JPH0231312B2 - BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI - Google Patents

BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Info

Publication number
JPH0231312B2
JPH0231312B2 JP27121085A JP27121085A JPH0231312B2 JP H0231312 B2 JPH0231312 B2 JP H0231312B2 JP 27121085 A JP27121085 A JP 27121085A JP 27121085 A JP27121085 A JP 27121085A JP H0231312 B2 JPH0231312 B2 JP H0231312B2
Authority
JP
Japan
Prior art keywords
pipe
evaporation
working fluid
liquid
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27121085A
Other languages
Japanese (ja)
Other versions
JPS62131198A (en
Inventor
Masataka Mochizuki
Shinichi Sugihara
Tsuneaki Motai
Masushi Sakatani
Tetsuo Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP27121085A priority Critical patent/JPH0231312B2/en
Publication of JPS62131198A publication Critical patent/JPS62131198A/en
Publication of JPH0231312B2 publication Critical patent/JPH0231312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は廃ガスなどの高温流体を熱源として
空気を予熱する空気予熱器に関し、特に互いに分
離して配置したヒートパイプ構造の蒸発管と凝縮
管とを蒸気連絡管および液連絡管によつて連通さ
せたヒートパイプ式の空気予熱器に関するもので
ある。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an air preheater that preheats air using a high-temperature fluid such as waste gas as a heat source, and particularly relates to an evaporator tube and a condensation tube of a heat pipe structure arranged separately from each other. This invention relates to a heat pipe type air preheater in which the air preheater is connected through a steam communication pipe and a liquid communication pipe.

従来の技術 この種の空気予熱器は、例えば実開昭59−
130967号公報に記載されている通りであり、これ
を略示すれば第4図に示すように、ヒートパイプ
構造の複数本の蒸発管1を上部ヘツダ2と下部ヘ
ツダ3とで連結してなる蒸発管群4を、高温廃ガ
ス流路5中に配置し、またヒートパイプ構造の複
数本の凝縮管6を上部ヘツダ7と下部ヘツダ8と
によつて連結してなる凝縮管群9を、前記蒸発管
群4より高い位置で加熱昇温すべき空気の流路1
0中に配置し、これらの蒸発管群4と凝縮管群9
とのうち、各々の上部ヘツダ2,7同士を蒸気連
絡管11によつて連通する一方、下部ヘツダ3,
8同士を蒸気液連絡管12によつて連通する。そ
してこのようにして構成したループ内に水等の作
動流体13を封入しておき、これを廃ガスの有す
る熱により蒸発管1内で蒸発させ、その蒸気が上
部ヘツダ2および蒸気連絡管11を経て凝縮管9
に流入し、ここで空気に熱を与えて凝縮液化する
ことにより、作動流体13がその状態変化に伴う
潜熱として熱を輸送し、また凝縮液化した作動流
体13は凝縮管群9における下部ヘツダ8から液
連絡管12を経て蒸発管群4に還流する。したが
つて作動流体13が上記のように蒸発・凝縮を行
なつて連続的に循環流動することにより、廃ガス
の有する熱によつて空気が加熱昇温される。
Prior Art This type of air preheater is, for example,
This is as described in Publication No. 130967, and as shown in FIG. 4, a plurality of evaporation tubes 1 having a heat pipe structure are connected by an upper header 2 and a lower header 3. An evaporation tube group 4 is disposed in a high-temperature waste gas flow path 5, and a condensation tube group 9 is formed by connecting a plurality of condensation tubes 6 having a heat pipe structure with an upper header 7 and a lower header 8. A flow path 1 for air to be heated and heated at a position higher than the evaporation tube group 4
0, and these evaporator tube group 4 and condensation tube group 9
The upper headers 2 and 7 are connected to each other through a steam communication pipe 11, while the lower headers 3 and 7 are connected to each other through a steam communication pipe 11.
8 are communicated with each other through a vapor-liquid communication pipe 12. A working fluid 13 such as water is sealed in the loop constructed in this way, and this is evaporated in the evaporation tube 1 by the heat of the waste gas, and the steam flows through the upper header 2 and the steam communication tube 11. through condensing pipe 9
The working fluid 13 flows into the air and condenses and liquefies by giving heat to the air, whereby the working fluid 13 transports heat as latent heat accompanying the state change, and the condensed and liquefied working fluid 13 flows into the lower header 8 in the condensing tube group 9 The liquid is then refluxed to the evaporation tube group 4 via the liquid communication tube 12. Therefore, as the working fluid 13 evaporates and condenses as described above and circulates continuously, the air is heated and heated by the heat of the waste gas.

しかして上記のように構成した空気予熱器で
は、入熱側である蒸発管群4と出熱側である凝縮
管群9とを分離してあるから、各々の位置を任意
に設定でき、その結果、ダクトの引き回しを簡素
化でき、それに伴いコストの低廉化を図ることが
でき、そのために大型の空気予熱器や廃熱回収設
備に有効である。
However, in the air preheater configured as described above, since the evaporation tube group 4 on the heat input side and the condensation tube group 9 on the heat output side are separated, the positions of each can be set arbitrarily, and the As a result, duct routing can be simplified and costs can be reduced accordingly, making it effective for large air preheaters and waste heat recovery equipment.

発明が解決しようとする問題点 しかるに連続的な熱交換を行なうためには蒸発
管1内に液相の作動流体13を常時供給する必要
があり、そのために従来では、凝縮管群9におい
て生じた液相の作動流体13を水頭差によつて各
蒸発管1に分配供給し、蒸発管1の全長の20〜30
%を液相の作動流体13が常時満すようにしてい
る。この作動流体13はプール沸騰を伴つて蒸発
が進行する。前述した装置は大型かつ大容量の熱
交換器としての利点が多く、そのために蒸発管1
が長い場合が多く、このような場合には、蒸発管
の長手方向に均一な液膜を形成することが困難で
ある。、また沸騰に伴う液相作動流体の吹上げ現
象(フラツデイング現象)が生じて周期的に内部
熱伝達が不安定となる現象が生じる。また上記従
来の装置においては、蒸発管1のうち液相の作動
流体13が満している部分では、作動流体の円滑
な蒸発が生じず、蒸発部として必ずしも有効に機
能しない場合がある。
Problems to be Solved by the Invention However, in order to perform continuous heat exchange, it is necessary to constantly supply the liquid-phase working fluid 13 into the evaporator tube 1. The working fluid 13 in the liquid phase is distributed and supplied to each evaporation tube 1 according to the water head difference, and is distributed over 20 to 30 minutes of the total length of the evaporation tube 1.
% is always filled with liquid phase working fluid 13. The working fluid 13 evaporates as the pool boils. The above-mentioned device has many advantages as a large-sized and large-capacity heat exchanger, and therefore the evaporation tube 1
is often long, and in such cases it is difficult to form a uniform liquid film in the longitudinal direction of the evaporation tube. Furthermore, a phenomenon in which the liquid-phase working fluid blows up due to boiling (flooding phenomenon) occurs, and internal heat transfer becomes periodically unstable. Furthermore, in the conventional device described above, in the portion of the evaporator tube 1 filled with the liquid-phase working fluid 13, smooth evaporation of the working fluid does not occur, and the portion may not necessarily function effectively as an evaporator.

このように従来の装置では、内部熱伝達の不均
一現象や液相の作動流体が蒸発管1の下部を満し
ていることによる液膜蒸発面積の減少による熱伝
達率の低下等により、蒸発管1内での作動流体1
3の蒸発効率が悪く、その結果、蒸発管1の本数
を多くせざるを得ないなど、経済性に問題があつ
た。
As described above, in conventional devices, the evaporation rate is reduced due to non-uniform internal heat transfer and a decrease in the heat transfer coefficient due to a decrease in the liquid film evaporation area due to the liquid phase working fluid filling the lower part of the evaporation tube 1. Working fluid 1 in pipe 1
3 had poor evaporation efficiency, and as a result, the number of evaporation tubes 1 had to be increased, resulting in economic problems.

この発明は上記の事情に鑑み、蒸発管での熱伝
達率を改善し、ひいては高性能化、小型化を図る
ことのできる分離型ヒートパイプ式空気予熱器を
提供することを目的とするものである。
In view of the above circumstances, it is an object of the present invention to provide a separate heat pipe type air preheater that can improve the heat transfer coefficient in the evaporator tube and achieve higher performance and smaller size. be.

問題点を解決するための手段 この発明は、上記の目的を達成するために、液
相の作動流体を一時貯留するリザーバを、凝縮管
の下部ヘツダに連通して設け、液相作動流体をそ
のリザーバから各蒸発管に個別に供給する分配管
を、各蒸発管にその上端部から挿入したことを特
徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a reservoir for temporarily storing liquid-phase working fluid in communication with the lower header of the condensing pipe, and stores the liquid-phase working fluid in the reservoir. It is characterized in that a distribution pipe for individually supplying each evaporation tube from the reservoir is inserted into each evaporation tube from its upper end.

作 用 したがつてこの発明の空気予熱器では、蒸発管
に入熱があると、ここで作動流体が蒸発し、その
蒸気が上部ヘツダおよび蒸気連絡管を経て凝縮管
内に流れ、ここで潜熱を放出して凝縮液化する。
その結果生じた液相の作動流体は下部ヘツダから
リザーバに流入し、そのリザーバから各分配管に
対して均等にかかる水頭圧により、各蒸発管内に
等量づつ分配供給される。その場合、液相作動流
体は各蒸発管に対してその上端部側から供給さ
れ、蒸発管の内面に沿つて流下しつつ外部から熱
を受けて蒸発するから、蒸発管の内周面全体に液
相作動流体が行き亘つて液膜が形成され蒸発管の
内周面全体が蒸発部となる。また作動流体の供給
が、重力もしくは水頭圧、およびウイツクがあれ
ばその毛細管圧力によつて、充分行なわれる。し
たがつてこの発明では蒸発管の内面全体を有効蒸
発面とすることができることに加え、液相作動流
体の供給がなくなつて乾き上がるいわゆるドライ
アウトが生じるおそれがないため、蒸発管内での
作動流体に対する熱伝達が良好となる。
Function: Therefore, in the air preheater of the present invention, when heat is input to the evaporator tube, the working fluid evaporates there, and the vapor flows into the condensing tube via the upper header and the steam communication tube, where it absorbs latent heat. Release and condense into liquid.
The resulting liquid phase working fluid flows from the lower header into a reservoir, from which it is distributed and supplied in equal amounts into each evaporator tube by the head pressure applied equally to each distribution tube. In that case, the liquid-phase working fluid is supplied to each evaporator tube from the upper end side, and as it flows down along the inner surface of the evaporator tube, it receives heat from the outside and evaporates, so that it spreads over the entire inner peripheral surface of the evaporator tube. The liquid-phase working fluid spreads and forms a liquid film, and the entire inner peripheral surface of the evaporation tube becomes an evaporation section. In addition, the supply of working fluid is sufficiently effected by gravity or head pressure and, if present, capillary pressure. Therefore, in this invention, in addition to being able to use the entire inner surface of the evaporation tube as an effective evaporation surface, there is no risk of so-called dryout occurring when the liquid-phase working fluid is no longer supplied, so that the operation within the evaporation tube is prevented. Good heat transfer to the fluid.

実施例 以下、この発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例を原理的に示す模
式図であつて、まず蒸発管群24の構成について
説明すると、フインチユーブからなる複数本の蒸
発管21は、その内面にウイツク(図示せず)を
添設し、かつ非凝縮性ガスを排気したヒートパイ
プ構造であり、その一端部が上部ヘツダ22によ
つて互いに連結され、またその蒸発管21の他方
の端部が下部ヘツダ23によつて互いに連結され
ており、そして上部ヘツダ22が下部ヘツダ23
より高い位置に位置し、かつ蒸発管21が高温廃
ガス流路25中に位置するよう設置されている。
FIG. 1 is a schematic diagram showing the principle of an embodiment of the present invention. First, the configuration of the evaporator tube group 24 will be explained. A plurality of evaporator tubes 21 consisting of finch tubes have wicks (not shown in the figure) on their inner surfaces. It has a heat pipe structure in which the non-condensable gas is exhausted and one end of the evaporator pipe is connected to the upper header 22, and the other end of the evaporator pipe 21 is connected to the lower header 23. Therefore, they are connected to each other, and the upper header 22 is connected to the lower header 23.
It is located at a higher position and is installed so that the evaporation pipe 21 is located in the high temperature waste gas flow path 25.

また凝縮管群29の構成について説明すると、
凝縮管群29は、前期蒸発管群24とほぼ同様な
構成であつて、フインチユーブからなる複数本の
凝縮管26は、非凝縮性ガスを排気したヒートパ
イプ構造であり、その一端部が上部ヘツダ27に
よつて互いに連結され、またその凝縮管26の他
方の端部が下部ヘツダ28によつて互いに連結さ
れており、そして上部ヘツダ27が下部ヘツダ2
8より高い位置に位置し、かつ凝縮管26が空気
流路30中に位置するよう設置されている。
Furthermore, the configuration of the condensing tube group 29 will be explained as follows.
The condensing tube group 29 has almost the same configuration as the former evaporation tube group 24, and the plurality of condensing tubes 26 made of finch tubes have a heat pipe structure that exhausts non-condensable gas, and one end thereof is connected to the upper header. 27, and the other ends of the condensing tubes 26 are connected to each other by a lower header 28, and the upper header 27 connects to the lower header 2.
8 and is installed so that the condensing pipe 26 is located in the air flow path 30.

そして前記各上部ヘツダ22,27が蒸気連絡
管31によつて互いに連通され、また凝縮管群2
9の下部ヘツダ28には、それより低い位置に設
置したリザーバ34が液連絡管32によつて連通
されており、さらにそのリザーバ34の下部に
は、前記蒸発管21と同数の分配管35が取付け
られ、その各分配管35が上部ヘツダ22を貫通
して前記各蒸発管21にその上端部側から所定深
さまで挿入されている。なお、分配管35は蒸発
管21に比べ十分小さな直径の管で構成される。
以上のように構成された密閉流路内には、空気な
どの非凝縮性ガスを排気した状態で水などの凝縮
性の流体が作動流体33として封入されている。
さらに前記リザーバの上部にベント弁36および
安全弁37が取付けられている。
The upper headers 22 and 27 are connected to each other by a steam communication pipe 31, and the condensing pipe group 2
A reservoir 34 installed at a lower position is connected to the lower header 28 of No. 9 through a liquid communication pipe 32, and furthermore, under the reservoir 34, there are the same number of distribution pipes 35 as the evaporation pipes 21. Each of the distribution pipes 35 passes through the upper header 22 and is inserted into each of the evaporation pipes 21 from the upper end thereof to a predetermined depth. Note that the distribution pipe 35 is constructed of a pipe having a sufficiently smaller diameter than the evaporation pipe 21.
A condensable fluid such as water is sealed as the working fluid 33 in the sealed flow path configured as described above, with non-condensable gas such as air being exhausted.
Furthermore, a vent valve 36 and a safety valve 37 are attached to the upper part of the reservoir.

なお前記分配管35はリザーバ34が液相の作
動流体33を蒸発管21に分配供給するためのも
のであるが、蒸発管21においてはその内周面に
液相の作動流体を供給する必要があるので、蒸発
管21をほぼ垂直に設置してある場合には、分配
管35の先端部を蒸発管21の内面のいずれかの
箇所に接触開口させておくことが好ましい。分配
管35をこのように開口させた場合、液相の作動
流体33を蒸発管21の内面に対して供給するこ
とができるが、蒸発管21が垂直状態であれば、
液相作動流体33の流下速度が大きくなり、蒸発
管21の内周面にウイツクを設けてあつても、内
周面全体への液相作動流体の供給力が低下する。
そこで蒸発管21の内周面全体に対する液相作動
流体の自動的かつ円滑な供給を行なうには、蒸発
管21を第2図に示すように水平面Hに対して5
〜60゜傾斜させて設置することが好ましい。この
ようにすれば、液相作動流体の流下力が低下して
内周面全体に対する供給が充分に行なわれ、これ
に加え第2図に矢印で示すように液流と蒸気流と
が隔絶され、気相作動流体による熱輸送が円滑化
される。
The distribution pipe 35 is for distributing and supplying the liquid-phase working fluid 33 from the reservoir 34 to the evaporation pipe 21, but it is necessary to supply the liquid-phase working fluid to the inner peripheral surface of the evaporation pipe 21. Therefore, when the evaporation tube 21 is installed substantially vertically, it is preferable that the distal end of the distribution tube 35 be opened in contact with any part of the inner surface of the evaporation tube 21. When the distribution pipe 35 is opened in this way, the liquid phase working fluid 33 can be supplied to the inner surface of the evaporation pipe 21, but if the evaporation pipe 21 is in a vertical position,
The flow rate of the liquid-phase working fluid 33 increases, and even if a wick is provided on the inner circumferential surface of the evaporation tube 21, the ability to supply the liquid-phase working fluid to the entire inner circumferential surface decreases.
Therefore, in order to automatically and smoothly supply the liquid-phase working fluid to the entire inner circumferential surface of the evaporation tube 21, the evaporation tube 21 must be placed at a 50-degree angle with respect to the horizontal plane H as shown in FIG.
It is preferable to install it at an angle of ~60°. In this way, the flowing force of the liquid-phase working fluid is reduced, and the entire inner circumferential surface is sufficiently supplied.In addition, the liquid flow and the vapor flow are separated as shown by the arrows in Fig. 2. , heat transport by the gas phase working fluid is facilitated.

上記の空気予熱器によつて空気の加熱昇温を行
なうには、前記高温廃ガス流路25に廃ガスを流
し、これに対し空気流路30に加熱昇温すべき空
気を流す。高温廃ガスからの入熱当初において
は、液相の作動流体33が蒸発管群24の最下部
に下がつているが、入熱によりその液相作動流体
が次第に蒸発する。その蒸気は上部ヘツダ22お
よび蒸気連絡管31を経て凝縮管群29に至り、
ここで空気流路30内の空気に熱を奪われて凝縮
液化する。こうして生じた液相の作動流体は凝縮
管群29の下部ヘツダ28および液連絡管32を
介してリザーバ34に流入する。リザーバ34に
流入する液相作動流体33の量すなわち凝縮管群
29において凝縮する作動流体の量は、蒸発管群
24での入熱流に応じて多くなり、それに伴いリ
ザーバ34での液面が次第に上昇して蒸発管群2
4を基準とした水頭圧が高くなり、その結果、リ
ザーバ34から各蒸発管1に対して均等に液相の
作動流体33が流下する。このようにして供給さ
れた液相の作動流体は蒸発管21の内周面に沿つ
て流れ、その間に外部からの入熱により再度蒸発
する。その場合、液相作動流体の流下を妨げるよ
う作用する力が特に存在しないから、液相作動流
体は蒸発管21の内面全体に充分分散供給され
る。すなわち蒸発管21の内面全体が蒸発部とな
り、かつ所謂ドライアウトが生じることがない。
To heat and raise the temperature of air using the air preheater, waste gas is passed through the high-temperature waste gas flow path 25, and air to be heated and heated is flowed through the air flow path 30. At the beginning of the heat input from the high-temperature waste gas, the liquid-phase working fluid 33 descends to the lowest part of the evaporator tube group 24, but the liquid-phase working fluid gradually evaporates due to the heat input. The steam passes through the upper header 22 and the steam communication pipe 31 and reaches the condensing pipe group 29.
Here, heat is taken away by the air in the air flow path 30 and the air is condensed and liquefied. The liquid phase working fluid thus generated flows into the reservoir 34 via the lower header 28 of the condensing tube group 29 and the liquid communication tube 32. The amount of liquid-phase working fluid 33 flowing into the reservoir 34, that is, the amount of working fluid condensed in the condensing tube group 29, increases in accordance with the heat input flow in the evaporating tube group 24, and accordingly, the liquid level in the reservoir 34 gradually increases. Rising to evaporator tube group 2
4 becomes higher, and as a result, the liquid-phase working fluid 33 flows down equally from the reservoir 34 to each evaporation tube 1. The liquid-phase working fluid thus supplied flows along the inner circumferential surface of the evaporation tube 21, during which time it evaporates again due to heat input from the outside. In this case, since there is no particular force that acts to prevent the liquid-phase working fluid from flowing down, the liquid-phase working fluid is sufficiently distributed and supplied over the entire inner surface of the evaporation tube 21 . That is, the entire inner surface of the evaporation tube 21 becomes an evaporation section, and so-called dryout does not occur.

また上記の空気予熱器では、リザーバ34の内
部には常時空間部が保たれているので、動作中に
非凝縮性ガスが生じても、このガスがリザーバ3
4の空間部に送り込まれることになる。この場
合、前記ベント弁36を定期的に開けば、非凝縮
性ガスを容易かつ完全に排気することができ、そ
の結果、熱輸送特性を良好な状態に維持すること
ができる。
Furthermore, in the above air preheater, a space is always maintained inside the reservoir 34, so even if non-condensable gas is generated during operation, this gas will be absorbed into the reservoir 34.
It will be sent into the space No.4. In this case, by opening the vent valve 36 periodically, the non-condensable gas can be easily and completely exhausted, and as a result, the heat transport properties can be maintained in a good state.

なお、上記の実施例では、リザーバ34を所謂
タンクの形状として示したが、この発明において
は、必要に応じ適宜の形状のリザーバを用いるこ
とができ、その一例を示せば、第3図に示す通り
である。すなわち第3図に示すリザーバ34a
は、両端部を閉じた円筒体すなわち所謂ヘツダと
して構成したものであり、蒸発管群24の上部ヘ
ツダ22と平行にかつ水平に配置され、その下部
に分配管35を接続した構成である。このような
構成であれば、各蒸発管21に対する液相作動流
体の水頭圧を均一化し、各蒸発管21に対する液
相作動流体の供給量を均等にすることが更に容易
になる。
In the above embodiment, the reservoir 34 is shown in the shape of a so-called tank, but in the present invention, a reservoir having an appropriate shape can be used as necessary, and an example thereof is shown in FIG. That's right. That is, the reservoir 34a shown in FIG.
is constructed as a cylindrical body with both ends closed, that is, a so-called header, and is arranged horizontally and parallel to the upper header 22 of the evaporator tube group 24, with a distribution pipe 35 connected to the lower part thereof. With such a configuration, it becomes easier to equalize the head pressure of the liquid phase working fluid to each evaporation tube 21 and to equalize the amount of liquid phase working fluid supplied to each evaporation tube 21.

発明の効果 以上の説明から明らかなようにこの発明の空気
予熱器によれば、リザーバを凝縮管の下部ヘツダ
と蒸発管の上端側との間に配置し、凝縮液化した
作動流体をそのリザーバに一時貯溜した後、各蒸
発管に個別に分配供給するよう構成したので、蒸
発管の内周面では液相作動流体が上端側から流下
することにより、充分液相作動流体を蒸発管の内
部に供給することができ、また蒸発管の内部に液
相作動流体が溜まる所謂プールが生じないため
に、蒸発管の内周面全体が蒸発部となり、広い有
効蒸発面積を取ることができ、したがつてこの発
明では、蒸発管内での熱伝達を効率良く行なわせ
ることができるので、蒸発管から凝縮管への熱輸
送すなわち高温廃ガスから空気に対する熱伝達を
効率化でき、換言すれば、空気予熱器の高性能化
およびそれに伴う小型化を図ることができる。ま
たこの発明では、蒸発管の内部に液相作動流体の
プールが生じないので、作動流体の沸騰によるフ
ラツデイング現象が生じず、そのために最大熱輸
送能力を高めることができる。さらにこの発明で
は、リザーバに非凝縮性ガスを溜めることができ
るので、その排気を容易に行なえる利点がある。
Effects of the Invention As is clear from the above description, according to the air preheater of the present invention, the reservoir is disposed between the lower header of the condensing pipe and the upper end side of the evaporating pipe, and the condensed and liquefied working fluid is transferred to the reservoir. After being temporarily stored, the liquid phase working fluid is configured to be distributed and supplied to each evaporation tube individually, so that the liquid phase working fluid flows down from the upper end side on the inner peripheral surface of the evaporation tube, so that a sufficient amount of liquid phase working fluid can be supplied to the inside of the evaporation tube. In addition, since a so-called pool in which the liquid-phase working fluid accumulates inside the evaporation tube does not occur, the entire inner circumferential surface of the evaporation tube becomes the evaporation part, and a wide effective evaporation area can be obtained. Therefore, in this invention, heat transfer within the evaporator tube can be carried out efficiently, so heat transfer from the evaporator tube to the condensing tube, that is, heat transfer from high temperature waste gas to the air, can be made more efficient.In other words, air preheating It is possible to improve the performance of the device and to reduce its size accordingly. Further, in the present invention, since no pool of liquid-phase working fluid is generated inside the evaporation tube, a flooding phenomenon due to boiling of the working fluid does not occur, and therefore the maximum heat transport capacity can be increased. Further, in this invention, since non-condensable gas can be stored in the reservoir, there is an advantage that it can be easily evacuated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を原理的に示す模
式図、第2図は蒸発管に対する分配管の挿入状態
を示す概略図、第3図は他のリザーバの例を示す
略解斜視図、第4図は従来の分離型ヒートパイプ
式熱交換器の一例を原理的に示す模式図である。 21……蒸発管、22,27……上部ヘツダ、
23,28……下部ヘツダ、24……蒸発管群、
25……高温廃ガス流路、26……凝縮管、29
……凝縮管群、30……空気流路、31……蒸気
連絡管、32……液連絡管、33……作動流体、
34……リザーバ、35……分配管。
FIG. 1 is a schematic diagram showing the principle of an embodiment of the present invention, FIG. 2 is a schematic diagram showing how the distribution pipe is inserted into the evaporation pipe, and FIG. 3 is a schematic exploded perspective view showing another example of the reservoir. FIG. 4 is a schematic diagram showing the principle of an example of a conventional separated heat pipe type heat exchanger. 21... Evaporation pipe, 22, 27... Upper header,
23, 28...lower header, 24...evaporation tube group,
25... High temperature waste gas flow path, 26... Condensing pipe, 29
... Condensing pipe group, 30 ... Air flow path, 31 ... Steam communication pipe, 32 ... Liquid communication pipe, 33 ... Working fluid,
34...Reservoir, 35...Distribution pipe.

Claims (1)

【特許請求の範囲】 1 複数本の蒸発管が一方の端部を高くして高温
流体流路中に配置されるとともに、その蒸発管の
各端部が上部ヘツダおよび下部ヘツダによつてそ
れぞれ連結され、また予熱すべき空気の流路中に
複数本の凝縮管が一端部を高くして配置されると
ともに、その凝縮管の各端部が上部ヘツダおよび
下部ヘツダによつてそれぞれ連結され、さらに前
記各上部ヘツダが蒸気連絡管によつて連通される
とともに、前記蒸発管と凝縮管とが液連絡管によ
つて連通され、かつこれら蒸発管および凝縮管な
らびに各連絡管によつて形成される流路中に潜熱
として熱輸送を行なう凝縮性流体からなる作動流
体が封入された構成の空気予熱器において、 液相作動流体を一時貯留するリザーバが、前記
凝縮管の下部ヘツダに連通して設けられるととも
に、そのリザーバ内の液相作動流体を各蒸発管に
個別に供給する分配管が、各蒸発管内にその上端
部から挿入されていることを特徴とする分離型ヒ
ートパイプ式空気予熱器。
[Scope of Claims] 1. A plurality of evaporation tubes are arranged in a high-temperature fluid flow path with one end elevated, and each end of the evaporation tubes is connected by an upper header and a lower header, respectively. In addition, a plurality of condensing tubes are arranged in the flow path of the air to be preheated with their ends raised high, and each end of the condensing tubes is connected by an upper header and a lower header, and Each of the upper headers is communicated by a steam communication pipe, and the evaporation pipe and the condensation pipe are communicated by a liquid communication pipe, and the evaporation pipe and the condensation pipe are formed by the communication pipe. In an air preheater having a configuration in which a working fluid made of a condensable fluid that transfers heat as latent heat is sealed in a flow path, a reservoir for temporarily storing a liquid phase working fluid is provided in communication with a lower header of the condensing pipe. A separate heat pipe type air preheater characterized in that a distribution pipe for individually supplying the liquid-phase working fluid in the reservoir to each evaporation tube is inserted into each evaporation tube from its upper end.
JP27121085A 1985-12-02 1985-12-02 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI Expired - Lifetime JPH0231312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27121085A JPH0231312B2 (en) 1985-12-02 1985-12-02 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27121085A JPH0231312B2 (en) 1985-12-02 1985-12-02 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Publications (2)

Publication Number Publication Date
JPS62131198A JPS62131198A (en) 1987-06-13
JPH0231312B2 true JPH0231312B2 (en) 1990-07-12

Family

ID=17496880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27121085A Expired - Lifetime JPH0231312B2 (en) 1985-12-02 1985-12-02 BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI

Country Status (1)

Country Link
JP (1) JPH0231312B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678871B2 (en) * 1987-10-12 1994-10-05 株式会社フジクラ Water heater
JP6035513B2 (en) * 2012-09-06 2016-11-30 パナソニックIpマネジメント株式会社 Cooling device and electric vehicle equipped with the same
CN106197102A (en) * 2016-08-29 2016-12-07 何其伦 Steam chest type adopting heat pipes for heat transfer mechanism
CN111521049A (en) * 2019-02-01 2020-08-11 庞苏佳 Efficient disconnect-type gravity heat pipe evaporimeter

Also Published As

Publication number Publication date
JPS62131198A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
US4489777A (en) Heat pipe having multiple integral wick structures
US4688399A (en) Heat pipe array heat exchanger
EP0316044A1 (en) Heat pipe working liquid distribution system
US5275232A (en) Dual manifold heat pipe evaporator
JPH0231313B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JPH0231312B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JP2002071090A (en) Oil tank equipped with cooler for minimum flow
JPS58198648A (en) Loop type heat pipe system solar heat water heater
JPH0756431B2 (en) Variable conduction heat pipe reinforcement
JPS6237689A (en) Annular heat pipe
JP2663316B2 (en) Structure of evaporation part of loop type heat pipe
JPS62123291A (en) Large-caliber and long vertical thermo siphon
JPH0547967Y2 (en)
JPH0116945Y2 (en)
JPS6237318B2 (en)
JPS6215733Y2 (en)
JPH0429245Y2 (en)
JPH0547964Y2 (en)
JPS6196395A (en) Heat transfer device
JPH0645171Y2 (en) Heat pipe heat exchanger
JPH0740854Y2 (en) Long vertical thermosiphon
JPS5971985A (en) Heat transporting apparatus
JPH0665766U (en) Structure of evaporation part in loop type long heat pipe
GB2166539A (en) Heat pipe array heat exchanger