JPH03295143A - Electron generating discharge cathode - Google Patents

Electron generating discharge cathode

Info

Publication number
JPH03295143A
JPH03295143A JP2097263A JP9726390A JPH03295143A JP H03295143 A JPH03295143 A JP H03295143A JP 2097263 A JP2097263 A JP 2097263A JP 9726390 A JP9726390 A JP 9726390A JP H03295143 A JPH03295143 A JP H03295143A
Authority
JP
Japan
Prior art keywords
hot cathode
auxiliary electrode
cathode
discharge
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2097263A
Other languages
Japanese (ja)
Inventor
Keizo Hirose
圭三 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2097263A priority Critical patent/JPH03295143A/en
Publication of JPH03295143A publication Critical patent/JPH03295143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To reduce the electrical and thermal resistance between an auxiliary electrode and a hot cathode, prevent the deterioration of the hot cathode, and obtain a long life by providing a mechanism holding the hot cathode and the auxiliary electrode together in the pressed state. CONSTITUTION:An electron generating discharge cathode 11 is removably fixed at nearly the center of a disk-shaped cathode holding flange 22 provided at one end section of a vacuum chamber 21 in an electron beam excitation plasma generator. A hot cathode 17 is held by a hot cathode holder 18 in the pressed state to the flange section 14 of the auxiliary electrode 13, thus the electrical and thermal resistance between the hot cathode 17 and the auxiliary electrode 13 is reduced, the auxiliary electrode 13 is efficiently heated, and the potential difference between them is reduced. The electric discharge by the auxiliary electrode 13 is suppressed, its ablation is suppressed, thus the material scattered from the auxiliary electrode 13 can be prevented from being stuck to the hot cathode 17 and impairing the function of the hot cathode 17.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、電子生成用放電陰極に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a discharge cathode for electron generation.

(従来の技術) 例えば、電子ビームを被処理体に照射して処理を実施す
る装置、電子ビームを所定の原料ガスに照射してプラズ
マを発生させ、このプラズマ(あるいはプラズマ中から
引きだしたイオン)を被処理体に作用させて処理を実施
する装置等、電子ビームを利用して各種処理を実施する
装置が近年広く使用されるようになっている。
(Prior art) For example, an apparatus that performs processing by irradiating an object with an electron beam, and a device that irradiates a predetermined raw material gas with an electron beam to generate plasma, and generates plasma (or ions extracted from the plasma). In recent years, devices that perform various types of processing using electron beams, such as devices that perform processing by applying electron beams to objects to be processed, have become widely used.

上述した装置には、電子源として、例えば電子生成用放
電陰極が設けられている。このような従来の電子生成用
放電陰極の一例の構成を第3図に示す。この図に示され
るように、電子生成用放電陰極1には、材質例えばタン
タル等からなり、中央部にガス流路2を形成した中空棒
状の補助電極3が設けられている。この補助電極3の先
端部近傍には、先端側が細くなる如く段差部3aが形成
されており、この段差部3aに係止される如く、補助電
極3の外側に、熱電子を多量に発生する材料、例えばL
 a B 6からなる環状の熱陰極4が設けられている
。また、補助電極3の外側には、材質例えばモリブデン
からなる筒状の熱シールド部材5か補助電極3の周囲を
囲む如く設けられている。
The above-described device is provided with, for example, an electron-generating discharge cathode as an electron source. The structure of an example of such a conventional discharge cathode for electron generation is shown in FIG. As shown in this figure, the electron-generating discharge cathode 1 is provided with a hollow rod-shaped auxiliary electrode 3 made of a material such as tantalum and having a gas flow path 2 formed in its center. A stepped portion 3a is formed near the tip of the auxiliary electrode 3 so that the tip becomes thinner, and a large amount of thermoelectrons are generated on the outside of the auxiliary electrode 3 as if they are locked to the stepped portion 3a. material, e.g. L
An annular hot cathode 4 consisting of a B 6 is provided. Further, on the outside of the auxiliary electrode 3, a cylindrical heat shield member 5 made of a material such as molybdenum is provided so as to surround the periphery of the auxiliary electrode 3.

そして、上記電子生成用放電陰極1を真空チャンバ内に
設け、電子生成用放電陰極1と図示しないアノード側電
極との間に電圧を印加するとともに、例えば補助電極3
に形成されたガス流路2を介して真空チャンバ内に放電
用ガスを導入する。
Then, the electron generation discharge cathode 1 is provided in a vacuum chamber, and a voltage is applied between the electron generation discharge cathode 1 and an anode side electrode (not shown), and, for example, an auxiliary electrode 3
A discharge gas is introduced into the vacuum chamber through a gas flow path 2 formed in the vacuum chamber.

すると、まず、補助電極3とアノード側電極との間に初
期放電が生じ、この初期放電によって熱陰極4が加熱さ
れると熱陰極4とアノード側電極との間に放電が生じ、
熱陰極4から多量の電子が放出される。
Then, first, an initial discharge occurs between the auxiliary electrode 3 and the anode side electrode, and when the hot cathode 4 is heated by this initial discharge, a discharge occurs between the hot cathode 4 and the anode side electrode,
A large amount of electrons are emitted from the hot cathode 4.

このような電子生成用放電陰極1では、例えば直熱形の
フィラメント等に較べて小形で大電流を得ることができ
、高効率で電子を生成することができる。
Such an electron generation discharge cathode 1 can obtain a large current with a smaller size than, for example, a directly heated filament, and can generate electrons with high efficiency.

(発明が解決しようとする課題) しかしながら、上記説明の従来の電子生成用放電陰極に
おいては、例えばLaB6からなる熱陰極が割れて補助
電極から脱落したり、熱陰極の表面に例えば放電の作用
により飛散した補助電極材料(例えばタンタル)が付着
したりするので、その寿命が短い(例えば80時間程度
)という問題があった。
(Problems to be Solved by the Invention) However, in the conventional discharge cathode for electron generation described above, the hot cathode made of, for example, LaB6 may crack and fall off from the auxiliary electrode, or the surface of the hot cathode may be damaged due to the action of discharge, for example. Since the scattered auxiliary electrode material (for example, tantalum) adheres to the electrode, there is a problem that its lifespan is short (for example, about 80 hours).

本発明は、かかる従来の事情に対処してなされたもので
、高効率で電子を生成することができ、かつ、長寿命な
電子生成用放電陰極を提供しようとするものである。
The present invention has been made in response to such conventional circumstances, and aims to provide a discharge cathode for electron generation that can generate electrons with high efficiency and has a long life.

[発明の構成] (課題を解決するための手段) すなわち本発明は、電子を生成するための熱陰極と、初
期放電を生じさせ、この初期放電により前記熱陰極を加
熱する補助電極とを具備した電子生成用放電陰極におい
て、前記熱陰極と前記補助電極とを互いに押圧状態に保
持する機構を設けたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention includes a hot cathode for generating electrons, and an auxiliary electrode that generates an initial discharge and heats the hot cathode by the initial discharge. The electron generating discharge cathode is characterized in that a mechanism is provided for holding the hot cathode and the auxiliary electrode in a pressed state against each other.

(作 用) 本発明者等が詳査したところ、第3図に示したような従
来の電子生成用放電陰極では、例えばLaB6等からな
る環状の熱陰極が、補助電極の段差部に係止されている
だけなので、補助電極と熱陰極との間の電気的および熱
的抵抗が高くなり、このため補助電極と熱陰極との間に
温度差および電位差か生じ、熱陰極の寿命が短くなるこ
とが判明した。
(Function) Upon detailed investigation by the present inventors, it was found that in the conventional discharge cathode for electron generation as shown in FIG. Because of this, the electrical and thermal resistance between the auxiliary electrode and the hot cathode is high, which creates a temperature and potential difference between the auxiliary electrode and the hot cathode, which shortens the life of the hot cathode. It has been found.

すなわち、補助電極と熱陰極との間に温度差および電位
差が生じると、熱陰極による放電の効率が低下する。こ
のため、補助電極による放電が活発となり、温度も高く
なって補助電極が消耗し、この消耗により飛散した材料
か熱陰極に付着し、熱陰極の機能を損わせる。また、補
助電極の熱膨脹により、熱陰極に応力が作用し、熱陰極
に割れが発生して補助電極から脱落したりする。
That is, when a temperature difference and a potential difference occur between the auxiliary electrode and the hot cathode, the efficiency of discharge by the hot cathode decreases. As a result, the discharge from the auxiliary electrode becomes active, the temperature rises, and the auxiliary electrode is consumed, and the material scattered due to this consumption adheres to the hot cathode, impairing the function of the hot cathode. Further, due to the thermal expansion of the auxiliary electrode, stress acts on the hot cathode, causing cracks in the hot cathode and causing it to fall off from the auxiliary electrode.

そこで、本発明の電子生成用放電陰極では、熱陰極と補
助電極とを互いに押圧状態に保持する機構を設けること
により、補助電極と熱陰極との間の電気的および熱的抵
抗を減少させ、熱陰極の劣化を防止して、長寿命化を図
る。
Therefore, in the electron generating discharge cathode of the present invention, a mechanism is provided to hold the hot cathode and the auxiliary electrode in a pressed state to reduce the electrical and thermal resistance between the auxiliary electrode and the hot cathode. Preventing hot cathode deterioration and extending its lifespan.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図に示すように、電子生成用放電陰極11には、材
質例えばタンタル等からなり、中央部にガス流路12、
を形成された外径例えば5mm 、内径例えば2mm 
 長さ例えば100mm程度に形成された中空棒状の補
助電極13か設けられている。
As shown in FIG. 1, the electron generating discharge cathode 11 is made of a material such as tantalum, and has a gas flow path 12 in the center.
The formed outer diameter is, for example, 5mm, and the inner diameter is, for example, 2mm.
A hollow rod-shaped auxiliary electrode 13 having a length of, for example, about 100 mm is provided.

この補助電極13の先端部近傍(例えば先端からl D
im程度後方)には、フランジ部14か形成されている
。また、このフランジ部14の後方には、フランン部1
4側から順に、外径例えば6■程度に形成された熱陰極
支持部15と、螺刻部16が形成されている。なお、熱
陰極支持部15の外径および長さは、次に説明する熱陰
極17の寸法に合せて設定されている。
Near the tip of this auxiliary electrode 13 (for example, from the tip to
A flange portion 14 is formed at the rear (approximately 100 mm rearward). Further, at the rear of this flange portion 14, a flange portion 1 is provided.
A hot cathode support portion 15 having an outer diameter of, for example, approximately 6 mm and a threaded portion 16 are formed in order from the 4th side. Note that the outer diameter and length of the hot cathode support portion 15 are set in accordance with the dimensions of the hot cathode 17, which will be described next.

熱陰極17は、熱電子を多量に発生する材料、例えばL
aB6からなる環状に形成されており、その寸法は、外
径例えば18av、内径例えば6ma+ 。
The hot cathode 17 is made of a material that generates a large amount of thermoelectrons, such as L.
It is formed into an annular shape made of aB6, and its dimensions include an outer diameter of, for example, 18av, and an inner diameter of, for example, 6ma+.

厚さ例えば3mm程度とされている。また、この熱陰極
17の外側周縁部および一側面(後側面)を支持する如
く、熱陰極ホルダ18が設けられている。この熱陰極ホ
ルダ18は、例えば補助電極13と同し材質(タンタル
)からなり、補助電極13の螺刻部16に螺合可能とす
る如く、その内側に螺子か形成されている。そして、補
助電極13の後側から、熱陰極17と熱陰極ホルダ18
をこの順で挿入し、熱陰極ホルダ18を螺刻部16に螺
合させることにより、熱陰極17をフランジ部】4に押
圧する如く、熱陰極支持部15外側に支持する構造とさ
れている。
The thickness is, for example, about 3 mm. Further, a hot cathode holder 18 is provided to support the outer peripheral edge and one side (rear side) of the hot cathode 17. This hot cathode holder 18 is made of the same material (tantalum) as the auxiliary electrode 13, for example, and has a screw formed inside thereof so that it can be screwed into the threaded portion 16 of the auxiliary electrode 13. Then, from the rear side of the auxiliary electrode 13, the hot cathode 17 and the hot cathode holder 18 are
are inserted in this order and the hot cathode holder 18 is screwed into the threaded part 16, so that the hot cathode 17 is supported on the outside of the hot cathode support part 15 so as to be pressed against the flange part ]4. .

また、補助電極13の外側には、材質例えばモリブデン
からなる筒状の熱シールド部材19が補助電極13の周
囲を囲む如く設けられている。
A cylindrical heat shield member 19 made of a material such as molybdenum is provided outside the auxiliary electrode 13 so as to surround the auxiliary electrode 13 .

上記構成の電子生成用放電陰極11は、例えば第2図に
示す如く、電子ビーム励起プラズマ生成装置(E B 
E P)等の真空チャンバ21内に配置される。
The electron-generating discharge cathode 11 having the above configuration can be used, for example, as shown in FIG.
It is placed in a vacuum chamber 21 such as EP).

すなわち、第2図に示す電子ビーム励起プラズマ生成装
置において、真空チャンバ21は、例えば円筒状に構成
されており、電子生成用放電陰極11は、この真空チャ
ンバ21の一方の端部に設けられた円板状の陰極保持フ
ランジ22のほぼ中央に着脱自在に固定されている。ま
た、真空チャンバ21内には、その長平方向に沿って、
電子生成用放電陰極1]側から順に、環状に形成された
第1陽極23、第2陽極24、第3陽極25、および電
子引き出し電極26が真空チャンバ21内を5つの部屋
に仕切る如く設けられている。さらに、真空チャンバ2
1内の電子引き出し電極26側端部には、被処理物例え
ば半導体ウェハ27を保持するためのサセプタ28が設
けられている。
That is, in the electron beam-excited plasma generation apparatus shown in FIG. It is detachably fixed approximately at the center of the disk-shaped cathode holding flange 22. In addition, along the elongated direction inside the vacuum chamber 21,
A first anode 23, a second anode 24, a third anode 25, and an electron extracting electrode 26 are provided in order from the side of the electron generating discharge cathode 1 to partition the inside of the vacuum chamber 21 into five rooms. ing. Furthermore, the vacuum chamber 2
A susceptor 28 for holding an object to be processed, such as a semiconductor wafer 27, is provided at an end on the side of the electron extraction electrode 26 within the susceptor 1.

そして、真空チャンバ21内の電子生成用放電陰極11
側の部屋が例えばI Torr、反対側端部の部屋が例
えば10−’Torrとなるように、排気口29.30
.31から差動排気する。また、各電極に所定の直流電
圧を印加するとともに、ガス流路12から放電ガス例え
ばアルゴンガスを導入し、反応ガス導入口32から所定
の反応ガスを導入する。
Then, the discharge cathode 11 for electron generation in the vacuum chamber 21
Exhaust vents 29.30 such that the side chambers are, for example, I Torr and the opposite end chambers are, for example, 10-'Torr.
.. Differential exhaust from 31. Further, while applying a predetermined DC voltage to each electrode, a discharge gas such as argon gas is introduced from the gas flow path 12, and a predetermined reaction gas is introduced from the reaction gas introduction port 32.

すると、ガス流路12から導入される放電ガスは、電子
生成用放電陰極11と、第1陽極23、第2陽極24、
第3陽極25との間に印加される直流電圧により生じる
放電でプラズマ化される。
Then, the discharge gas introduced from the gas flow path 12 connects to the electron generation discharge cathode 11, the first anode 23, the second anode 24,
The plasma is generated by a discharge caused by a DC voltage applied between the third anode 25 and the third anode 25.

そして、このプラズマ中から電子引き出し電極26によ
って引き出された電子ビームによって反応ガス導入口3
2から導入された反応ガスがプラズマ化され、半導体ウ
ェハ27に例えばエツチング、デポジション等の所定の
処理か行われるよう構成されている。
The electron beam extracted from this plasma by the electron extraction electrode 26 causes the reactive gas inlet 3 to
The reactant gas introduced from 2 is turned into plasma, and a predetermined process such as etching or deposition is performed on the semiconductor wafer 27.

上記電子生成用放電陰極11による放電において、初期
放電は補助電極13によって生じ、この初期放電により
、熱陰極17が例えば1500℃程度に加熱されると、
熱陰極17によってより大電流の放電か生じる。
In the discharge by the electron generating discharge cathode 11, an initial discharge is generated by the auxiliary electrode 13, and when the hot cathode 17 is heated to, for example, about 1500° C. by this initial discharge,
The hot cathode 17 produces a higher current discharge.

この時、この実施例の電子生成用放電陰極11ては、熱
陰極17が、熱陰極ホルダ18によって補助重塔13の
フランジ部14に押圧状態に保持されているので、熱陰
極17と補助電極13との間の電気的および熱的抵抗が
少なく、補助電極13が効率良く加熱されるとともに、
両者の間の電位差も少なくなる。このため、補助電極1
3による放電が抑制され、その消耗が抑制されるので、
補助電極13から飛散した材料が熱陰極17に付着し、
熱陰極17の機能を損わせることを抑制することかでき
る。また、補助電極13の熱膨脹も抑制できるので、熱
陰極17に割れ等が発生するnJ能性も低減することが
できる。さらに、万一熱陰極17に割れが発生しても、
熱陰極ホルダ18によって補助電極13からの脱落を防
止することかできるので、そのまま使用することかでき
、従来に較べて、大幅に寿命を長期化することができる
。例えば、前述した従来の電子生成用放電陰極では寿命
が80時間程度であったが、この実施例の電子生成用放
電陰極11では、数百時間以上とすることかできた。
At this time, in the electron generation discharge cathode 11 of this embodiment, the hot cathode 17 is held pressed against the flange portion 14 of the auxiliary tower 13 by the hot cathode holder 18, so that the hot cathode 17 and the auxiliary electrode 13, the auxiliary electrode 13 is heated efficiently, and
The potential difference between the two also decreases. For this reason, the auxiliary electrode 1
Since the discharge due to 3 is suppressed and its consumption is suppressed,
The material scattered from the auxiliary electrode 13 adheres to the hot cathode 17,
It is possible to prevent the function of the hot cathode 17 from being impaired. In addition, since thermal expansion of the auxiliary electrode 13 can be suppressed, the nJ possibility of cracking or the like occurring in the hot cathode 17 can also be reduced. Furthermore, even if a crack occurs in the hot cathode 17,
Since the hot cathode holder 18 can prevent the hot cathode holder from falling off the auxiliary electrode 13, it can be used as is, and its lifespan can be significantly extended compared to the conventional one. For example, while the conventional discharge cathode for electron generation described above had a life of about 80 hours, the life of the discharge cathode 11 for electron generation of this embodiment could be several hundred hours or more.

なお、上記実施例の電子生成用放電陰極11では、補助
電極13の後側から熱陰極17および熱陰極ホルダ18
を挿入する構造としたが、熱陰極17を補助電極13(
フランジ部14)に押圧支持する構造は、適宜変更可能
であり、例えば補助電極1Bの先端側から熱陰極17お
よび熱陰極ホルダ18を挿入し、熱陰極17をフランジ
部14の先端側に保持する如く構成することもできる。
In addition, in the electron generation discharge cathode 11 of the above embodiment, the hot cathode 17 and the hot cathode holder 18 are connected from the rear side of the auxiliary electrode 13.
However, the hot cathode 17 is inserted into the auxiliary electrode 13 (
The structure of pressing and supporting the flange portion 14) can be changed as appropriate. For example, the hot cathode 17 and the hot cathode holder 18 are inserted from the tip side of the auxiliary electrode 1B, and the hot cathode 17 is held on the tip side of the flange portion 14. It can also be configured as follows.

このような構成とすれば、補助電極13を真空チャンバ
21に固定したまま熱陰極17の交換を実施することか
できる。
With such a configuration, the hot cathode 17 can be replaced while the auxiliary electrode 13 is fixed to the vacuum chamber 21.

[発明の効果] 以上説明したように、本発明の電子生成用放電陰極によ
れば、高効率で電子を生成することができ、かつ、従来
に較べて大幅な寿命の長期化を図ることができる。
[Effects of the Invention] As explained above, according to the discharge cathode for electron generation of the present invention, electrons can be generated with high efficiency, and the life span can be significantly extended compared to the conventional one. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電子生成用放電陰極の構成
を示す図、第2図は第1図に示す電子生成用放電陰極を
配置した電子ビーム励起プラズマ生成装置の構成を示す
図、第3図は従来の電子生成用放電陰極の構成を示す図
である。 11・・・・・・電子生成用放電陰極、12・・・・・
・ガス流路、13・・・・・・補助電極、14・・・・
・・フランジ部、15・・・・・・熱陰極支持部、16
・・・・・・螺刻部、17・・・・・・熱陰極、18・
・・・・・熱陰極ホルダ、19・・・・・・熱シールド
部材。
FIG. 1 is a diagram showing the configuration of an electron-generating discharge cathode according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of an electron beam-excited plasma generation apparatus in which the electron-generating discharge cathode shown in FIG. 1 is arranged. , FIG. 3 is a diagram showing the configuration of a conventional discharge cathode for electron generation. 11... Discharge cathode for electron generation, 12...
・Gas flow path, 13...Auxiliary electrode, 14...
... Flange part, 15 ... Hot cathode support part, 16
...Threaded part, 17... Hot cathode, 18.
...Hot cathode holder, 19... Heat shield member.

Claims (1)

【特許請求の範囲】[Claims] (1)電子を生成するための熱陰極と、初期放電を生じ
させ、この初期放電により前記熱陰極を加熱する補助電
極とを具備した電子生成用放電陰極において、 前記熱陰極と前記補助電極とを互いに押圧状態に保持す
る機構を設けたことを特徴とする電子生成用放電陰極。
(1) A discharge cathode for electron generation comprising a hot cathode for generating electrons and an auxiliary electrode that generates an initial discharge and heats the hot cathode by the initial discharge, wherein the hot cathode and the auxiliary electrode A discharge cathode for electron generation, characterized in that a mechanism is provided for holding the two in a pressed state.
JP2097263A 1990-04-12 1990-04-12 Electron generating discharge cathode Pending JPH03295143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097263A JPH03295143A (en) 1990-04-12 1990-04-12 Electron generating discharge cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097263A JPH03295143A (en) 1990-04-12 1990-04-12 Electron generating discharge cathode

Publications (1)

Publication Number Publication Date
JPH03295143A true JPH03295143A (en) 1991-12-26

Family

ID=14187657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097263A Pending JPH03295143A (en) 1990-04-12 1990-04-12 Electron generating discharge cathode

Country Status (1)

Country Link
JP (1) JPH03295143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845326B1 (en) * 2007-01-22 2008-07-10 한국전기연구원 Hollow cathode discharge gun

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845326B1 (en) * 2007-01-22 2008-07-10 한국전기연구원 Hollow cathode discharge gun

Similar Documents

Publication Publication Date Title
US3440475A (en) Lanthanum hexaboride cathode system for an electron beam generator
US5252892A (en) Plasma processing apparatus
TW201737285A (en) Indirectly heated cathode ion source and repeller for use within an ion source chamber
JPH03295143A (en) Electron generating discharge cathode
JP2535564B2 (en) Plasma processing equipment
JP2013222878A (en) Plasma heat treatment method and device
JPH1125872A (en) Ion generator
JP3606842B2 (en) Electron gun and electron beam irradiation processing apparatus
US9773650B2 (en) Method and device for generating an electrical discharge
JP4114770B2 (en) Vacuum processing equipment for oxygen ion generation
JPH09186088A (en) Method and apparatus for manufacturing semiconductor
JP3498405B2 (en) Ion source
JP2564572B2 (en) Plasma processing equipment
JPH0837099A (en) Plasma generating device
JPH0714533A (en) Plasma generating device
JP2526228B2 (en) Electronic beam type plasma device
JP2848590B1 (en) Electron beam excited plasma generator
RU2088056C1 (en) Generator of atom hydrogen
JP4218219B2 (en) Plasma film forming apparatus and carbon film forming method
JP2024064927A (en) Ion Source Cathode
JP3342575B2 (en) Electron beam excitation type plasma equipment
JPH02142050A (en) Hot cathode type ionization vacuum gauge
JP3260946B2 (en) Plasma processing equipment
JPH01176641A (en) Electron gun
RU2026414C1 (en) Method for article treatment