JPH0330295B2 - - Google Patents

Info

Publication number
JPH0330295B2
JPH0330295B2 JP14804882A JP14804882A JPH0330295B2 JP H0330295 B2 JPH0330295 B2 JP H0330295B2 JP 14804882 A JP14804882 A JP 14804882A JP 14804882 A JP14804882 A JP 14804882A JP H0330295 B2 JPH0330295 B2 JP H0330295B2
Authority
JP
Japan
Prior art keywords
wiring layer
etching
insulating film
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14804882A
Other languages
Japanese (ja)
Other versions
JPS5936944A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14804882A priority Critical patent/JPS5936944A/en
Publication of JPS5936944A publication Critical patent/JPS5936944A/en
Publication of JPH0330295B2 publication Critical patent/JPH0330295B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は分子構造の異なる二種の耐熱高分子樹
脂の二層積層構造の層間絶縁膜を用いる多層配線
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for forming multilayer wiring using an interlayer insulating film having a two-layer laminated structure of two types of heat-resistant polymer resins having different molecular structures.

(b) 技術の背景 例えば集積回路半導体素子の高密度、高速度化
が急速に進展している中で、微細パターン多層配
線構造の電極を形成する技術が集積度や性能の向
上を左右する重要な技術となつて来ている。
(b) Background of the technology For example, with the rapid progress in increasing the density and speed of integrated circuit semiconductor devices, the technology for forming electrodes in finely patterned multilayer wiring structures is becoming increasingly important in determining the degree of integration and performance. It is becoming a new technology.

(c) 従来技術と問題点 上記半導体素子における多層配線構造を形成す
るに際して、従来の方法に於ては、第1図に示す
ように半導体基板1上にアルミニウム等の第1電
極配線層2が形成され、更に該配線層2を含む前
記半導体基板1上に、例えばCVD法による二酸
化シリコン層3を全面に被覆し、通常のフオトエ
ツチング技術によつて電極接続窓4を形成し、該
接続窓4を介してAl等の第2電極配線層5が形
成されてなる。しかしながらかかる構造において
は、多層積層の場合図から明らかなように段差部
6においてAl披着層がうすくなり第2配線の断
線の心配がある。そこで前述した段差部6を無く
し半導体基板1上面の平坦化手法として第2図に
示すように耐熱高分子樹脂例えば流動性のポリア
ミド樹脂溶液等の被覆が多用されている。第2図
において前図の同等の部分については同符号を符
しているが第1電極配線層2が設けられた半導体
基板上にポリアミドを全面にスピン・コートし所
定のステツプ・キユラーを行つてポリイミド層7
からなる層間絶縁膜を形成し、次いで該ポリイミ
ド層7に通常のフオトエツチング技術によつて電
極接続窓8を形成し、該電極接続窓8を介して
Al第2電極配線層5が形成されてなる。しかし
ながら上記従来方法においては、第3図の要部拡
大断面図に示すように、ポリイミド層7に電極接
続窓8をエツチング形成する際に、レジスト膜の
エツチング窓と第1電極層2との間に位置ずれが
あるとエツチング窓内に第1電極層2に隣接する
領域のポリイミド層7が表出し、該領域のポリイ
ミド層7にオーバエツチング部9が形成され、そ
のため該領域に面した第1電極配線層2の縁部に
は鋭利な角10を持つ段差部11が形成される。
そのために前記接続窓8において第1配線層2に
接する第2電極配線層5を形成した際に、該第2
電極配線層5に、第1電極配線層2の鋭利な角1
0を起点とする亀裂12が発生しがちで、第2電
極配線層5の信頼度の低下という問題がある。そ
のため従来は上記位置ずれを防止する手段とし
て、第1電極配線層2における配線接続領域に通
常の配線幅の例えば三倍程度の一辺を有する広い
配線接続パツドを形成して多少ずれが生じても上
記問題が生じないようにしていたが、該手段は半
導体装置の集積度を低下せしめ高集積化を阻害す
る問題があつた。
(c) Prior Art and Problems When forming the multilayer wiring structure in the above-mentioned semiconductor device, in the conventional method, a first electrode wiring layer 2 made of aluminum or the like is formed on a semiconductor substrate 1 as shown in FIG. The semiconductor substrate 1 including the wiring layer 2 is further covered with a silicon dioxide layer 3 by, for example, a CVD method, and an electrode connection window 4 is formed by a normal photoetching technique. A second electrode wiring layer 5 made of Al or the like is formed through the electrode 4. However, in such a structure, in the case of multi-layer lamination, the Al deposited layer becomes thinner at the stepped portion 6, and there is a risk of disconnection of the second wiring. Therefore, as a method for flattening the upper surface of the semiconductor substrate 1 by eliminating the step portion 6 mentioned above, coating with a heat-resistant polymer resin, such as a fluid polyamide resin solution, is often used as shown in FIG. In Fig. 2, parts equivalent to those in the previous figure are given the same reference numerals, but polyamide is spin-coated over the entire surface of the semiconductor substrate on which the first electrode wiring layer 2 is provided, and a predetermined step-curing process is performed. Polyimide layer 7
Then, an electrode connection window 8 is formed on the polyimide layer 7 by a normal photoetching technique, and an electrode connection window 8 is formed through the electrode connection window 8.
An Al second electrode wiring layer 5 is formed. However, in the above conventional method, when forming the electrode connection window 8 on the polyimide layer 7 by etching, as shown in the enlarged cross-sectional view of the main part of FIG. If there is a positional shift in the etching window, the polyimide layer 7 in the region adjacent to the first electrode layer 2 is exposed, and an overetched portion 9 is formed in the polyimide layer 7 in the region, so that the polyimide layer 7 in the region adjacent to the first electrode layer 2 facing the region is exposed. A stepped portion 11 having a sharp corner 10 is formed at the edge of the electrode wiring layer 2 .
For this reason, when forming the second electrode wiring layer 5 in contact with the first wiring layer 2 in the connection window 8, the second electrode wiring layer 5 is
The electrode wiring layer 5 has a sharp corner 1 of the first electrode wiring layer 2.
Cracks 12 starting from 0 tend to occur, which poses a problem of lowering the reliability of the second electrode wiring layer 5. Therefore, conventionally, as a means to prevent the above-mentioned positional deviation, a wide wiring connection pad having one side, for example, about three times the normal wiring width, is formed in the wiring connection area of the first electrode wiring layer 2 to prevent the positional deviation from occurring. Although the above-mentioned problem was prevented from occurring, this method had the problem of lowering the degree of integration of the semiconductor device and hindering higher integration.

(d) 発明の目的 本発明の目的はかかる問題点を解消し、高集積
化可能な多層配線形成方法の提供にある。
(d) Object of the Invention The object of the present invention is to provide a method for forming multilayer interconnections that solves these problems and allows for high integration.

(e) 発明の構成 即ち本発明は下層配線層が設けられた基板上に
第1耐熱高分子樹脂を塗布硬化させて第1絶縁膜
を形成し、次いで該第1絶縁膜を一部エツチング
除去して前記下層配線層を表出させる工程と、該
下層配線層上と残存する前記第1絶縁膜上に一エ
ツチング条件でのエツチングレートが該下層配線
層及び該第1絶縁膜に比して大きい第2絶縁膜を
第2耐熱高分子樹脂を塗布硬化させて形成する工
程と、その後前記エツチング条件でエツチングし
て前記第2絶縁膜に前記下層配線層幅より大きな
接続窓を形成する工程と、前記下層配線層上に上
層配線層を設けて接続部を形成する工程とが含ま
れてなることを特徴とする。
(e) Structure of the Invention That is, the present invention involves coating and curing a first heat-resistant polymer resin on a substrate provided with a lower wiring layer to form a first insulating film, and then partially etching away the first insulating film. to expose the lower wiring layer, and etching the lower wiring layer and the remaining first insulating film at an etching rate under one etching condition compared to the lower wiring layer and the first insulating film. forming a large second insulating film by applying and curing a second heat-resistant polymer resin; and thereafter etching under the etching conditions to form a connection window in the second insulating film that is larger than the width of the lower wiring layer. The method is characterized in that it includes a step of providing an upper wiring layer on the lower wiring layer to form a connection part.

(f) 発明の実施例 以下本発明の実施例について、第4図乃至第9
図に示す一実施例の工程要部断面図を用いて具体
的に説明する。尚前図と同等の部分については同
一符号を付している。
(f) Embodiments of the invention The embodiments of the invention will be described below in Figures 4 to 9.
A detailed explanation will be given using a cross-sectional view of a main process part of an embodiment shown in the figure. The same parts as in the previous figure are given the same reference numerals.

第4図において半導体基板21上に通常の蒸着
又はスパツタ法にて約1μmの厚さのアルミニウ
ムなどの金属簿膜を形成し、通常のフオトエツチ
ング法によつて所要の下層配線層22を形成す
る。次いで第5図に示すように該下層配線層22
を含む前記半導体基板21上に第1耐熱高分子樹
脂層からなる絶縁膜23を約1.2μmの厚さにスピ
ンコート法によつて塗布すればその流動性により
平坦な表面層が形成される。第1耐熱高分子樹脂
溶液として例えばパイラリンPI−2555(デユポン
社製)などを使用し気泡の混入を防止するためス
テツプ・キユアーを行い最終処理温度約450℃、
加熱時間約30分間熱処理して第1耐熱高分子樹脂
層23を硬化させる。該硬化第1耐熱高分子樹脂
23は、後の工程に使用するヒドラジン系エツチ
ング液に対して耐食刻性を有している。次いで第
6図に示すように第1耐熱高分子樹脂層23表面
を通常の酸素(O2)プラズマ処理により下層配
線層22が完全に表面に露出するまでエツチング
除去する。エツチング条件としてガス圧約
1Torr、出力300W、時間約2分間程度である。
次いて第7図に示すように下層配線層22を含む
第1耐熱高分子樹脂層23上に第2耐熱高分子樹
脂層24、例えば電子絶縁コーテイング材SP−
710(東レ社製)を全面に塗布し、ステツプ・キユ
ラーを行い最終処理温度450℃、加熱時間30分の
熱処理で硬化する。該硬化第2耐熱高分子樹脂層
24はヒドラジン系エツチング液に対して食刻性
を有している。次いで第8図に示すように該第2
耐熱高分子樹脂層24上に、所望の下層配線層2
2幅より大きな配線接続窓形成領域面を表出する
エツチング窓25を有するレジスト膜26を、通
常のフオト・フロセスを用いて形成し、次いで該
レジスト膜26をマスクとして、ヒドラジン等か
らなる樹脂エツチング液を用いる通常のウエツ
ト・エツチングを行つて、前記第2耐熱高分子樹
脂層24に下層配線層22を上面を表出する接続
窓27を形成する。勿論接続窓27寸法は使用目
的によつて下層配線層2幅と同等あるいはそれ以
外であつても構わない。尚此の際前記第1耐熱高
分子層23は耐食刻性であるため、接続窓パター
ンの位置ずれによる段差を生ずることはない。次
いて該レジスト膜26をレジスト剥離液などを用
いて除去する。次いで通常の方法即ち蒸着或いは
スパツタ及び選択エツチング等の手段を用いて、
第9図に示すように、前記第2耐熱高分子樹脂層
24上にその接続窓27部に於て下層配線層22
に接する例えばアルミニウム上層配線層28を形
成する。
In FIG. 4, a metal film of approximately 1 μm thick, such as aluminum, is formed on a semiconductor substrate 21 by ordinary vapor deposition or sputtering, and a required lower wiring layer 22 is formed by ordinary photo-etching. . Next, as shown in FIG.
When an insulating film 23 made of a first heat-resistant polymer resin layer is applied to a thickness of about 1.2 μm by spin coating on the semiconductor substrate 21 including the semiconductor substrate 21, a flat surface layer is formed due to its fluidity. For example, Pyralin PI-2555 (manufactured by DuPont) is used as the first heat-resistant polymer resin solution, step curing is performed to prevent the inclusion of air bubbles, and the final treatment temperature is approximately 450°C.
The first heat-resistant polymer resin layer 23 is cured by heat treatment for about 30 minutes. The cured first heat-resistant polymer resin 23 has etching resistance against a hydrazine-based etching solution used in subsequent steps. Next, as shown in FIG. 6, the surface of the first heat-resistant polymer resin layer 23 is etched away by ordinary oxygen (O 2 ) plasma treatment until the lower wiring layer 22 is completely exposed on the surface. Gas pressure as an etching condition
1Torr, output 300W, time about 2 minutes.
Next, as shown in FIG. 7, on the first heat-resistant polymer resin layer 23 including the lower wiring layer 22, a second heat-resistant polymer resin layer 24, for example, an electronic insulating coating material SP-
710 (manufactured by Toray Industries, Inc.) is applied to the entire surface, step cure is performed, and the final treatment temperature is 450℃ and heat treatment is performed for 30 minutes to harden. The cured second heat-resistant polymer resin layer 24 has etching properties with respect to a hydrazine-based etching solution. Then, as shown in FIG.
A desired lower wiring layer 2 is formed on the heat-resistant polymer resin layer 24.
A resist film 26 having an etching window 25 that exposes the surface of the wiring connection window forming area larger than 2 widths is formed using a normal photo process, and then using the resist film 26 as a mask, a resin made of hydrazine or the like is etched. A connection window 27 exposing the upper surface of the lower wiring layer 22 is formed in the second heat-resistant polymer resin layer 24 by ordinary wet etching using a liquid. Of course, the dimensions of the connection window 27 may be equal to or different from the width of the lower wiring layer 2 depending on the purpose of use. In this case, since the first heat-resistant polymer layer 23 is resistant to etching, no steps are caused due to misalignment of the connection window pattern. Next, the resist film 26 is removed using a resist stripper or the like. Then, using conventional methods such as vapor deposition or sputtering and selective etching,
As shown in FIG. 9, the lower wiring layer 22 is placed on the second heat-resistant polymer resin layer 24 at the connection window 27.
For example, an upper wiring layer 28 of aluminum is formed in contact with the upper wiring layer 28 .

以上説明したように本発明によれば、第1耐熱
高分子樹脂層23によつて下層配線層22面を平
坦化し、かつ該樹脂層23は接続窓27をエツチ
ング形成する際に、その耐食刻性を利用すること
によつて段差を生ずることがなく、位置合せ作業
の困難性を解消すると共に、下層配線層22幅よ
り大きな電極接続窓27を形成することが可能と
なる。
As explained above, according to the present invention, the surface of the lower wiring layer 22 is flattened by the first heat-resistant polymer resin layer 23, and the resin layer 23 is etched when the connection window 27 is formed by etching. By taking advantage of this property, there is no difference in level, which eliminates the difficulty of alignment work, and makes it possible to form the electrode connection window 27 larger than the width of the lower wiring layer 22.

(g) 発明の効果 このようにすれば特に下層配線層に大面積の配
線接続パターンを設ける必要がなく、半導体素子
の高集積化が可能となり、かつ位置合せ作業の簡
易化による能率向上、及び平坦化の断線防止によ
る信頼性向上など大きな効果を得ることができ
る。
(g) Effects of the invention In this way, it is not necessary to provide a large-area wiring connection pattern particularly in the lower wiring layer, and it becomes possible to increase the integration of semiconductor elements, and also improves efficiency by simplifying alignment work. Significant effects such as improved reliability can be obtained by preventing wire breakage during flattening.

なお本発明は三層以上の多層配線にも適用さ
れ、又実施例は本発明の一例としてあげたもので
あり本発明の範囲を制限するものではない。
Note that the present invention is also applicable to multilayer wiring of three or more layers, and the embodiments are given as examples of the present invention and are not intended to limit the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来方法による要部断面
図、第3図は従来方法による要部拡大断面図、第
4図乃至第9図は本発明による一実施例の工程要
部断面図である。 図において21は半導体基板、22は下層配線
層、23は第1耐熱高分子樹脂層、24は第2耐
熱高分子樹脂層、26はレジスト膜、27は接続
窓、28は上層配線層を示す。
1 and 2 are sectional views of the main parts according to the conventional method, FIG. 3 is an enlarged sectional view of the main parts according to the conventional method, and FIGS. 4 to 9 are sectional views of the main parts of the process of an embodiment according to the present invention. be. In the figure, 21 is a semiconductor substrate, 22 is a lower wiring layer, 23 is a first heat-resistant polymer resin layer, 24 is a second heat-resistant polymer resin layer, 26 is a resist film, 27 is a connection window, and 28 is an upper wiring layer. .

Claims (1)

【特許請求の範囲】[Claims] 1 下層配線層が設けられた基板上に第1耐熱高
分子樹脂を塗布硬化させて第1絶縁膜を形成し、
次いで該第1絶縁膜を一部エツチング除去して前
記下層配線層を表出させる工程と、該下層配線層
上と残存する前記第1絶縁膜上に一エツチング条
件でのエツチングレートが該下層配線層及び該第
1絶縁膜に比して大きい第2絶縁膜を第2耐熱高
分子樹脂を塗布硬化させて形成する工程と、その
後前記エツチング条件でエツチングして前記第2
絶縁膜に前記下層配線層幅より大きな接続窓を形
成する工程と、前記下層配線層上に上層配線層を
設けて接続部を形成する工程とが含まれてなるこ
とを特徴とする多層配線形成方法。
1. Coating and curing a first heat-resistant polymer resin on a substrate provided with a lower wiring layer to form a first insulating film;
Next, a step of etching away a portion of the first insulating film to expose the lower wiring layer, and etching the lower wiring layer and the remaining first insulating film at an etching rate under one etching condition. forming a second insulating film larger than the first insulating film by applying and curing a second heat-resistant polymer resin, and then etching the second insulating film under the etching conditions described above.
A multilayer wiring formation characterized by comprising the steps of: forming a connection window larger than the width of the lower wiring layer in an insulating film; and forming a connection part by providing an upper wiring layer on the lower wiring layer. Method.
JP14804882A 1982-08-25 1982-08-25 Formation of multilayer wiring Granted JPS5936944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14804882A JPS5936944A (en) 1982-08-25 1982-08-25 Formation of multilayer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14804882A JPS5936944A (en) 1982-08-25 1982-08-25 Formation of multilayer wiring

Publications (2)

Publication Number Publication Date
JPS5936944A JPS5936944A (en) 1984-02-29
JPH0330295B2 true JPH0330295B2 (en) 1991-04-26

Family

ID=15443972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14804882A Granted JPS5936944A (en) 1982-08-25 1982-08-25 Formation of multilayer wiring

Country Status (1)

Country Link
JP (1) JPS5936944A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824185B2 (en) * 1985-03-08 1996-03-06 セイコー電子工業株式会社 Thin film transistor device and manufacturing method thereof
US5442237A (en) * 1991-10-21 1995-08-15 Motorola Inc. Semiconductor device having a low permittivity dielectric

Also Published As

Publication number Publication date
JPS5936944A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
EP0450381B1 (en) Multilayer interconnection structure
CN110383488B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JPH0513960A (en) Manufacture of multilayer wiring board
JPS61152040A (en) Manufacture of semiconductor device
JPH0330295B2 (en)
JPS5936943A (en) Formation of multilayer wiring
JPS5886746A (en) Semiconductor device
JPH07307550A (en) Manufacture of electronic component
JPS62137853A (en) Formation of multilayer interconnection
KR100368090B1 (en) Contact hole formation method of nonsensitive polyimide resin insulation layer
JPS6313346B2 (en)
JPS5833854A (en) Manufacture of semiconductor device
KR920000831B1 (en) Metalized multi-layer of semiconductor elements
JPS62290148A (en) Manufacture of semiconductor device
JPS6059737A (en) Manufacture of semiconductor device
JP2002280451A (en) Method for forming multilayer wiring
JPS6227745B2 (en)
JPS6355784B2 (en)
JPS6118341B2 (en)
JPH079933B2 (en) Method for manufacturing semiconductor device
JPS62293644A (en) Manufacture of semiconductor device
JPS6322067B2 (en)
JPS6226843A (en) Formation of electrode metal wiring pattern
JPS60124950A (en) Semiconductor device having multilayer interconnection structure
JPS59119730A (en) Manufacture of semiconductor device