by cutting
A disk-shaped molded body having m, a diameter of 12 mm, and a thickness of 5 mm was produced.

【0062】なお、グリーンシートの作製において、ス
ラリー乾燥温度、成型速度及び離形紙表面粗さを調整し
て、表1の表面粗さRmaxになるように成形を行った。
なお、表面粗さは表面接触式の表面粗さ測定器にて、J
IS B0601−1982に基づいて基準長さ2.5
mmにおける最大高さを測定し、Rmaxの値とした。
In the production of the green sheet, the slurry drying temperature, the molding speed, and the surface roughness of the release paper were adjusted so that the surface roughness R max shown in Table 1 was obtained.
In addition, the surface roughness is measured with a surface contact type surface roughness measuring device.
Standard length 2.5 according to IS B0601-1982
The maximum height in mm was measured and used as the value of R max .

【0063】かくして得られたグリーンシートを弱酸化
性雰囲気中、900℃で脱脂した後、常圧窒素雰囲気中
表1に示す焼成条件で焼成した。得られた焼結体を切断
し、縦45mm、横4mm、厚み3mmの測定用試料と
縦60mm、横90mm、厚み0.6mmの絶縁基板を
作製した。
The green sheet thus obtained was degreased at 900 ° C. in a weakly oxidizing atmosphere, and then fired in a nitrogen atmosphere at atmospheric pressure under the firing conditions shown in Table 1. The obtained sintered body was cut to prepare a measurement sample having a length of 45 mm, a width of 4 mm, and a thickness of 3 mm, and an insulating substrate having a length of 60 mm, a width of 90 mm, and a thickness of 0.6 mm.

【0064】この測定基板をアルキメデス法により比重
を測定し、理論密度から相対密度を算出した。また、上
記の表面粗さ測定法によってRmaxの値を算出した。
The specific gravity of this measurement substrate was measured by the Archimedes method, and the relative density was calculated from the theoretical density. Further, the value of R max was calculated by the above-mentioned surface roughness measuring method.

【0065】さらに、レーザーフラッシュ法により室温
の熱伝導率を測定した。さらにまた、JISR1601
に基づく3点曲げ試験により3点曲げ強度を室温で測定
した。結果を表1に示した。
Further, the thermal conductivity at room temperature was measured by the laser flash method. Furthermore, JISR1601
The three-point bending strength was measured at room temperature by a three-point bending test based on. The results are shown in Table 1.

【0066】[0066]

【表1】 [Table 1]

【0067】次に、絶縁基板表面の主面に平面パターン
層を、対向主面に配線回路層を形成した。形成法は、
(1)板接合法及び(2)ペースト塗布法で行った。
Next, a plane pattern layer was formed on the main surface of the insulating substrate, and a wiring circuit layer was formed on the opposing main surface. The formation method is
(1) Plate bonding method and (2) Paste coating method.

【0068】板接合法は、平面パターン層を形成する場
合、絶縁基板の主面にCu−Ag−Tiの活性金属ロウ
材を印刷塗布して厚さ0.5mmのCu板を貼り付け、
還元雰囲気中で熱処理してCu板を接合した。また、配
線回路層を形成する場合、Cu−Ag−Tiの活性金属
ロウ材を回路パターン状に印刷塗布し、その上に回路パ
ターン状にソルダーレジストを印刷塗布した厚さ0.5
mmのCu板を貼り付け、還元雰囲気中で熱処理してC
u板を接合した。
In the plate joining method, when a plane pattern layer is formed, an active metal brazing material of Cu-Ag-Ti is printed and applied on the main surface of the insulating substrate, and a Cu plate having a thickness of 0.5 mm is attached.
The Cu plates were joined by heat treatment in a reducing atmosphere. When a wiring circuit layer is formed, a Cu-Ag-Ti active metal brazing material is printed and applied in a circuit pattern shape, and a solder resist is printed and applied in a circuit pattern shape thereon to a thickness of 0.5.
mm Cu plate is attached and heat treated in a reducing atmosphere to C
The u plates were joined.

【0069】ペースト塗布法は、スクリーン印刷を用い
た。
Screen printing was used as the paste application method.

【0070】得られた回路基板の基板厚みをマイクロメ
ータで測定し、耐電圧は、絶縁基板間に電圧を1kVず
つ増加しながら印加し、絶縁破壊する電圧を耐電圧とし
た。また、図3に示すように、回路基板の対向主面に形
成された配線回路層23上に実際に半導体素子を実装し
て、半導体素子を100℃になるように発熱させ、主面
の平面パターン層の温度を測定し、回路基板の表裏での
温度差、つまり、回路基板の主面と対向主面との温度差
を測定することによって熱抵抗を測定した。
The board thickness of the obtained circuit board was measured with a micrometer, and the withstand voltage was applied between the insulating boards while increasing the voltage in increments of 1 kV, and the breakdown voltage was defined as the withstand voltage. Further, as shown in FIG. 3, a semiconductor element is actually mounted on the wiring circuit layer 23 formed on the opposing main surface of the circuit board, and the semiconductor element is heated to 100 ° C. The thermal resistance was measured by measuring the temperature of the pattern layer and measuring the temperature difference between the front and back of the circuit board, that is, the temperature difference between the main surface and the opposing main surface of the circuit board.

【0071】さらに、平面パターン層と絶縁基板との接
合強度を評価するため、平面パターン層と同じ接合方法
によって縦0.5mm、横1cm、長さ4cmのCu板
の端面を主面に接合し、このCu板を引き離す時の応力
をオートグラフによって測定した。試料番号毎に10個
の試料を測定し、そのうちの最低強度を接合強度とし
た。
Further, in order to evaluate the bonding strength between the flat pattern layer and the insulating substrate, the end surface of a Cu plate having a length of 0.5 mm, a width of 1 cm and a length of 4 cm was bonded to the main surface by the same bonding method as for the flat pattern layer. The stress at the time of separating the Cu plate was measured by an autograph. Ten samples were measured for each sample number, and the lowest strength was determined as the bonding strength.

【0072】また、メッキ付着は配線回路層25を顕微
鏡で観察し、配線間にメッキの付着を確認するととも
に、電気的なショートの有無をテスターによって調べ
た。結果を表2に示した。
The adhesion of the plating was observed by observing the wiring circuit layer 25 with a microscope to confirm the adhesion of the plating between the wirings, and the presence or absence of an electrical short circuit was examined by a tester. The results are shown in Table 2.

【0073】[0073]

【表2】 [Table 2]

【0074】本発明の試料No.2〜4及び8〜22
は、耐電圧が7kV以上、熱抵抗が11℃/W以上、接
合強度が400MPa以上で絶縁不良も観察されなかっ
た。
Sample No. of the present invention. 2-4 and 8-22
No withstand voltage was 7 kV or more, thermal resistance was 11 ° C./W or more, bonding strength was 400 MPa or more, and no insulation failure was observed.

【0075】一方、主面のRmaxが4μmと小さい本発
明の範囲外の試料No.1及び主面のRmaxが12μm
と大きい本発明の範囲外の試料No.5は、接合強度が
180MPa以下であった。また、試料No.5は、配
線回路層の電極間にメッキの付着が観察された。
[0075] On the other hand, samples outside the main surface of the R max is 4μm and less present invention No. 1 and the main surface of R max is 12μm
And a large sample No. outside the range of the present invention. In No. 5, the bonding strength was 180 MPa or less. In addition, the sample No. In No. 5, the adhesion of plating was observed between the electrodes of the wiring circuit layer.

【0076】また、本発明の範囲外の試料No.6及び
7は、接合強度が200MPa以下で絶縁不良が観察さ
れた。
Further, sample No. outside the range of the present invention. In 6 and 7, the bonding strength was 200 MPa or less, and the insulation failure was observed.

【0077】[0077]

【発明の効果】本発明によれば、主面及び対向主面の表
面粗さを制御したため、平面パターン層及び配線回路層
が強固に絶縁基板に接合され、不具合が発生せず、薄型
化をしても、信頼性の高い回路基板を低コストで実現で
きる。
According to the present invention, since the surface roughness of the main surface and the opposing main surface is controlled, the plane pattern layer and the wiring circuit layer are firmly bonded to the insulating substrate, no trouble occurs, and the thinning is achieved. Even so, a highly reliable circuit board can be realized at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の回路基板の構造を示す概略断面図であ
る。
FIG. 1 is a schematic sectional view showing a structure of a circuit board of the present invention.

【図2】本発明の回路基板の一部分を示す概略断面図で
ある。
FIG. 2 is a schematic cross-sectional view showing a part of the circuit board of the present invention.

【図3】半導体素子実装後の本発明の回路基板の一部を
示す断面図である。
FIG. 3 is a cross-sectional view showing a part of the circuit board of the present invention after mounting a semiconductor element.

【符号の説明】[Explanation of symbols]

1、11、21・・・絶縁基板 2、12、22・・・主面 3、13、23・・・平面パターン層 4、14、24・・・対向主面 5、15、25・・・配線回路層 13a、15a、23a、25a・・・接合層 13b、15b、23b、25b・・・金属層 13c、15c、23c、25c・・・メッキ層 27・・・半導体素子 1, 11, 21 ... Insulating substrate 2, 12, 22 ... Main surface 3, 13, 23 ... Plane pattern layer 4, 14, 24 ... Opposing main surface 5, 15, 25 ... Wiring circuit layer 13a, 15a, 23a, 25a ... Bonding layer 13b, 15b, 23b, 25b ... Metal layer 13c, 15c, 23c, 25c ... Plating layer 27 ... Semiconductor element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/03 610 H01L 23/12 J ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H05K 1/03 610 H01L 23/12 J

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主結晶相とする絶縁基板と、該
絶縁基板の主面に設けられた平面パターン層と、前記主
面の反対側に位置する対向主面に設けられた配線回路層
とを具備する回路基板において、前記主面の表面粗さR
maxが5〜10μmであって、前記対向主面が前記主面
よりも小さい表面粗さRmaxを有することを特徴とする
回路基板。
1. An insulating substrate having silicon nitride as a main crystal phase, a plane pattern layer provided on the main surface of the insulating substrate, and a wiring circuit provided on an opposite main surface opposite to the main surface. And a surface roughness R of the main surface in a circuit board including a layer.
A circuit board, wherein max is 5 to 10 μm, and the facing main surface has a surface roughness R max smaller than that of the main surface.
【請求項2】前記対向主面の表面粗さRmaxが1〜3μ
mであることを特徴とする請求項1記載の回路基板。
2. The surface roughness R max of the facing main surface is 1 to 3 μm.
The circuit board according to claim 1, wherein the circuit board is m.
【請求項3】前記絶縁基板の最小厚みが0.3〜0.7
mmであることを特徴とする請求項1又は2記載の回路
基板。
3. The minimum thickness of the insulating substrate is 0.3 to 0.7.
The circuit board according to claim 1 or 2, wherein the circuit board has a size of mm.
【請求項4】前記絶縁基板の室温強度が800MPa以
上、熱伝導率が60W/mK以上であることを特徴とす
る請求項1乃至3のいずれかに記載の回路基板。
4. The circuit board according to claim 1, wherein the insulating substrate has a room temperature strength of 800 MPa or more and a thermal conductivity of 60 W / mK or more.
【請求項5】窒化珪素を主体とし、表面粗さRmaxが3
〜5μmに制御された主面と、該主面の反対側に対向し
て位置し、前記主面よりも小さい表面粗さRma xを有す
る対向主面とを具備する成形体を作製し、焼成により前
記主面の表面粗さRmaxが5〜10μmになるように前
記成形体を焼成し、得られた焼結体の前記主面に平面パ
ターン層を形成するとともに、前記対向主面に配線回路
層を形成することを特徴とする回路基板の製造方法。
5. A silicon nitride-based material having a surface roughness R max of 3
A controlled main surface 5 .mu.m, located opposite to the opposite side of the main surface, to prepare a molded body having a facing major surface having a small surface roughness R ma x than the main surface, By firing, the molded body is fired so that the surface roughness R max of the main surface becomes 5 to 10 μm, a flat pattern layer is formed on the main surface of the obtained sintered body, and the opposing main surface is formed. A method of manufacturing a circuit board, comprising forming a wiring circuit layer.
【請求項6】絶縁基板上にロウ材を載せ、該ロウ材の上
にCu、Al及びAgのうち少なくとも1種の金属箔及
び/又は金属板を載置し、しかる後に加熱によって接合
することにより前記配線回路層及び/又は前記平面パタ
ーン層を形成することを特徴とする請求項5記載の回路
基板の製造方法。
6. A brazing material is placed on an insulating substrate, and a metal foil and / or a metal plate of at least one of Cu, Al and Ag is placed on the brazing material, and then bonded by heating. 6. The method for manufacturing a circuit board according to claim 5, wherein the wiring circuit layer and / or the plane pattern layer is formed by.
【請求項7】絶縁基板上にCu、Al及びAgのうち少
なくとも1種を含む金属ペーストを塗布し、しかる後に
加熱して前記配線回路層及び/又は前記平面パターン層
を形成することを特徴とする請求項5又は6記載の回路
基板の製造方法。
7. An insulating substrate is coated with a metal paste containing at least one of Cu, Al and Ag, and then heated to form the wiring circuit layer and / or the plane pattern layer. 7. The method for manufacturing a circuit board according to claim 5 or 6.
JP2001294749A 2001-09-26 2001-09-26 Circuit board and manufacturing method thereof Expired - Fee Related JP4688380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294749A JP4688380B2 (en) 2001-09-26 2001-09-26 Circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294749A JP4688380B2 (en) 2001-09-26 2001-09-26 Circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003101217A true JP2003101217A (en) 2003-04-04
JP4688380B2 JP4688380B2 (en) 2011-05-25

Family

ID=19116301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294749A Expired - Fee Related JP4688380B2 (en) 2001-09-26 2001-09-26 Circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4688380B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088196A (en) * 2005-09-22 2007-04-05 Hitachi Metals Ltd Silicon nitride wiring board and its production method
JP2007189112A (en) * 2006-01-16 2007-07-26 Denki Kagaku Kogyo Kk Silicon nitride substrate, circuit board and module using the same
WO2009131217A1 (en) * 2008-04-25 2009-10-29 京セラ株式会社 Heat dissipating base body and electronic device using the same
JP2011097049A (en) * 2009-10-01 2011-05-12 Hitachi Metals Ltd Silicon nitride circuit substrate, and method of manufacturing the same
JP2011187511A (en) * 2010-03-04 2011-09-22 Toshiba Corp Silicon nitride substrate, and semiconductor module using the same
JP5665769B2 (en) * 2010-01-13 2015-02-04 京セラ株式会社 Silicon nitride substrate, circuit board and electronic device using the same
JP2018046192A (en) * 2016-09-15 2018-03-22 三菱マテリアル株式会社 Manufacturing method of resin sealed power module
JPWO2021112029A1 (en) * 2019-12-03 2021-06-10
CN113020840A (en) * 2021-03-02 2021-06-25 中国工程物理研究院材料研究所 Brazing method between beryllium material and metal piece
CN115124351A (en) * 2022-07-18 2022-09-30 合肥圣达电子科技实业有限公司 High-temperature solder resist slurry for aluminum nitride multilayer and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155014A1 (en) 2017-02-23 2018-08-30 日本碍子株式会社 Insulated heat dissipating board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136965A (en) * 1984-12-06 1986-06-24 京セラ株式会社 Manufacture of ceramic substrate for thin membrane
JPH01218089A (en) * 1988-02-26 1989-08-31 Toshiba Corp Manufacture of surface conductive ceramic substrate
JPH077237A (en) * 1993-06-14 1995-01-10 Ibiden Co Ltd Ceramic board, surface treatment of ceramic board and formation of thin film on roughened surface of ceramic board
JPH07193348A (en) * 1993-12-27 1995-07-28 Toyo Alum Kk Ceramic circuit board
JPH11236270A (en) * 1998-02-25 1999-08-31 Kyocera Corp Silicon nitride substrate and its manufacture
JPH11268968A (en) * 1998-03-20 1999-10-05 Toshiba Corp Ceramic circuit board
JP2000244121A (en) * 1999-02-23 2000-09-08 Kyocera Corp Silicon nitride wiring board and manufacture thereof
JP2001127388A (en) * 1999-10-29 2001-05-11 Kyocera Corp Silicon nitride circuit board and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136965A (en) * 1984-12-06 1986-06-24 京セラ株式会社 Manufacture of ceramic substrate for thin membrane
JPH01218089A (en) * 1988-02-26 1989-08-31 Toshiba Corp Manufacture of surface conductive ceramic substrate
JPH077237A (en) * 1993-06-14 1995-01-10 Ibiden Co Ltd Ceramic board, surface treatment of ceramic board and formation of thin film on roughened surface of ceramic board
JPH07193348A (en) * 1993-12-27 1995-07-28 Toyo Alum Kk Ceramic circuit board
JPH11236270A (en) * 1998-02-25 1999-08-31 Kyocera Corp Silicon nitride substrate and its manufacture
JPH11268968A (en) * 1998-03-20 1999-10-05 Toshiba Corp Ceramic circuit board
JP2000244121A (en) * 1999-02-23 2000-09-08 Kyocera Corp Silicon nitride wiring board and manufacture thereof
JP2001127388A (en) * 1999-10-29 2001-05-11 Kyocera Corp Silicon nitride circuit board and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715414B2 (en) * 2005-09-22 2011-07-06 日立金属株式会社 Silicon nitride wiring board and manufacturing method thereof
JP2007088196A (en) * 2005-09-22 2007-04-05 Hitachi Metals Ltd Silicon nitride wiring board and its production method
JP2007189112A (en) * 2006-01-16 2007-07-26 Denki Kagaku Kogyo Kk Silicon nitride substrate, circuit board and module using the same
JP5562234B2 (en) * 2008-04-25 2014-07-30 京セラ株式会社 Heat dissipation base and electronic device using the same
WO2009131217A1 (en) * 2008-04-25 2009-10-29 京セラ株式会社 Heat dissipating base body and electronic device using the same
JP2011097049A (en) * 2009-10-01 2011-05-12 Hitachi Metals Ltd Silicon nitride circuit substrate, and method of manufacturing the same
US9293384B2 (en) 2010-01-13 2016-03-22 Kyocera Corporation Silicon nitride substrate, circuit substrate and electronic device using the same
JP5665769B2 (en) * 2010-01-13 2015-02-04 京セラ株式会社 Silicon nitride substrate, circuit board and electronic device using the same
JP2011187511A (en) * 2010-03-04 2011-09-22 Toshiba Corp Silicon nitride substrate, and semiconductor module using the same
JP2018046192A (en) * 2016-09-15 2018-03-22 三菱マテリアル株式会社 Manufacturing method of resin sealed power module
JPWO2021112029A1 (en) * 2019-12-03 2021-06-10
WO2021112029A1 (en) * 2019-12-03 2021-06-10 日本碍子株式会社 Bonded substrate, and method for producing bonded substrate
CN114599625A (en) * 2019-12-03 2022-06-07 日本碍子株式会社 Bonded substrate and method for manufacturing bonded substrate
JP7373585B2 (en) 2019-12-03 2023-11-02 日本碍子株式会社 bonded substrate
CN113020840A (en) * 2021-03-02 2021-06-25 中国工程物理研究院材料研究所 Brazing method between beryllium material and metal piece
CN115124351A (en) * 2022-07-18 2022-09-30 合肥圣达电子科技实业有限公司 High-temperature solder resist slurry for aluminum nitride multilayer and preparation method thereof
CN115124351B (en) * 2022-07-18 2023-10-20 合肥圣达电子科技实业有限公司 High-temperature solder resist slurry for aluminum nitride multilayer and preparation method thereof

Also Published As

Publication number Publication date
JP4688380B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JPH11168134A (en) Electrostatic attracting device and manufacture thereof
WO2008004552A1 (en) Ceramic-metal bonded body, method for manufacturing the bonded body and semiconductor device using the bonded body
JP2012522709A (en) Metal ceramic substrate
JP4688380B2 (en) Circuit board and manufacturing method thereof
JPH0738014A (en) Substrate for semiconductor device
CN108780784B (en) Metal member with Ag-based layer, insulated circuit board with Ag-based layer, semiconductor device, insulated circuit board with heat sink, and method for manufacturing metal member with Ag-based layer
JP2007230791A (en) Ceramic circuit board and method of manufacturing the same
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP4772187B2 (en) AlN sintered body and AlN circuit board using the same
JPH1067586A (en) Circuit base plate for power module and its production
JP2001127388A (en) Silicon nitride circuit board and its manufacturing method
JPH0997862A (en) High-strength circuit board and its manufacturing method
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope
JP2000124566A (en) Metallized board
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
JP2000340716A (en) Wiring substrate
JP3460167B2 (en) Method for manufacturing aluminum nitride circuit board having metal circuit
JP3171695B2 (en) Manufacturing method of aluminum nitride circuit board
JPH09283657A (en) Circuit board and manufacture thereof
JP2005019750A (en) Ceramic circuit board and its manufacturing method, and electric circuit module
JP3561197B2 (en) Wiring board
JP3529055B2 (en) Insulating heat sink
JP2004134703A (en) Circuit board with terminal
JPH10107180A (en) Silicon nitride wiring board and its manufacturing method
JP2000114425A (en) Wiring board for power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees