JPH0330714Y2 - - Google Patents

Info

Publication number
JPH0330714Y2
JPH0330714Y2 JP1984017366U JP1736684U JPH0330714Y2 JP H0330714 Y2 JPH0330714 Y2 JP H0330714Y2 JP 1984017366 U JP1984017366 U JP 1984017366U JP 1736684 U JP1736684 U JP 1736684U JP H0330714 Y2 JPH0330714 Y2 JP H0330714Y2
Authority
JP
Japan
Prior art keywords
sealed tube
heat
bypass pipe
fluid
magnetic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984017366U
Other languages
Japanese (ja)
Other versions
JPS60132577U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1736684U priority Critical patent/JPS60132577U/en
Publication of JPS60132577U publication Critical patent/JPS60132577U/en
Application granted granted Critical
Publication of JPH0330714Y2 publication Critical patent/JPH0330714Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、液体が蒸発して流動することによ
り、潜熱として熱を輸送する装置に関するもので
あり、ヒートパイプに関連した技術である。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a device that transports heat as latent heat by evaporating and flowing a liquid, and is a technology related to heat pipes.

従来技術 この種の装置として、従来、ヒートパイプが知
られており、ヒートパイプは空気等の非凝縮性流
体を排気した密閉管の内部に、水等の凝縮性を示
す作動流体を封入するとともに、金属網や細溝、
極細線等毛細管圧力を生じさせるウイツクを前記
密閉管の内部に設けた構成を基本構成とするもの
である。そしてヒートパイプの一端部に与えられ
た熱によつて作動流体が蒸発し、その蒸気がヒー
トパイプの他端部に流動するとともに放熱凝縮す
ることによつて作動流体の潜熱として熱輸送を行
ない、作動流体が蒸発することによつて毛細管圧
力が生じるため、凝縮液化した作動流体は、その
毛細管圧力によつてウイツクの内部を前記蒸発を
生じた端部へ還流する。
Prior Art A heat pipe is conventionally known as this type of device.A heat pipe is a sealed tube that has exhausted a non-condensable fluid such as air, and a working fluid that exhibits condensability such as water is sealed inside it. , metal mesh or narrow grooves,
The basic structure is that a capillary pressure such as an ultrafine wire is provided inside the sealed tube. The working fluid is evaporated by the heat applied to one end of the heat pipe, and the vapor flows to the other end of the heat pipe and is condensed by heat radiation, thereby transporting heat as latent heat of the working fluid. Capillary pressure is generated by the evaporation of the working fluid, so that the condensed and liquefied working fluid flows back inside the wick to the end where the evaporation occurred.

しかるに液相作動流体を還流させるための毛細
管圧力は、ウイツクを微細孔構造としてその表面
における実効毛細管半径を可及的に小さくするこ
とによつて高めることができ、従来知られている
ウイツクのうちでは、多孔質焼結金属が相当高い
毛細管圧力を生じるが、それであつても得られる
毛細管圧力は水頭に換算して30〜80cm程度であ
る。そのため多孔質焼結金属をウイツクとしたヒ
ートパイプであつても、高温部が低温部より高い
位置にある場合、すなわち蒸発部を凝縮部より高
く設定したトツプヒートモードの場合、その高低
差が毛細管圧力以上であれば、液相作動流体が蒸
発部に還流しなくなり、その結果熱輸送を行なえ
なくなつてしまう。また液相作動流体は、ウイツ
クの内部の空間を通つて蒸発部に還流するから、
毛細管圧力を高めるために、より細かい微細孔構
造のウイツクを用いた場合には、液相作動流体に
対する流動抵抗が大きくなつて、液相作動流体が
蒸発部に還流しにくくなり、結局熱輸送能力を低
下させてしまうことになる問題がある。
However, the capillary pressure for refluxing the liquid-phase working fluid can be increased by making the capillary a microporous structure and making the effective capillary radius on its surface as small as possible. In this case, porous sintered metal generates a considerably high capillary pressure, but even then, the capillary pressure obtained is about 30 to 80 cm in terms of water head. Therefore, even if the heat pipe is made of porous sintered metal, if the high temperature part is located higher than the low temperature part, i.e. in the top heat mode where the evaporation part is set higher than the condensation part, the height difference will be If the pressure is higher than that, the liquid-phase working fluid will no longer flow back to the evaporator, and as a result, heat transport will no longer be possible. Also, since the liquid phase working fluid flows back to the evaporation section through the internal space of the wick,
When a capillary with a finer pore structure is used to increase the capillary pressure, the flow resistance to the liquid-phase working fluid increases, making it difficult for the liquid-phase working fluid to return to the evaporator, and ultimately reducing the heat transport capacity. There is a problem that can lead to a decrease in

考案の目的 この考案は上記の事情に鑑みてなされたもの
で、熱輸送に直接供される流体の蒸発部への還流
特性に優れた熱輸送装置を提供することを目的と
するものである。
Purpose of the invention This invention was made in view of the above-mentioned circumstances, and the object thereof is to provide a heat transport device with excellent return characteristics to the evaporation section of the fluid directly used for heat transport.

考案の構成および作用 この考案は、空気等の非凝縮性流体を排気した
密閉管の内部に、加熱蒸発しかつ冷却凝縮する液
体を分散媒とした磁性流体を封入するとともに、
前記密閉管の一端部に液溜め部を形成し、その液
溜め部と前記密閉管の他端部とを非磁性材料から
なるバイパス管によつて連通し、さらにそのバイ
パス管のうち前記密閉管の他端部側ほど強い磁界
を発生するコイルを、バイパス管に設け、またそ
のバイパス管を介して送給された磁性流体を密閉
管の他端部の内周全体に分散供給する螺旋溝を密
閉管の他端部の内周面に形成した構成であり、し
たがつて蒸発することによつて熱輸送を行なう磁
性流体が、磁気力によつて液溜め部から密閉管の
他端部に流動させられ、かつ外部から入熱のある
密閉管の他端部に内周全体に供給される。
Structure and operation of the device This device seals a magnetic fluid in which a dispersion medium is a liquid that evaporates by heating and condenses by cooling inside a sealed tube from which a non-condensable fluid such as air is evacuated.
A liquid reservoir is formed at one end of the sealed tube, the liquid reservoir and the other end of the sealed tube are communicated through a bypass tube made of a non-magnetic material, and the sealed tube of the bypass tube is connected to the other end of the sealed tube. A coil that generates a stronger magnetic field toward the other end is provided in the bypass tube, and a spiral groove is provided to distribute the magnetic fluid fed through the bypass tube over the entire inner circumference of the other end of the sealed tube. This structure is formed on the inner peripheral surface of the other end of the sealed tube, so that the magnetic fluid, which transports heat by evaporation, is transferred from the liquid reservoir to the other end of the sealed tube by magnetic force. It is made to flow and is supplied to the entire inner periphery of the other end of the closed tube where heat is input from the outside.

実施例 以下この考案の実施例を添付の図面を参照して
説明する。第1図はこの考案の一実施例を示す略
解図であつて、本体である密閉管1に、空気等の
非凝縮性流体を排気した後に作動流体としての磁
性流体2が封入されるとともに、その磁性流体2
を一時溜めるための液溜め部3が密閉管1の下端
部に形成されており、また密閉管1の上端部の内
面に、前記磁性流体2を内周面全体に行き渡らせ
るための螺旋溝Gが形成されている。ここで磁性
流体2は、マグネタイトやフエライトの100Å程
度の微粒子を水や有機溶剤などの凝縮性を示す分
散媒に懸濁させたコロイド溶液である。前記液溜
め部3と螺旋溝を形成した密閉管1の上端部と
は、密閉管1と平行に配置したバイパス管4によ
つて連通されており、そのバイパス管4は前記磁
性流体2を液溜め部3から密閉管1の上端部に到
らしめるものであつて、非磁性材料からなり、そ
の外周には、直流磁界を生成するコイル5が設け
られている。そしてそのコイル5は電源6に接続
され、通電することにより前記バイパス管4の上
端部側ほど強くなる勾配をもつた磁場を生成する
よう構成されている。なお、前記バイパス管4の
上端部は、その内部から前記密閉管1の上端部に
磁性流体2を流下させるために、密閉管1の上端
部より高い位置に設定されている。
Embodiments Hereinafter, embodiments of this invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing an embodiment of this invention, in which a sealed tube 1 as a main body is filled with a magnetic fluid 2 as a working fluid after a non-condensable fluid such as air is evacuated. The magnetic fluid 2
A liquid reservoir 3 for temporarily storing the magnetic fluid 2 is formed at the lower end of the sealed tube 1, and a spiral groove G is formed on the inner surface of the upper end of the sealed tube 1 for distributing the magnetic fluid 2 over the entire inner peripheral surface. is formed. Here, the magnetic fluid 2 is a colloidal solution in which fine particles of magnetite or ferrite with a diameter of about 100 Å are suspended in a dispersion medium exhibiting condensability such as water or an organic solvent. The liquid reservoir 3 and the upper end of the sealed tube 1 having a spiral groove are communicated with each other by a bypass tube 4 arranged parallel to the sealed tube 1. It extends from the reservoir 3 to the upper end of the sealed tube 1, is made of a non-magnetic material, and is provided with a coil 5 on its outer periphery for generating a DC magnetic field. The coil 5 is connected to a power source 6, and is configured to generate a magnetic field with a gradient that becomes stronger toward the upper end of the bypass pipe 4 when energized. The upper end of the bypass pipe 4 is set at a higher position than the upper end of the sealed tube 1 in order to cause the magnetic fluid 2 to flow down from the inside thereof to the upper end of the sealed tube 1.

したがつて前記コイル5に通電することにより
第1図に示すような勾配をもつた磁場Hを生じさ
せるとともに、密閉管1の上端部を高温部に設置
して熱Qを与え、かつ下端部を冷却部に設置して
熱Qを奪うように設定すれば、凝縮性の液体を分
散媒とした前記磁性流体2が、磁気力によつて前
記バイパス管4の内部をその上端部に向けて上昇
し、かつバイパス管4の上端部から密閉管1の上
端部に磁性流体2が流下する。その場合、密閉管
1の上端部内周面には螺旋溝Gが形成されている
から、バイパス管4から流出した磁性流体2は螺
旋溝Gによつて密閉管1の内周面の全体に分散さ
れて供給され、そして密閉管1の上端部に到つた
磁性流体2は熱Qを受けてその分散媒が蒸発す
る。その蒸気は蒸気圧の低い密閉管1の下端部に
流れるとともに、前記液溜め部3の近傍において
熱Qを奪われて凝縮液化する。その場合、凝縮性
の分散媒が蒸発することによつて、蒸発潜熱を吸
収し、また凝縮液化することによつてその潜熱を
放出するから、上記の装置によれば、高い位置の
ある高温部から低い位置にある低温部に熱Qを輸
送することができる。また上記の装置では、口径
の比較的大きいバイパス管4が磁性流体2の流路
であるから、磁性流体に対する流動抵抗を低くす
ることができる。
Therefore, by energizing the coil 5, a magnetic field H having a gradient as shown in FIG. If it is installed in a cooling section and set to remove heat Q, the magnetic fluid 2 using a condensable liquid as a dispersion medium will direct the inside of the bypass pipe 4 toward its upper end by magnetic force. The magnetic fluid 2 rises and flows down from the upper end of the bypass pipe 4 to the upper end of the sealed pipe 1 . In that case, since the spiral groove G is formed on the inner circumferential surface of the upper end of the sealed tube 1, the magnetic fluid 2 flowing out from the bypass tube 4 is dispersed over the entire inner circumferential surface of the sealed tube 1 by the spiral groove G. The magnetic fluid 2 is supplied as a magnetic fluid and reaches the upper end of the sealed tube 1. The magnetic fluid 2 receives heat Q and its dispersion medium evaporates. The vapor flows to the lower end of the sealed tube 1 where the vapor pressure is low, and is deprived of heat Q near the liquid reservoir 3 to condense and liquefy. In that case, the condensable dispersion medium absorbs the latent heat of vaporization when it evaporates, and releases the latent heat when it condenses and liquefies. Heat Q can be transported from the ground to a lower temperature area. Furthermore, in the above device, since the bypass pipe 4 having a relatively large diameter is the flow path for the magnetic fluid 2, the flow resistance to the magnetic fluid can be reduced.

考案の効果 以上の説明から明らかなようにこの考案は、空
気等の非凝縮性流体を排気した密閉管の内部に、
加熱蒸発しかつ冷却凝縮する液体を分散媒とした
磁性流体を封入するとともに、前記密閉管の一端
部に液溜め部を形成し、その液溜め部と前記密閉
管の他端部とを非磁性材料からなるバイパス管に
よつて連通し、さらにそのバイパス管のうち前記
密閉管の他端側ほど強い磁界を発生するコイル
を、バイパス管に設け、そしてバイパス管から流
出した磁性流体を密閉管の内周面全体に分散させ
る螺旋溝を密閉管の少なくとも上端部内周面に形
成した構成であるから、熱輸送に直接供される磁
性流体を磁気力によつて相当高い位置に上昇させ
ることができ、したがつて高温部が低温部に対し
て高い位置にある場合であつても、すなわちトツ
プヒートモードであつても、確実に熱輸送を行な
うことができ、また口径の大きいバイパス管の内
部を磁性流体が流動するから、熱輸送に直接供さ
れる液体に対する流動抵抗が大きくなることによ
る熱輸送能力の低下を防止することができ、さら
に磁性流体は螺旋溝によつて広く拡がつて密閉管
の内面を流下するとになるから、磁性流体に対す
る熱伝達面積が広くなつてその蒸発を促進し、そ
れに伴つて熱効率を向上させることができるなど
実用上優れた効果を得ることができる。
Effects of the invention As is clear from the above explanation, this invention has the following advantages:
In addition to enclosing a magnetic fluid in which a dispersion medium is a liquid that evaporates by heating and condenses by cooling, a liquid reservoir is formed at one end of the sealed tube, and the liquid reservoir and the other end of the sealed tube are made of non-magnetic material. A coil is provided in the bypass pipe, which communicates with the other end of the bypass pipe and generates a stronger magnetic field toward the other end of the sealed pipe. Since spiral grooves are formed on at least the inner circumferential surface of the upper end of the sealed tube to distribute the spiral grooves over the entire inner circumferential surface, the magnetic fluid that is directly used for heat transport can be raised to a considerably high position by magnetic force. Therefore, even if the high-temperature part is located higher than the low-temperature part, that is, even in top heat mode, heat can be reliably transported, and the inside of a bypass pipe with a large diameter can be easily transferred. Because the magnetic fluid flows, it is possible to prevent a decrease in heat transport ability due to an increase in flow resistance to the liquid that is directly provided for heat transport.Furthermore, the magnetic fluid spreads widely due to the spiral grooves and can be used in sealed tubes. Since the magnetic fluid flows down the inner surface of the magnetic fluid, the heat transfer area for the magnetic fluid becomes larger, promoting its evaporation, and accordingly, excellent practical effects such as improved thermal efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す略解図であ
る。 1……密閉管、2……磁性流体、3……液溜め
部、4……バイパス管、5……コイル、G……螺
旋溝。
FIG. 1 is a schematic diagram showing an embodiment of this invention. 1... Sealed tube, 2... Magnetic fluid, 3... Liquid reservoir, 4... Bypass pipe, 5... Coil, G... Spiral groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 空気等の非凝縮性流体を排気した密閉管の内部
に、加熱蒸発しかつ冷却凝縮する液体を分散媒と
した磁性流体を封入するとともに、前記密閉管の
一端部に液溜め部を形成し、非磁性材料からなる
バイパス管の一方の端部をその液溜め部に開口さ
せ、かつ、そのバイパス管の他方の端部を前記密
閉管の他端部内面に開口させ、また前記密閉管の
内周面のうち少なくとも他端部の内周面に螺旋溝
を形成し、さらにそのバイパス管のうち前記密閉
管の他端部側ほど強い磁界を発生するコイルを、
バイパス管に設けてなる熱輸送装置。
A magnetic fluid with a dispersion medium of a liquid that evaporates by heating and condenses by cooling is sealed inside a sealed tube from which a non-condensable fluid such as air has been exhausted, and a liquid reservoir is formed at one end of the sealed tube, One end of a bypass pipe made of a non-magnetic material is opened to the liquid reservoir, and the other end of the bypass pipe is opened to the inner surface of the other end of the sealed pipe. A coil having a spiral groove formed on the inner circumferential surface of at least the other end of the circumferential surface, and further generating a stronger magnetic field toward the other end of the sealed tube of the bypass pipe,
A heat transport device installed in a bypass pipe.
JP1736684U 1984-02-09 1984-02-09 heat transport device Granted JPS60132577U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1736684U JPS60132577U (en) 1984-02-09 1984-02-09 heat transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1736684U JPS60132577U (en) 1984-02-09 1984-02-09 heat transport device

Publications (2)

Publication Number Publication Date
JPS60132577U JPS60132577U (en) 1985-09-04
JPH0330714Y2 true JPH0330714Y2 (en) 1991-06-28

Family

ID=30505003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1736684U Granted JPS60132577U (en) 1984-02-09 1984-02-09 heat transport device

Country Status (1)

Country Link
JP (1) JPS60132577U (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134289A (en) * 1978-04-10 1979-10-18 Toshiba Corp Device for protecting nuclear reactor
JPS55131692A (en) * 1979-04-02 1980-10-13 Kawamoto Seisakusho:Kk Heat pipe
JPS5620995A (en) * 1979-07-31 1981-02-27 Kawamoto Seisakusho:Kk Heat pipe
JPS57108595A (en) * 1980-11-14 1982-07-06 Merukaa Niruson Suben Heat transmission roll and manufacture thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134289U (en) * 1979-03-16 1980-09-24

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134289A (en) * 1978-04-10 1979-10-18 Toshiba Corp Device for protecting nuclear reactor
JPS55131692A (en) * 1979-04-02 1980-10-13 Kawamoto Seisakusho:Kk Heat pipe
JPS5620995A (en) * 1979-07-31 1981-02-27 Kawamoto Seisakusho:Kk Heat pipe
JPS57108595A (en) * 1980-11-14 1982-07-06 Merukaa Niruson Suben Heat transmission roll and manufacture thereof

Also Published As

Publication number Publication date
JPS60132577U (en) 1985-09-04

Similar Documents

Publication Publication Date Title
US3754594A (en) Unilateral heat transfer apparatus
US5159972A (en) Controllable heat pipes for thermal energy transfer
US3779310A (en) High efficiency heat transit system
US3672443A (en) Thermal control and power flattening for radioisotopic thermodynamic power system
JPH0330714Y2 (en)
US3884296A (en) Storable cryogenic heat pipe
JPH04501458A (en) Heat pipe for regenerating evaporated metals
JPH0447570Y2 (en)
JPS6152919B2 (en)
JPS62123291A (en) Large-caliber and long vertical thermo siphon
JPH0612371Y2 (en) heat pipe
JPS6215733Y2 (en)
JP2005337336A (en) Liquefied gas evaporating device
JPS61228292A (en) Heat transfer tube with heat pipe built-in fins
JPH0424370Y2 (en)
JP2002181469A (en) Looped heat pipe
JPH0535355B2 (en)
JPH0231312B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JP2616794B2 (en) Heating vessel
JPS5919899Y2 (en) heat pipe
JPS5921573B2 (en) greenhouse heating device
JPS6115424Y2 (en)
JPS6017668A (en) Cooling system
JPH0424372Y2 (en)
JPS5971985A (en) Heat transporting apparatus