JPH03296677A - Composite tester for leading small current breaking test of breaker - Google Patents

Composite tester for leading small current breaking test of breaker

Info

Publication number
JPH03296677A
JPH03296677A JP2097675A JP9767590A JPH03296677A JP H03296677 A JPH03296677 A JP H03296677A JP 2097675 A JP2097675 A JP 2097675A JP 9767590 A JP9767590 A JP 9767590A JP H03296677 A JPH03296677 A JP H03296677A
Authority
JP
Japan
Prior art keywords
voltage
circuit
current
test
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2097675A
Other languages
Japanese (ja)
Inventor
Kietsu Kudo
喜悦 工藤
Kazuo Hisamatsu
久松 和男
Nobuyuki Miyake
信之 三宅
Shoji Yamashita
正二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2097675A priority Critical patent/JPH03296677A/en
Publication of JPH03296677A publication Critical patent/JPH03296677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To conduct a test matched with an applied frequency of a breaker by a method wherein a parallel resonant circuit of a capacitor and a reactor is connected in parallel to a voltage source circuit, the capacitor is charged after a current is interrupted, and a voltage of the frequency is impressed on the breaker to be tested. CONSTITUTION:A voltage source circuit 7 sets values of an impedance 10 for excitation and current adjustment of a short-circuit generator 1, a voltage source transformer 4a, a tape of a current source transformer 4b and a voltage source capacitor 5b so that a prescribed breaking current Ip and a prescribed circuit voltage be supplied from a current source circuit 8 to a breaker 6 to be tested. Simultaneously with interruption of the current Ip, the generator 1 is cut off from the circuit 7 by an auxiliary breaker 2a and the circuit 8 is cut off from the breaker 6 by a breaker 2b. At time, a capacitor 5a and a capacitor 5b for parallel resonance are charged with a voltage. When the current Ip is interrupted, a source-side voltage Vs is oscillates at a resonance frequency determined by a reactor 3, the transformer 4a, etc. An interpolar voltage Vp being a difference voltage between the voltage Vs and a voltage Vl charged on the capacitor 5a is impressed on the breaker 6.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、特に遮断器の系統における使用状態に沿った
方法で進み小電流遮断性能検証が可能な遮断器の進み小
電流遮断試験の合成試験装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is particularly directed to the progress of a circuit breaker that enables verification of small current interrupting performance in a method in accordance with the usage conditions in a circuit breaker system. This invention relates to a synthetic test device for current interruption tests.

(従来の技術) 一般に遮断器は無負荷送電線や電カケープル等の開閉を
する場合、対地静電容量の充電電流すなわち進み小電流
を遮断することになる。このような遮断器の責務に対し
て試験場でその性能を検証する場合、送電線や電カケー
プルのかわりにコンデンサバンクを負荷として進み小電
流試験が行われる。その試験回路を第3図に示し、遮断
時の電気現象を第4図に示し説明する。
(Prior Art) Generally, when a circuit breaker opens or closes an unloaded power transmission line or a power cable, it interrupts a charging current of ground capacitance, that is, a small advancing current. When verifying the performance of such a circuit breaker at a test site, a small current test is performed using a capacitor bank as a load instead of a power transmission line or power cable. The test circuit is shown in FIG. 3, and the electrical phenomenon at the time of interruption is shown in FIG. 4 and will be explained.

第3図において、供試遮断器6の片端には試験電源とな
る短絡発電機1が接続され、もう一端には負荷コンデン
サ5が接続される。第4図の時刻t□で供試遮断器6を
開極すると、遮断器Ipの電流零点t2で電流が遮断さ
れ、負荷側電圧VQは電流側電圧Vsの波高値Emとな
って負荷コンデンサ5に充電される。供試遮断器6の極
間電圧Vpは(Vs−Vj2)となり、電源側電圧Vs
の変化とともにEm(1−cO5ωt)で変化する。た
だしωは電源の角周波数。
In FIG. 3, a short-circuit generator 1 serving as a test power source is connected to one end of the test circuit breaker 6, and a load capacitor 5 is connected to the other end. When the test circuit breaker 6 is opened at time t□ in FIG. is charged. The interpole voltage Vp of the test circuit breaker 6 is (Vs - Vj2), and the power supply side voltage Vs
It changes by Em(1-cO5ωt) with the change of . However, ω is the angular frequency of the power source.

この値は、電源周波数の1/2サイクル後に電源電圧波
高値の2倍まで上昇する。このように進み小電流遮断試
験が行なわれる6 ところで、進み小電流遮断試験は、電流遮断後に供試遮
断器の極間に加わる上記の電源電圧波高値の2倍の電圧
に耐えられることを検証するもので、供試遮断器の極間
の絶縁耐力が不十分であると絶縁破壊を起こし再び電流
が流れる、いわゆる再点弧を生ずる。この再点弧が電力
系統において発生した場合、異常電圧が発生し他の機器
の絶縁を脅かすことになる。
This value increases to twice the peak value of the power supply voltage after 1/2 cycle of the power supply frequency. In this way, the small current interruption test is carried out.6 By the way, the small current interruption test verifies that the test circuit breaker can withstand a voltage twice the peak value of the power supply voltage mentioned above, which is applied between the poles of the circuit breaker under test after the current is interrupted. If the dielectric strength between the poles of the circuit breaker under test is insufficient, dielectric breakdown will occur and current will flow again, resulting in so-called restriking. If this restriking occurs in the power system, abnormal voltage will occur and threaten the insulation of other equipment.

この様な進み小電流遮断試験で問題となるのは遮断器の
適用される系統の周波数と試験場の試験電流周波数とが
異なる場合である。例えば60Hz系統に使用される遮
断器を50Hzの電源で試験を実施した場合、電流遮断
後1/2サイクルで遮断器極間に最大の電圧が印加され
るがこの電圧が印加される時間は、60Hz系では電流
遮断後8.3−sに対し50Hz系では101Isであ
り、試験においては遮断器の実使用状態より楽な試験に
なってしまう。
A problem with such progressive small current interruption tests is when the frequency of the system to which the circuit breaker is applied differs from the test current frequency at the testing site. For example, when testing a circuit breaker used in a 60Hz system with a 50Hz power supply, the maximum voltage is applied between the poles of the circuit breaker in 1/2 cycle after the current is interrupted, but the time for which this voltage is applied is: In the 60 Hz system, the time after current interruption is 8.3-s, while in the 50 Hz system, it is 101 Is, which makes the test easier than the actual use of the circuit breaker.

このため、50Hzの試験電源のみの試験場では60H
z系の電圧波形を50Hzの試験電源でカバーするため
、単に電圧を高くし試験を実施している事が多い。回復
電圧の立ち上り部分を5Of(z電源で60Hzに合せ
るため試験電圧を1.2倍して試験を行う。
For this reason, in a test site with only a 50Hz test power supply, 60H
In order to cover the z-system voltage waveform with a 50Hz test power supply, tests are often simply carried out by simply increasing the voltage. The test is performed by multiplying the test voltage by 1.2 in order to adjust the rising part of the recovery voltage to 5Of (60Hz with the z power supply).

しかし回復電圧の立ち上り部分は同等な電圧波形を得ら
れるが電流遮断後6.8msを越えると、60Hz回復
電圧より高い電圧が供試遮断器に印加され、波高値では
1.2倍となって、遮断器が系統での使用状態と違い苛
酷な試験となってしまう。第5図に進み小電流遮断時の
遮断器極間電圧波形の比較を示す。vlは50Hz系の
電圧波形、v2は60Hz系の電圧波形、v3は50H
zの電圧を1.2倍に上昇した時の電圧波形である。
However, although the same voltage waveform can be obtained at the rising part of the recovery voltage, after 6.8ms after the current is interrupted, a voltage higher than the 60Hz recovery voltage is applied to the test circuit breaker, and the peak value is 1.2 times higher. However, unlike the conditions in which the circuit breaker is used in the system, the test is severe. Proceeding to Fig. 5, a comparison of the voltage waveforms between the circuit breaker electrodes when a small current is interrupted is shown. vl is a 50Hz voltage waveform, v2 is a 60Hz voltage waveform, v3 is 50H
This is a voltage waveform when the voltage of z is increased by 1.2 times.

(発明が解決しようとする課題) 以上、説明した様に遮断器の進み小電流遮断試験におい
て、遮断器の適用される系統の周波数と試験場の試験周
波数が異なる際に、実使用状態で遮断器に印加される電
圧の周波数に応じた試験ができないという問題があった
(Problems to be Solved by the Invention) As explained above, in the advance small current breaking test of a circuit breaker, when the frequency of the system to which the circuit breaker is applied and the test frequency of the test site are different, the circuit breaker is There was a problem in that it was not possible to perform tests according to the frequency of the voltage applied to the

本発明の目的は、一定の試験電源周波数の進み小電流遮
断試験回路において、電流遮断後に遮断器極間に印加さ
れる電圧の周波数を任意に可変可能とし、遮断器の適用
系統周波数に合せた試験を可能とする遮断器の進み小電
流遮断試験の合成試験装置を提供することにある。
An object of the present invention is to make it possible to arbitrarily vary the frequency of the voltage applied between the circuit breaker poles after current interruption in a small current interruption test circuit where the test power supply frequency is advanced, and to match the applied system frequency of the circuit breaker. It is an object of the present invention to provide a synthetic test device for advanced small current interruption testing of circuit breakers that enables testing.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の遮断器の進み小電流遮断試験の合成試験装置に
おいては、供試遮断器に規定の電流を供給する電流源回
路と電流遮断後に供試遮断器に規定の電圧を印加する電
圧源回路とからなり、電圧源回路に並列にコンデンサと
リアクトルの並列共振回路を接続し、電流遮断後に補助
遮断器により試験電源が切離され、前記並列共振回路の
コンデンサに充電され、共振回路(コンデンサとリアク
トル)により決まる周波数が電圧が供試器に印加される
ことを特徴とする。
(Means for Solving the Problems) In the synthetic test device for advanced small current interrupting tests of circuit breakers of the present invention, a current source circuit that supplies a specified current to the circuit breaker under test and a current source circuit that supplies a specified current to the circuit breaker under test and A parallel resonant circuit of a capacitor and a reactor is connected in parallel to the voltage source circuit, and after the current is cut off, the test power source is disconnected by an auxiliary circuit breaker, and the capacitor of the parallel resonant circuit is It is characterized in that a voltage is applied to the device under test at a frequency determined by a resonant circuit (capacitor and reactor).

(作用) 本発明の合成試験装置によると、供試遮断器が電流零点
で電流を遮断すると同時に、補助遮断器により試験電源
を切離されて並列共振回路のコンデンサおよび電圧源回
路のコンデンサには電圧源電圧の波高値の電圧が充電さ
れる。供試遮断器には並列共振回路のコンデンサ、リア
クトルで決まる周波数で振動する電圧と電圧源回路のコ
ンデンサに充電された電圧との差電圧が印加される。
(Function) According to the synthetic test device of the present invention, at the same time that the test circuit breaker interrupts the current at the current zero point, the test power supply is disconnected by the auxiliary circuit breaker, and the capacitor of the parallel resonant circuit and the capacitor of the voltage source circuit are The voltage at the peak value of the voltage source voltage is charged. The difference voltage between the voltage that oscillates at a frequency determined by the capacitor and reactor of the parallel resonant circuit and the voltage charged in the capacitor of the voltage source circuit is applied to the test circuit breaker.

ここで並列共振回路を調整することにより印加電圧の周
波数を任意に変化させることができ遮断器の実使用され
る周波数での進み小電流遮断試験が可能となる。
Here, by adjusting the parallel resonant circuit, the frequency of the applied voltage can be changed arbitrarily, making it possible to carry out a small advance current breaking test at the frequency at which the circuit breaker is actually used.

(実施例) 以下、本発明の実施例を第1図および第2図を参照して
説明する。第1図において試験電源となる短絡発電機1
を補助遮断器2aを介して電圧源変圧器4aの一次側巻
線V□に接続するとともに、一次側巻線l111に並列
に共振用リアクトル3を接続し、二次側巻線v2に共振
用コンデンサ5aを接続する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. Short-circuit generator 1 serving as the test power source in Figure 1
is connected to the primary winding V□ of the voltage source transformer 4a via the auxiliary circuit breaker 2a, and the resonance reactor 3 is connected in parallel to the primary winding l111, and the resonance reactor 3 is connected to the secondary winding v2. Connect capacitor 5a.

また二次側巻線v2には電圧源コンデンサ5b、供試遮
断器6の直列回路を接続するとともに、供試遮断器6の
片極を接地して電圧源回路7を構成する。
Further, a series circuit of a voltage source capacitor 5b and a test breaker 6 is connected to the secondary winding v2, and one pole of the test circuit breaker 6 is grounded to form a voltage source circuit 7.

また前記短絡発電機1に電流設定用インピーダンス10
を介し電流源変圧器4bの一次側巻線W、。に接続し、
その二次側巻線警2゜は補助遮断器2bを介し供試遮断
器6の両極に接続して電流源回路8を構成する。前記電
流設定用インピーダンス10は、コンデンサまたはリア
クトルを使用し、リアクトルの場合は電流源変圧器4b
の極性を逆にa−b’、b−a′の接続とすればよいが
、不可能な場合はそのままでも構わない。前記、電圧源
変圧器4a、共振用リアクトル3、共振用コンデンサ5
aは、補助遮断量2a、 2bで試験電源を切離した後
共振電源回路9として供試遮断器6に印加する電源とな
る。
In addition, the short-circuit generator 1 has a current setting impedance 10.
through the primary winding W of the current source transformer 4b. connect to,
The secondary winding wire 2° is connected to both poles of the test circuit breaker 6 via the auxiliary circuit breaker 2b to form a current source circuit 8. The current setting impedance 10 uses a capacitor or a reactor, and in the case of a reactor, a current source transformer 4b
The polarity may be reversed to connect a-b' and b-a', but if this is not possible, it may be left as is. The voltage source transformer 4a, the resonant reactor 3, and the resonant capacitor 5
a becomes a power source that is applied to the test circuit breaker 6 as a resonance power source circuit 9 after the test power source is disconnected by the auxiliary breaking amounts 2a and 2b.

次に、本発明の詳細な説明する。電圧源回路7は電流源
回路8より規定の遮断電流IPと規定の回復電圧を供試
遮断器6に供給するように短絡発電機1の励磁、電流調
整用インピーダンス10、電圧源変圧器4a、電流源変
圧器4bのタップ、電圧源コンデンサ5bの値を設定す
る。この時電流源変圧器4bのタップは特に試験電圧に
は無関係であるが補助遮断器2b、供試遮断器6のアー
ク電圧に影響されない給与電圧が必要である。
Next, the present invention will be explained in detail. The voltage source circuit 7 excites the short-circuit generator 1, has a current adjustment impedance 10, a voltage source transformer 4a, and a voltage source transformer 4a, so that the current source circuit 8 supplies a specified breaking current IP and a specified recovery voltage to the test circuit breaker 6. The tap of the current source transformer 4b and the value of the voltage source capacitor 5b are set. At this time, the tap of the current source transformer 4b is not particularly related to the test voltage, but a supply voltage that is not affected by the arc voltage of the auxiliary circuit breaker 2b and the test circuit breaker 6 is required.

供試遮断器6および補助遮断器2a、 2bは、遮断電
流Ipの電流零点、時刻t2で遮断するように設定して
時刻t1で開極する。遮断電流Ipが遮断されると同時
に補助遮断器2aで電圧源回路7より短絡発電機1が切
離され、また補助遮断@2bで供試遮断器6より電流源
回路8が切離される。
The test circuit breaker 6 and the auxiliary circuit breakers 2a and 2b are set to break at the current zero point of the breaking current Ip, time t2, and are opened at time t1. At the same time as the interrupting current Ip is interrupted, the short circuit generator 1 is disconnected from the voltage source circuit 7 by the auxiliary circuit breaker 2a, and the current source circuit 8 is disconnected from the test circuit breaker 6 by the auxiliary circuit breaker @2b.

この時、並列共振用コンデンサ5aおよび電圧源コンデ
ンサ5bには電源側電圧Vsの波高値Emの電圧が充電
される。遮断電流Ipが遮断されると、電源側電圧Vs
は試験電源の周波数から並列共振電源回路9の並列共握
用リアクトル3、電圧源変圧器4aおよび並列共振用コ
ンデンサ5aで決まる共振周波数で振動をはじめる。そ
して供試遮断器6には、第2図の電源側電圧Vsと電圧
源コンデンサ5aに充電された電圧v2の差電圧である
極間電圧Vpが印加される。
At this time, the parallel resonance capacitor 5a and the voltage source capacitor 5b are charged with a voltage of the peak value Em of the power supply side voltage Vs. When the cutoff current Ip is cut off, the power supply side voltage Vs
begins to vibrate at a resonant frequency determined from the frequency of the test power supply by the parallel shared reactor 3, voltage source transformer 4a, and parallel resonant capacitor 5a of the parallel resonant power supply circuit 9. Then, the test circuit breaker 6 is applied with a voltage between electrodes Vp, which is a difference voltage between the power supply side voltage Vs shown in FIG. 2 and the voltage v2 charged in the voltage source capacitor 5a.

供試遮断器6の極間電圧vpは電源側電圧Vsが電流遮
断後1/2サイクル後の波高値に達すると、電源電圧波
高値Emの2倍の電圧となり、はぼEmm(L−cos
ωt)で変化して供試遮断器6に印加される。(ただし
ωは並列共振電源回路9の共振角周波数)これは進み小
電流遮断時の遮断器に印加される電圧と同等であり、並
列共振電源回路9のリアクトル3およびコンデンサ5a
を調整することにより、遮断器が使用される系統の周波
数と同じにできる。これにより一定周波数の試験電源の
ものであっても印加電圧の周波数を変化させて、遮断器
の進み小電流遮断試験が可能となる。
When the voltage Vs on the power supply side reaches the peak value 1/2 cycle after the current is cut off, the interpole voltage vp of the test circuit breaker 6 becomes twice the peak value Em of the power supply voltage, and becomes approximately Emm(L-cos
ωt) and is applied to the test circuit breaker 6. (However, ω is the resonant angular frequency of the parallel resonant power supply circuit 9) This is equivalent to the voltage applied to the circuit breaker when cutting off a small advance current, and the reactor 3 and capacitor 5a of the parallel resonant power supply circuit 9
By adjusting the frequency, the circuit breaker can be made to match the frequency of the system in which it is used. As a result, even if the test power supply has a constant frequency, the frequency of the applied voltage can be changed to perform a small advance current interruption test of the circuit breaker.

なお第1図における前記遮断器の進み小電流試験装置の
並列共振電源回路9の構成を電圧源変圧器4aの一次側
に並列共振用コンデンサ5aを挿入しても、また電圧源
変圧器4aの一次側v1と二次側讐。
Note that even if the configuration of the parallel resonant power supply circuit 9 of the circuit breaker advance small current test device in FIG. Primary side v1 and secondary side v1.

に並列共振用コンデンサ5aを分割挿入してもよい。Parallel resonance capacitors 5a may be inserted separately.

このように所定の共振周波数を得られるように並列共振
用リアクトル3、並列共振用コンデンサ5aを電圧源変
圧器4aの一次側、二次側に設定できる。
In this way, the parallel resonance reactor 3 and the parallel resonance capacitor 5a can be set on the primary side and the secondary side of the voltage source transformer 4a so as to obtain a predetermined resonance frequency.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、一定周波数の試験
電源であっても供試遮断器が電流遮断後、印加される電
圧を並列共振電源回路より供給することにより印加電圧
の周波数を可変でき遮断器が適用される系統の周波数に
合わせた進み小電流遮断試験を可能とした遮断器の進み
小電流遮断試験の合成試験装置を提供することができる
As explained above, according to the present invention, even if the test power supply has a constant frequency, the frequency of the applied voltage can be varied by supplying the applied voltage from the parallel resonant power supply circuit after the test circuit breaker interrupts the current. It is possible to provide a synthetic test device for a small advance current interruption test of a circuit breaker, which enables an advanced small current interruption test in accordance with the frequency of the system to which the circuit breaker is applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の遮断器の進み小電流遮断試験の合成試
験装置の回路図。第2図は第1図に示す回路における遮
断時の電圧、電流波形図。第3図は基本となる遮断器の
進み小電流遮断試験の回路図。第4図は第3図に示す回
路における遮断時の電圧、電流波形図。第5図は、進み
小電流遮断時速断器の極間に印加される電圧の波形図で
ある。 1・・・短絡発電器     2a、 2b・・・補助
遮断器3・・・リアクトル     4a、 4b・・
・変圧器5a、 5b・・・コンデンサ   6・・・
供試遮断器7・・・電圧源回路     8・・・電流
源回路9・・・並列共振電源回路 10・・・電流設定用インピーダンス (8733)
FIG. 1 is a circuit diagram of a synthetic test device for advanced small current interruption tests of circuit breakers according to the present invention. FIG. 2 is a diagram of voltage and current waveforms at the time of interruption in the circuit shown in FIG. 1. Figure 3 is a circuit diagram of the basic circuit breaker advanced small current interruption test. FIG. 4 is a diagram of voltage and current waveforms at the time of interruption in the circuit shown in FIG. 3. FIG. 5 is a waveform diagram of the voltage applied between the poles of the advanced small current interrupter. 1... Short circuit generator 2a, 2b... Auxiliary circuit breaker 3... Reactor 4a, 4b...
・Transformers 5a, 5b...Capacitor 6...
Test circuit breaker 7...Voltage source circuit 8...Current source circuit 9...Parallel resonant power supply circuit 10...Impedance for current setting (8733)

Claims (1)

【特許請求の範囲】[Claims] 試験用電源の端子間に第1の補助遮断器と第1の変圧器
の一次側巻線とを直列に接続するとともに、その一次側
巻線に並列に第1のリアクトルを接続し、さらに前記変
圧器二次側巻線の端子間に第1のコンデンサと、第2の
コンデンサおよび供試遮断器の直列回路とを並列接続し
て電圧源回路を形成し、また前記試験用電源の端子間に
電流設定用インピーダンスを介して第2の変圧器の一次
側巻線に接続し、その二次側巻線を第2の補助遮断器を
介して、前記供試遮断器の両端に接続して電流源回路を
形成したことを特徴とする遮断器の進み小電流遮断試験
の合成試験装置
A first auxiliary circuit breaker and a primary winding of a first transformer are connected in series between the terminals of the test power supply, and a first reactor is connected in parallel to the primary winding, and a first reactor is connected in parallel to the primary winding. A voltage source circuit is formed by connecting a first capacitor and a series circuit of a second capacitor and a test circuit breaker in parallel between the terminals of the secondary winding of the transformer, and a voltage source circuit is formed between the terminals of the test power supply. is connected to the primary winding of a second transformer through a current setting impedance, and its secondary winding is connected to both ends of the test circuit breaker through a second auxiliary circuit breaker. Synthetic test device for advanced small current interruption test of a circuit breaker, characterized by forming a current source circuit
JP2097675A 1990-04-16 1990-04-16 Composite tester for leading small current breaking test of breaker Pending JPH03296677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097675A JPH03296677A (en) 1990-04-16 1990-04-16 Composite tester for leading small current breaking test of breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097675A JPH03296677A (en) 1990-04-16 1990-04-16 Composite tester for leading small current breaking test of breaker

Publications (1)

Publication Number Publication Date
JPH03296677A true JPH03296677A (en) 1991-12-27

Family

ID=14198589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097675A Pending JPH03296677A (en) 1990-04-16 1990-04-16 Composite tester for leading small current breaking test of breaker

Country Status (1)

Country Link
JP (1) JPH03296677A (en)

Similar Documents

Publication Publication Date Title
CN112824911A (en) Device for testing arc suppression coil
JPH03296677A (en) Composite tester for leading small current breaking test of breaker
US4454476A (en) Method of and apparatus for synthetic testing of a multi-break circuit breaker
CN114325360A (en) Short circuit on-off test method and system for high-voltage alternating current circuit breaker
CN111983397A (en) Insulating medium breakdown experiment device and method
JP3103262B2 (en) Circuit breaker test circuit for switchgear
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JPH06186309A (en) Interruption test circuit for switch
Marin et al. Study of Overvoltages at the Extinguishing Coil Disconnection from Medium Voltage Networks in Stabilized Earthing Regime
JPH0695134B2 (en) Switch test equipment
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
JP2666946B2 (en) Capacitor switching performance test equipment
JPH03249579A (en) Combined breaking test device for circuit breaker
JPS6157870A (en) Three-phase equivalent testing method of breaker
JPH0651036A (en) Short line fault testing device
JPS60207079A (en) Synthesis test of breaker
JPH0449662B2 (en)
JPH03249580A (en) Composite test device for small advancing current
JP2785295B2 (en) Leading current interruption test equipment for switchgear
JPS6247564A (en) Leading current cut-off testing circuit for switch
JPH0461312B2 (en)
JPH07311247A (en) Three-phase composite tester for breaker
JPS59109873A (en) Testing method of three-phase common tank-type breaker
JPH01297576A (en) Composite testing device for three-phase batch tank type breaker
JPH01101479A (en) Testing device for leading small current break of breaker