JPS6247564A - Leading current cut-off testing circuit for switch - Google Patents

Leading current cut-off testing circuit for switch

Info

Publication number
JPS6247564A
JPS6247564A JP60188153A JP18815385A JPS6247564A JP S6247564 A JPS6247564 A JP S6247564A JP 60188153 A JP60188153 A JP 60188153A JP 18815385 A JP18815385 A JP 18815385A JP S6247564 A JPS6247564 A JP S6247564A
Authority
JP
Japan
Prior art keywords
switch
test
capacitance
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60188153A
Other languages
Japanese (ja)
Inventor
Noriyuki Takahashi
宣之 高橋
Shoji Yamashita
正二 山下
Takeshi Kuniyone
国米 毅
Kietsu Kudo
喜悦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60188153A priority Critical patent/JPS6247564A/en
Publication of JPS6247564A publication Critical patent/JPS6247564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a testing circuit which can verify a leading current cut-off performance by an actual working frequency, by connecting in series an auxiliary circuit-breaker between a sample switch and a test power source, and connecting an inductance and a capacitance in parallel to a lead capacitance between the circuit-breaker and the switch. CONSTITUTION:An auxiliary circuit-breaker 4 is connected in series between a sample switch 1 and a test power source 3, and an inductance 5 and a capacitance 6 are connected in parallel to a load capacitance 2 between the circuit- breaker 4 and the switch 1. In this state, when the power source 3 is detached by the circuit-breaker 4 as soon as the switch 1 cuts off a current at a current zero point, a difference of vibration voltages of a residual voltage (el) of a load side and a voltage (es) of the power source side, namely, the inductance 5 and the capacitance 6 which have been provided between the switch 1 and the circuit-breaker 4 is applied to the switch 1. A leading current cut-off test by a frequency which is used by the switch 1 actually can be executed by adjusting a value of said inductance 5 and capacitance 6, and varying optionally a frequency of the power source side voltage.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は開閉器の進み電流しゃ断試験回路に係り、特に
開閉器が電流をしゃ断後任意の周波数の電圧を開閉器極
間に印加しく9るようにした試験回路に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a lead current interruption test circuit for a switch, and in particular, a test circuit for applying a voltage of an arbitrary frequency between the poles of the switch after the switch interrupts the current. The present invention relates to a test circuit made as described above.

[発明の技術的背景とその問題点] 一般に、しゃ断器やコンタクタ−等の開閉器は、電力用
コンデンサ、無負荷送電線路、電カケープル等の充電電
流開閉の責務を負う。この電圧より位相がπ/2進む電
流が流れる容量性回路のしゃ断は、誘導性回路のしゃ断
に比べて特異性があり、JEC−181(交流しゃ断器
)等の規格に定められているように、開閉器の性能検証
の中でも重要な項目の一つとなっている。
[Technical Background of the Invention and Problems Therewith] Generally, switches such as circuit breakers and contactors are responsible for switching on and off the charging current of power capacitors, no-load power transmission lines, power cables, and the like. The breaking of a capacitive circuit through which a current whose phase is π/2 ahead of this voltage flows is more specific than that of an inductive circuit, and as stipulated in standards such as JEC-181 (alternating current circuit breaker), This is one of the most important items in switch performance verification.

以下、第4図および第5図を参照して開閉器が進み電流
をしゃ断する現象について説明する。
The phenomenon in which the switch advances and cuts off the current will be described below with reference to FIGS. 4 and 5.

第4図は、従来の進み電流しゃ断試験回路の一例を示す
ものである。図において供試開閉器1と直列に、一方に
は負荷となるキャパシタンス(以下、負荷キャパシタン
スと称する)2を接続し、他方には試験型#!3を接続
している。
FIG. 4 shows an example of a conventional leading current cutoff test circuit. In the figure, a capacitance 2 serving as a load (hereinafter referred to as load capacitance) 2 is connected in series with the test switch 1 on one side, and a test type #! 3 is connected.

次にかかる試験回路で、供試開閉器1が負荷キャパシタ
ンス2に流れる進み電流1゜をしゃ断する際の電気的現
象を第5図に示す。なお第5図において、電圧、電流を
縦軸に、時間を横軸とじている。図において、P−P’
 の時点で供試開閉器1を開極すると、電流1゜は最初
の零点Q−Q’でしゃ断される。この時、供試開閉器1
の電源側の電圧e5は電源周波数に従って変化するが、
負荷側のキャパシタンス2の電圧eLは電流零の瞬時の
電圧、すなわち電圧の波^値に相当する電圧が残留する
。従って、供試開閉器1の接触子間に加わる電圧は電源
側の電圧e5と負荷側に残留した電圧eLとの差となり
、この値は1/2サイクル後にN課電圧波高値の2倍ま
で上昇する。
Next, in this test circuit, the electrical phenomenon when the test switch 1 interrupts a lead current of 1° flowing through the load capacitance 2 is shown in FIG. In FIG. 5, voltage and current are plotted on the vertical axis, and time is plotted on the horizontal axis. In the figure, P-P'
When the test switch 1 is opened at the point in time, the current 1° is cut off at the first zero point Q-Q'. At this time, test switch 1
The voltage e5 on the power supply side changes according to the power supply frequency, but
The voltage eL of the capacitance 2 on the load side remains an instantaneous voltage when the current is zero, that is, a voltage corresponding to the voltage wave value. Therefore, the voltage applied between the contacts of the test switch 1 is the difference between the voltage e5 on the power supply side and the voltage eL remaining on the load side, and this value increases up to twice the N applied voltage peak value after 1/2 cycle. Rise.

ところで、進み電流しゃ断試験は開閉器が電流しゃ断接
、接触子間に加わる上記2倍の電圧に耐えられるか否か
を検証するもので、開閉器接触子の開離距離が不十分で
あると、接触子間の絶縁耐力が破壊して再び電流が流れ
る(以下、この現象を再点弧と称する)、この再点弧が
発生すると回路に異常電圧を発生するため、系統に設置
された場合に他の機器の絶縁を脅かすことになってしま
う。この進み電流しゃ断試験で問題となるのが、開閉器
が適用される回路の電源周波数と試験場の試験用e数と
が異なる場合である。例えば、60Hz系統で使用され
る開閉器を50H2で試験した場合、電流しゃ断接に開
閉器接触子間に加わるが電圧波高値となるまでの時間が
60Hzで、16.7msであるのに対して50Hzだ
と20m5となり、開閉器にとって楽な試験となってし
まう。また、これをカバーするために50H2の試験電
圧を1.2倍の値で行ない、60Hz系電源電圧の波高
値までの時間を合せての試験が行なわれるが、電流しゃ
断接13IIlsまでは60H7電源で試験を行なった
時と同じ波形であるが、13m5を越えると608!電
源で試験を行なった時に比べて高い電圧が印加されるこ
ととなり、開閉器にとって苛酷な試、験となってしまう
。第6図は、この50H7電源と60Hz電源を使用し
た時の開閉器接触子間にかかる電圧波形を比較して示し
たものである。
By the way, the leading current interruption test verifies whether the switch can withstand current interruption and connection and the twice the voltage applied between the contacts. , the dielectric strength between the contacts breaks down and the current flows again (hereinafter, this phenomenon is referred to as restriking). When this restriking occurs, abnormal voltage is generated in the circuit, so when installed in a power grid. This could endanger the insulation of other equipment. A problem with this advanced current cutoff test is when the power supply frequency of the circuit to which the switch is applied differs from the test e number at the test site. For example, when a switch used in a 60Hz system is tested at 50H2, the time it takes for the voltage applied between the switch contacts to reach the peak value at 60Hz is 16.7ms, whereas at 60Hz it is 16.7ms. At 50Hz, it would be 20m5, which would be an easy test for the switch. In addition, in order to cover this, the test voltage of 50H2 is 1.2 times the value, and the test is also performed to include the time to the peak value of the 60Hz power supply voltage, but the 60H7 power supply is The waveform is the same as when I tested it, but when it exceeds 13m5, it is 608! A higher voltage is applied than when testing with a power supply, resulting in a harsher test for the switch. FIG. 6 shows a comparison of the voltage waveforms applied between the switch contacts when the 50H7 power supply and the 60Hz power supply are used.

[発明の目的] 本発明は上記のような事情を考慮して成されたもので、
その目的は一定の試験電源用周波数の回路であっても、
電流しゃ断接に開閉器接触子間に加わる電圧の周波数を
任意に変化させて、実際に使用される周波数での進み電
流しゃ断性能を検証することが可能な開閉器の進み電流
しゃ断試験回路を提供することにある。
[Object of the invention] The present invention was made in consideration of the above circumstances, and
Even if the purpose is a circuit with a certain test power frequency,
Provides a switch lead current cutoff test circuit that can arbitrarily change the frequency of the voltage applied between the switch contacts for current cutoff and verify lead current cutoff performance at the frequency actually used. It's about doing.

I発明の概要1 上記目的を達成するために本発明では、前述した試験回
路における供試開閉器と試験電源との間に補助しゃ断器
を直列に接続し、この補助しゃ断器と供試開閉器との間
にインダクタンスとキャパシタンスを負荷キャパシタン
スと並列に接続した回路を構成し、供試開閉器が電流零
点で電流をしゃ断すると同時に補助しゃ断器により電源
を切離してしまうことにより、供試開閉器には負荷側の
残留電圧と電源側の電圧、すなわち供試開閉器と補助し
ゃ断器間に設けられたインダクタンスとキャパシタンス
の振動電圧の差を印加するようにし、このインダクタン
スとキャパシタンスの値を調整することにより、電源側
電圧の周波数を任意に変化させて実際に開閉器が使用さ
れる周波数での進み電流しゃ断試験を実現するようにし
たことを特徴とする。
I Summary of the Invention 1 In order to achieve the above object, in the present invention, an auxiliary breaker is connected in series between the test circuit breaker and the test power supply in the test circuit described above, and the auxiliary breaker and the test switch A circuit is constructed in which inductance and capacitance are connected in parallel with the load capacitance between Apply the difference between the residual voltage on the load side and the voltage on the power supply side, that is, the oscillating voltage of the inductance and capacitance provided between the test switch and the auxiliary breaker, and adjust the values of this inductance and capacitance. Accordingly, the present invention is characterized in that the frequency of the power supply side voltage is arbitrarily changed to realize a leading current cutoff test at the frequency at which the switch is actually used.

[ブを明の実施例1 以下、本発明の一実施例について第1図および第2図を
参照して説明する。
Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、本発明による開閉器の進み電流しゃ断試験回
路の溝成例を示すもので、第4図と同一部分には同一符
号を付して示している。図において、供試開閉器1の電
源側には補助しゃ断器4を介して直列に試験電源3を接
続し、またその負荷側には負荷キャパシタンス2を直列
に接続している。また、供試開閉器1と補助しゃ断器4
との間には、インダクタンス5とキャパシタンス6を負
荷キャパシタンス2と並列に接続している。なお供試開
閉器1は、試験電13より負荷キャパシタンス2を充電
する進み電流をしゃ断するようになっている。
FIG. 1 shows an example of the groove configuration of a lead current interruption test circuit for a switch according to the present invention, and the same parts as in FIG. 4 are denoted by the same reference numerals. In the figure, a test power source 3 is connected in series to the power source side of the test switch 1 via an auxiliary breaker 4, and a load capacitance 2 is connected in series to the load side thereof. In addition, test switch 1 and auxiliary breaker 4
An inductance 5 and a capacitance 6 are connected in parallel with the load capacitance 2 between them. The test switch 1 is designed to cut off the lead current that charges the load capacitance 2 from the test voltage 13.

次に、かかる構成の試験回路における進み゛電流しゃ断
試験について第2図を用いて説明する。なお第2図にお
いては、電圧、電流を縦軸とし1時問を横軸として示し
ている。
Next, a lead current cutoff test in a test circuit having such a configuration will be explained with reference to FIG. In FIG. 2, voltage and current are shown on the vertical axis, and one hour is shown on the horizontal axis.

まず、いま補助しゃ断器4と供試開閉器1を閉として、
負荷キャパシタンス2に進み電流1cが流れている状態
で、P−P’ の時点で補助しゃ断器4と教徒開閉器1
を同時に開極すると、電流1oは最初の零点Q−Q’ 
でしゃ断される。そしてこれと同時に、供試開閉器1と
インダクタンス5、キャパシタンス6は、補助しゃ断器
4により試験電源3より切離される。
First, with the auxiliary breaker 4 and the test switch 1 closed,
With current 1c flowing through load capacitance 2, auxiliary breaker 4 and circuit breaker 1 are connected at point P-P'.
When simultaneously opened, the current 1o reaches the first zero point Q-Q'
It will be cut off. At the same time, the test switch 1, inductance 5, and capacitance 6 are disconnected from the test power source 3 by the auxiliary breaker 4.

すると、供試開閉器1の電源側電圧e5はキャパシタン
ス6に残留した波高値の電圧で、インダクタンス5との
回路で振動する電圧となる。この時の撮動周波数は、イ
ンダクタンス5とキャパシタンス6の値により決定され
る。一方、供試開閉器1の負荷側電圧eLは電流しゃ断
時の電圧波高値が残留するため、供試開閉器1の接触子
間には電源側電圧esと負荷側電圧eLとの差電圧が印
h口されることになる。そしてこの電圧は、インダクタ
ンス5とキャパシタンス6の値で決まる周波数どなるた
め、これらの値を調整することにより任意の周波数での
試験を行なうことが可能となる。
Then, the power supply side voltage e5 of the test switch 1 is a voltage with a peak value remaining in the capacitance 6, and becomes a voltage that oscillates in the circuit with the inductance 5. The imaging frequency at this time is determined by the values of inductance 5 and capacitance 6. On the other hand, since the voltage peak value at the time of current interruption remains in the load side voltage eL of the test switch 1, there is a difference voltage between the power supply side voltage es and the load side voltage eL between the contacts of the test switch 1. It will be stamped. Since this voltage has a frequency determined by the values of the inductance 5 and capacitance 6, it is possible to perform a test at an arbitrary frequency by adjusting these values.

尚、インダクタンス5には直列抵抗が含まれるため、キ
ャパシタンス6との間で発生する振動電圧は減衰性のも
のとなって供試開閉器1に加わる電圧は減衰してしまう
が、しゃ断器規格JEC−181に規定される負荷側の
減衰時定数(0,1秒以上)を大きくとることにより、
供試開閉器1の接触子間に加わる電圧を規定圃と等価に
することができ、この様子を第3図(a )  (1)
 )に示している。
Note that since the inductance 5 includes a series resistance, the oscillating voltage generated between it and the capacitance 6 has an attenuating property, and the voltage applied to the test switch 1 is attenuated, but according to the breaker standard JEC By setting a large decay time constant (0.1 seconds or more) on the load side as specified in -181,
The voltage applied between the contacts of the test switch 1 can be made equivalent to that of the specified field, and this situation is shown in Figure 3 (a) (1).
).

[発明の効果コ 以上説明したように本発明によれば、供試開閉器と試験
電源との間に補助しゃ断器を直列に接続し、この補助し
ゃ断器と供試開閉器との間にインダクタンスとキャパシ
タンスを負荷キャパシタンスと並列に接続する構成とし
たので、一定の試験電源周波数の回路であっても、進み
電流しゃ断接に開閉器接触子間に加わる電圧の周波数を
任意の周波数に変化させて、実際に使用される周波数で
の進み電流しゃ断を検証することが可能な極めて信頼性
の高い開閉器の進み電流しゃ断試験回路が提供できる。
[Effects of the Invention] As explained above, according to the present invention, an auxiliary breaker is connected in series between the test switch and the test power source, and an inductance is established between the auxiliary breaker and the test switch. The capacitance is connected in parallel with the load capacitance, so even in a circuit with a constant test power supply frequency, the frequency of the voltage applied between the switch contactors can be changed to any frequency for leading current cutoff. , it is possible to provide an extremely reliable lead current cutoff test circuit for a switch that can verify lead current cutoff at frequencies actually used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路構成図、第2図(
は 同実施例における試験時の電圧、電流を示す波形図
、第3図(a )  (b )は電圧が減衰した場合を
説明するための波形図、第4図は従来の進み電流しゃ断
試験回路を示す構成図、第5図は第4図における電流し
ゃ断時の電圧、電流を示す波形図、第6図は50H2と
60Hzの8源を使用した時の開閉器接触子間にかかる
電圧を比較して示した波形図である。 1・・・供試開閉器、2・・・負荷キャパシタンス、3
・・・試験電源、4・・・補助しゃ断器、5・・・イン
ダクタンス、6・・・キャパシタンス。 出願人代理人 弁理士 鈴 江 武 彦第1図 (a) (b) 第3図 第4図 第5図
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention, and FIG. 2 (
are waveform diagrams showing the voltage and current during the test in the same example, Figures 3 (a) and (b) are waveform diagrams to explain the case where the voltage is attenuated, and Figure 4 is a conventional leading current cutoff test circuit. Figure 5 is a waveform diagram showing the voltage and current when the current is cut off in Figure 4. Figure 6 is a comparison of the voltage applied between the switch contacts when using eight sources of 50H2 and 60Hz. FIG. 1... Test switch, 2... Load capacitance, 3
...Test power source, 4...Auxiliary breaker, 5...Inductance, 6...Capacitance. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) (b) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 供試開閉器の電流測に直列に試験電源を接続すると共に
、前記試験開閉器の負荷側に直列に負荷となるキャパシ
タンスを接続して成る試験回路において、前記供試開閉
器と試験電源との間に補助しゃ断器を直列に接続し、こ
の補助しゃ断器と前記供試開閉器との間にインダクタン
スとキャパシタンスを前記しゃ負荷キャパシタンスと並
列に接続するようにしたことを特徴とする開閉器の進み
電流しゃ断試験回路。
In a test circuit in which a test power supply is connected in series to the amperage of the test switch, and a capacitance serving as a load is connected in series to the load side of the test switch, the connection between the test switch and the test power supply is An auxiliary breaker is connected in series between the auxiliary breaker and the test switch, and an inductance and a capacitance are connected in parallel with the breaker load capacitance between the auxiliary breaker and the test switch. Current cutoff test circuit.
JP60188153A 1985-08-27 1985-08-27 Leading current cut-off testing circuit for switch Pending JPS6247564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188153A JPS6247564A (en) 1985-08-27 1985-08-27 Leading current cut-off testing circuit for switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188153A JPS6247564A (en) 1985-08-27 1985-08-27 Leading current cut-off testing circuit for switch

Publications (1)

Publication Number Publication Date
JPS6247564A true JPS6247564A (en) 1987-03-02

Family

ID=16218676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188153A Pending JPS6247564A (en) 1985-08-27 1985-08-27 Leading current cut-off testing circuit for switch

Country Status (1)

Country Link
JP (1) JPS6247564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193984A (en) * 2011-03-15 2012-10-11 Toshiba Corp Test method and test device of capacitor bank opening/closing performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193984A (en) * 2011-03-15 2012-10-11 Toshiba Corp Test method and test device of capacitor bank opening/closing performance

Similar Documents

Publication Publication Date Title
US6703839B2 (en) Synthetic making/breaking-capacity test circuit for high-voltage alternating-current circuit-breakers
Kimbark Charts of three quantities associated with single-pole switching
Dufournet et al. Three-phase short circuit testing of high-voltage circuit breakers using synthetic circuits
Perkins et al. Vacuum switchgear application study with reference to switching surge protection
JPS6247564A (en) Leading current cut-off testing circuit for switch
Madzarevic et al. Overvoltages on EHV transmission lines due to faults and subsequent bypassing of series capacitors
Smeets et al. Non-sustained disruptive discharges: test experiences, standardization status and network consequences
Calixte et al. Theoretical expression of rate of rise of recovery voltage across a circuit breaker connected with fault current limiter
Sonagra et al. Controlled switching of non-coupled & coupled reactor for re-ignition free de-energization operation
Koeppl et al. New aspects for neutral grounding of generators considering intermittent faults
Lim et al. Turbogenerator short circuits with delayed current zeros
CN212412739U (en) Novel fault management control device
JP2666946B2 (en) Capacitor switching performance test equipment
CN110535110B (en) Phase selection switching-on and switching-off control method and device for extra-high voltage alternating current transformer
Taylor et al. Single-phase short-circuit testing of vacuum interrupters for power systems with an effectively earthed neutral
Hardi et al. Study on AC Contactor Performance UnderVoltage Sags
JPH0695134B2 (en) Switch test equipment
JPS61155780A (en) Equivalence tester for small leading current of breaker
Rathor et al. Short circuit analysis case study and circuit breaker design
Harner et al. Neutral Displacement of Ungrounded Capacitor Banks During Switching
Lee et al. Study on transient recovery voltage for testing of high-voltage circuit breakers
Bliznyakov Methodical instructions for laboratory works on the discipline" Exploitation of electrical and electronic apparatus"
Djokic et al. Dip segmentation method
Landry et al. Dielectric-withstand levels of some 735-kV air-blast circuit breakers under both direct and synthetic out-of-phase interrupting tests
CN114355180A (en) Power supply system and method for generating delay zero-crossing test current