JPH03297173A - 半導体受光素子 - Google Patents
半導体受光素子Info
- Publication number
- JPH03297173A JPH03297173A JP2100603A JP10060390A JPH03297173A JP H03297173 A JPH03297173 A JP H03297173A JP 2100603 A JP2100603 A JP 2100603A JP 10060390 A JP10060390 A JP 10060390A JP H03297173 A JPH03297173 A JP H03297173A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- scattering
- mixed crystal
- light absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 230000003287 optical effect Effects 0.000 title abstract description 6
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 230000031700 light absorption Effects 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 5
- 238000002161 passivation Methods 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910018949 PtAu Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光フアイバ通信等で用いられる半導体受光素
子に関し、特に、混晶散乱及び金属散乱の少ない、低雑
音及び高速応答に優れた半導体受光素子に関するもので
ある。
子に関し、特に、混晶散乱及び金属散乱の少ない、低雑
音及び高速応答に優れた半導体受光素子に関するもので
ある。
(従来の技術)
波長1〜1.6μm域における光通信用半導体受光素子
として、InPとInGaAsからなるヘテロ接合型ア
バランシェフォトダイオード(以下APDと略記)がほ
ぼ実用化されている。
として、InPとInGaAsからなるヘテロ接合型ア
バランシェフォトダイオード(以下APDと略記)がほ
ぼ実用化されている。
APDの高感度のためには、電子・正孔のいずれか一方
のキャリアのイオン化率が他方より十分大きい(α/1
3>1、または、p/a>1)ことが必須となる。しか
しながら、このAPDは、InPをアバランシェ増倍層
としているが、InPの電子イオン化率(α)と正孔イ
オン化率(13)との比I3/αは、2程度であり、波
長0.8pm域の8iのAPDのα/p=20に比べ非
常に小さくなっている。
のキャリアのイオン化率が他方より十分大きい(α/1
3>1、または、p/a>1)ことが必須となる。しか
しながら、このAPDは、InPをアバランシェ増倍層
としているが、InPの電子イオン化率(α)と正孔イ
オン化率(13)との比I3/αは、2程度であり、波
長0.8pm域の8iのAPDのα/p=20に比べ非
常に小さくなっている。
これに対し、高感度APD実現のため、GaInAsP
系を光吸収層や光増倍層に用いること(ジャーナル。
系を光吸収層や光増倍層に用いること(ジャーナル。
アプライド・フィジックス(J、 Appl、 Phy
s、 )1967、38゜p3705)が提案されてい
る。しかしながら、前記GaInAsPを成長させると
、ストイキオメトリ−の揺らぎ、混晶散乱やIII族原
子が局在することによる金属散乱等が発生し、イオン化
率を大幅に低減させること(ジャパニーズ・ジャーナル
・アプライド・フィジックス(Jpn、 J、 App
l、 Phys) 1986.25. p568)が指
摘されている。
s、 )1967、38゜p3705)が提案されてい
る。しかしながら、前記GaInAsPを成長させると
、ストイキオメトリ−の揺らぎ、混晶散乱やIII族原
子が局在することによる金属散乱等が発生し、イオン化
率を大幅に低減させること(ジャパニーズ・ジャーナル
・アプライド・フィジックス(Jpn、 J、 App
l、 Phys) 1986.25. p568)が指
摘されている。
また、PINフォトダイオードにおいても、前述の散乱
等の影響により、キャリアの移動度が劣化し、応答特性
を悪くしている。
等の影響により、キャリアの移動度が劣化し、応答特性
を悪くしている。
(発明が解決しようとする課題)
通常の成長方法では、前述したように混晶化合物半導体
を成長すると、ストイキオメトリ−が揺らぎ、混晶散乱
及び金属散乱が顕著なため、前記混晶化合物半導体を光
吸収層またはアバランシェ増倍層に適用すると、イオン
化効率の抑制やキャリア移動度の抑制等の原因になる。
を成長すると、ストイキオメトリ−が揺らぎ、混晶散乱
及び金属散乱が顕著なため、前記混晶化合物半導体を光
吸収層またはアバランシェ増倍層に適用すると、イオン
化効率の抑制やキャリア移動度の抑制等の原因になる。
本発明の目的は、ストイキオメトリ−が整合し、且つ、
混晶散乱及び金属散乱の少ない混晶化合物半導体を作製
し、低雑音・高速応答を有する半導体受光素子を提供す
ることにある。
混晶散乱及び金属散乱の少ない混晶化合物半導体を作製
し、低雑音・高速応答を有する半導体受光素子を提供す
ることにある。
(課題を解決するための手段)
本発明半導体受光素子は、光吸収層またはアバランシェ
増倍層が、3元以上の化合物半導体で構成されている半
導体受光素子において、(001)面から[110]方
向にわずかに傾いた半導体基板上に少なくともストイキ
オメトリ−が整合され、且つ、混晶散乱及び金属散乱の
少ない、光吸収層またはアバランシェ増倍層を有するこ
とを特徴とする。−例として異なる2元化合物半導体が
1分子ラインずつ交互に形成され、全体としては3元以
上の化合物の光吸収層、あるいは増倍層を有することを
特徴とする。
増倍層が、3元以上の化合物半導体で構成されている半
導体受光素子において、(001)面から[110]方
向にわずかに傾いた半導体基板上に少なくともストイキ
オメトリ−が整合され、且つ、混晶散乱及び金属散乱の
少ない、光吸収層またはアバランシェ増倍層を有するこ
とを特徴とする。−例として異なる2元化合物半導体が
1分子ラインずつ交互に形成され、全体としては3元以
上の化合物の光吸収層、あるいは増倍層を有することを
特徴とする。
(作用)
本発明は、上述の手段をとることにより、従来技術の問
題点を解決した。第1図には、本発明の受光素子のアバ
ランシェ増倍層の製造方法を示す。
題点を解決した。第1図には、本発明の受光素子のアバ
ランシェ増倍層の製造方法を示す。
前記アバランシェ増倍層には、具体例として、InxG
a1−xAs、Pl−y(0≦X≦1)(0≦y≦1)
の材料を用いている。基板は、(001)面から[■1
0]方向にわずかに(α0)傾いた基板を用いる(第1
図(a))。基板表面には、定のステップが存在する。
a1−xAs、Pl−y(0≦X≦1)(0≦y≦1)
の材料を用いている。基板は、(001)面から[■1
0]方向にわずかに(α0)傾いた基板を用いる(第1
図(a))。基板表面には、定のステップが存在する。
そこでアバランシェ増倍層の成長において、InPの1
分子ライン分の原料を供給すると、第1図(b)のよう
にテラスエツジに沿って1分子ラインのInP層が成長
する。これは、結晶成長速度が[110]方向より、[
110]方向に速いために、ステップエツジに吸着する
ように成長が進むことを利用したものである。次に続い
て、1分子ライン分のGaAs原料を供給すると1分子
ラインのGaAsが形成され、あわせて2分子ラインの
成長が行われたことになる(第1図(C))。この方法
を繰り返すことにより、異なる2元化合物半導体が1分
子ラインずつ交互に形成される。この構造ではIII族
・■族原子配置がそれぞれ正確に制御されているのでス
トイキオメトリ−が整合しかつ混晶散乱及び金属散乱の
ないアバランシェ増倍層を得ることができる。(第1図
(d))。
分子ライン分の原料を供給すると、第1図(b)のよう
にテラスエツジに沿って1分子ラインのInP層が成長
する。これは、結晶成長速度が[110]方向より、[
110]方向に速いために、ステップエツジに吸着する
ように成長が進むことを利用したものである。次に続い
て、1分子ライン分のGaAs原料を供給すると1分子
ラインのGaAsが形成され、あわせて2分子ラインの
成長が行われたことになる(第1図(C))。この方法
を繰り返すことにより、異なる2元化合物半導体が1分
子ラインずつ交互に形成される。この構造ではIII族
・■族原子配置がそれぞれ正確に制御されているのでス
トイキオメトリ−が整合しかつ混晶散乱及び金属散乱の
ないアバランシェ増倍層を得ることができる。(第1図
(d))。
本発明を光吸収層に適用した場合も同様である。例えば
InGaAs吸収層をInAsとGaAsを交互に1分
子ラインずつ形成することにより所望の構造が得られる
。
InGaAs吸収層をInAsとGaAsを交互に1分
子ラインずつ形成することにより所望の構造が得られる
。
(実施例)
以下、本発明の実施例について、図面を用いて詳細に説
明する。第2図は、本発明の一実施例のより形成された
アバランシェ増倍型受光素子の断面図である。製造方法
としては、(001)面から[110]方向にわずかに
傾いたn型InP基板1上に、n型InPバッファ層2
を0.5pm、 n型InGaAs光吸収層3を1.5
pm、n型InGaAsPアバランシェ増倍層4を0.
5pm、 n型InPキャップ層5を0.5pm順次積
層する。ここで、アバランシェ増倍層は作用の項で述べ
た方法で作製する。その後、p+型型光光領域6p−型
ガードリング領域7をそれぞれZn拡散により、また、
パッシベーション膜8を150OA形成し、n側オーミ
ック電極9として、AuGe/Niを1500人、Ti
PtAuを500人堆積する。さらに、p側オーミック
電極10として、AuZnを1500人堆積することに
よって素子構造を完成した。
明する。第2図は、本発明の一実施例のより形成された
アバランシェ増倍型受光素子の断面図である。製造方法
としては、(001)面から[110]方向にわずかに
傾いたn型InP基板1上に、n型InPバッファ層2
を0.5pm、 n型InGaAs光吸収層3を1.5
pm、n型InGaAsPアバランシェ増倍層4を0.
5pm、 n型InPキャップ層5を0.5pm順次積
層する。ここで、アバランシェ増倍層は作用の項で述べ
た方法で作製する。その後、p+型型光光領域6p−型
ガードリング領域7をそれぞれZn拡散により、また、
パッシベーション膜8を150OA形成し、n側オーミ
ック電極9として、AuGe/Niを1500人、Ti
PtAuを500人堆積する。さらに、p側オーミック
電極10として、AuZnを1500人堆積することに
よって素子構造を完成した。
第3図(aXb)には、それぞれ速成らが示した電子と
ホールのイオン化率の組成依存性(ジャパニーズ。
ホールのイオン化率の組成依存性(ジャパニーズ。
ジャーナル、オブ・アプライド・フィジックス(Jpn
、J。
、J。
Appl、 Phys) 1986.25. p568
))及び本発明による受光素子のイオン化率を示す。計
算値は破線、混晶散乱を有する場合の実験値は実線及び
本発明による混晶散乱の少ない受光素子のイオン化率の
実験値は、X印で示している。このときの電界強度は4
.5刈05v/Cmである。
))及び本発明による受光素子のイオン化率を示す。計
算値は破線、混晶散乱を有する場合の実験値は実線及び
本発明による混晶散乱の少ない受光素子のイオン化率の
実験値は、X印で示している。このときの電界強度は4
.5刈05v/Cmである。
本発明による受光素子のイオン化率(X印)は、混晶散
乱を有する場合(実線)に比べて大きな値をとり、As
組成比0.4においてイオン化率比(c/13)は、約
2倍に改善されていることが分かる。
乱を有する場合(実線)に比べて大きな値をとり、As
組成比0.4においてイオン化率比(c/13)は、約
2倍に改善されていることが分かる。
本発明による製造方法は、具体的には、MOCVD、M
BE、ガスンースMBE等の成長技術により作製するこ
とができる。
BE、ガスンースMBE等の成長技術により作製するこ
とができる。
(発明の効果)
以上説明したように、本発明の実施例で示したアバラン
シェ増倍型受光素子は、アバランシェ増倍層がストイキ
オメトリ−に整合されているため、キャリアの混晶散乱
及び金属散乱が少ない。
シェ増倍型受光素子は、アバランシェ増倍層がストイキ
オメトリ−に整合されているため、キャリアの混晶散乱
及び金属散乱が少ない。
よって、イオン化率の向上及びキャリア移動度の高速化
の効果が期待される。前記アバランシェ増倍層の材料系
は、InxGa1−xAs、Pl−y(0≦X≦)(0
≦y≦)以外の混晶化合物半導体、例えばInxAl、
Ga1−x−yAs(0≦X≦)(0≦y≦)にも適用
できる。この系においては、InAs、 AlAs、
GaAsを1分子ラインづつ成長することにより、上記
効果と同様の効果が得られる。その他の化合物にも適用
できる。
の効果が期待される。前記アバランシェ増倍層の材料系
は、InxGa1−xAs、Pl−y(0≦X≦)(0
≦y≦)以外の混晶化合物半導体、例えばInxAl、
Ga1−x−yAs(0≦X≦)(0≦y≦)にも適用
できる。この系においては、InAs、 AlAs、
GaAsを1分子ラインづつ成長することにより、上記
効果と同様の効果が得られる。その他の化合物にも適用
できる。
また光吸収層に本発明の構造を用いると前述の散乱がな
いのでキャリアの移動度が高くなり、応答特性が改善で
きる。例えば高速のPINフォトダイオード等が得られ
る。また光吸収層と増倍層の両方に適用すればより低雑
音、高速、の受光素子が得られる。
いのでキャリアの移動度が高くなり、応答特性が改善で
きる。例えば高速のPINフォトダイオード等が得られ
る。また光吸収層と増倍層の両方に適用すればより低雑
音、高速、の受光素子が得られる。
第1図(aXbXcXd)は、本発明であるペテロ界面
が基板に垂直なペテロ周期構造アバランシェ増倍層の製
造方法を示す工程図。第2図は、本発明の一実施例によ
り形成されたアバランシェ増倍型受光素子の断面図を示
す。第3図(aXb)はそれぞれ電子とホールのイオン
化率の組成依存度を表わす図である。 1・・・n型InP基板、2・・・n型InPバッファ
層、3・・・n−型InGaAs光吸収層、4−n型I
nXGa1−XA5yP1−y(0≦X≦1)(0≦y
≦1)アバランシェ増倍層、5・−n型InPキャップ
層、6、p+型型光光領域7−p−型ガードリング領域
811.パツシベーシヨン膜、 9−n側オーミック用電極、
が基板に垂直なペテロ周期構造アバランシェ増倍層の製
造方法を示す工程図。第2図は、本発明の一実施例によ
り形成されたアバランシェ増倍型受光素子の断面図を示
す。第3図(aXb)はそれぞれ電子とホールのイオン
化率の組成依存度を表わす図である。 1・・・n型InP基板、2・・・n型InPバッファ
層、3・・・n−型InGaAs光吸収層、4−n型I
nXGa1−XA5yP1−y(0≦X≦1)(0≦y
≦1)アバランシェ増倍層、5・−n型InPキャップ
層、6、p+型型光光領域7−p−型ガードリング領域
811.パツシベーシヨン膜、 9−n側オーミック用電極、
Claims (1)
- 光吸収層またはアバランシェ増倍層が、3元以上の化
合物半導体で構成されている半導体受光素子において、
(001)面から[@1@10]方向にわずかに傾いた
半導体基板上に少なくともストイキオメトリーが整合さ
れ、且つ、混晶散乱及び金属散乱の少ない、光吸収層ま
たはアバランシェ増倍層を備えることを特徴とする半導
体受光素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2100603A JPH03297173A (ja) | 1990-04-17 | 1990-04-17 | 半導体受光素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2100603A JPH03297173A (ja) | 1990-04-17 | 1990-04-17 | 半導体受光素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03297173A true JPH03297173A (ja) | 1991-12-27 |
Family
ID=14278442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2100603A Pending JPH03297173A (ja) | 1990-04-17 | 1990-04-17 | 半導体受光素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03297173A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5438217A (en) * | 1994-04-29 | 1995-08-01 | General Electric Company | Planar avalanche photodiode array with sidewall segment |
US5670383A (en) * | 1994-04-04 | 1997-09-23 | General Electric Company | Method for fabrication of deep-diffused avalanche photodiode |
KR100403824B1 (ko) * | 1996-09-24 | 2004-05-17 | 삼성전자주식회사 | 포토다이오드 디텍터 및 그 제조방법 |
JP2020017659A (ja) * | 2018-07-26 | 2020-01-30 | 富士通株式会社 | 赤外線検出器、撮像素子、光半導体装置 |
-
1990
- 1990-04-17 JP JP2100603A patent/JPH03297173A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5670383A (en) * | 1994-04-04 | 1997-09-23 | General Electric Company | Method for fabrication of deep-diffused avalanche photodiode |
US5438217A (en) * | 1994-04-29 | 1995-08-01 | General Electric Company | Planar avalanche photodiode array with sidewall segment |
US5500376A (en) * | 1994-04-29 | 1996-03-19 | General Electric Company | Method for fabricating planar avalanche photodiode array |
KR100403824B1 (ko) * | 1996-09-24 | 2004-05-17 | 삼성전자주식회사 | 포토다이오드 디텍터 및 그 제조방법 |
JP2020017659A (ja) * | 2018-07-26 | 2020-01-30 | 富士通株式会社 | 赤外線検出器、撮像素子、光半導体装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5181086A (en) | Strained superlattice semiconductor structure | |
US5654578A (en) | Superlattice avalanche photodiode with mesa structure | |
EP0131437A2 (en) | Heterojunction avalanche photodiode | |
US8659053B2 (en) | Semiconductor light detecting element | |
JPH06350123A (ja) | 組成変調アバランシ・フォトダイオード | |
GB2107118A (en) | Avalanche photo-diode and manufacturing method therefor | |
US5432361A (en) | Low noise avalanche photodiode having an avalanche multiplication layer of InAlAs/InGaAlAs | |
Makita et al. | Ga1− yInyAs/InAsxP1− x (y> 0.53, x> 0) pin photodiodes for long wavelength regions (λ> 2μm) grown by hydride vapour phase epitaxy | |
JPH03297173A (ja) | 半導体受光素子 | |
US5656831A (en) | Semiconductor photo detector | |
Susa et al. | Properties of GaAs/Al0. 53Ga0. 47As avalanche photodiode with superlattice fabricated by molecular beam epitaxy | |
JP2751846B2 (ja) | 半導体受光素子 | |
JP2730472B2 (ja) | 半導体受光素子 | |
JPH051629B2 (ja) | ||
JP2962069B2 (ja) | 導波路構造半導体受光素子 | |
JPH09270527A (ja) | 半導体受光素子 | |
JP2776228B2 (ja) | 半導体受光素子の製造方法 | |
JPH0437591B2 (ja) | ||
JP2995751B2 (ja) | 半導体受光素子 | |
JPS59149070A (ja) | 光検出器 | |
JPS61228684A (ja) | 半導体発光素子 | |
JP2754652B2 (ja) | アバランシェ・フォトダイオード | |
JP2671555B2 (ja) | 超格子アバランシェ・フォトダイオード | |
WO2019203059A1 (ja) | 受光素子 | |
Jones et al. | A new technology for epitaxial II-VI compound semiconductor devices |