JPH03294476A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPH03294476A
JPH03294476A JP9832090A JP9832090A JPH03294476A JP H03294476 A JPH03294476 A JP H03294476A JP 9832090 A JP9832090 A JP 9832090A JP 9832090 A JP9832090 A JP 9832090A JP H03294476 A JPH03294476 A JP H03294476A
Authority
JP
Japan
Prior art keywords
evaporation material
electron beams
evaporation
film
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9832090A
Other languages
Japanese (ja)
Inventor
Tamaaki Suzuki
瑞明 鈴木
Matsuo Kishi
松雄 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9832090A priority Critical patent/JPH03294476A/en
Priority to US07/684,062 priority patent/US5346554A/en
Publication of JPH03294476A publication Critical patent/JPH03294476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stabilize the evaporation speed for a long period and to form uniform film by deflecting the electron beams generated with a hollow cathode by the magnetic field generated with an electromagnet, and heating and evaporating an evaporation material while scanning and irradiating the surface of the evaporation material. CONSTITUTION:The crucible 12 receiving the evaporation material 7 and a base plate 8 to be treated are oppositely disposed in a vacuum vessel 13 evacuated into vacuum. The electron beams 1 generated by the electric discharge through a hollow cathode 6 irradiates the evaporation material 7 to heat and evaporate. The vapor of this evaporation material 7 is, if necessary, reacted with the reaction gas supplied from a gas introduction pipe 14 to be deposited to form film on the base plate 8 impressed with biased voltage of high frequency wave from a high frequency wave electric power source 10 through an adjuster 9. In the above-mentioned thin film formation apparatus, the electromagnetic consisting of a coil 2 and an iron core 3 is disposed to deflect the electron beams 1 by its magnetic field so that the electron beams irradiate the surface of the evaporation material 7 while scanning. By this method, the evaporation speed of the evaporation material 7 is stabilized and the film homogeneous in the direction of film thickness is formed, and the adjustment of biased voltage is easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 被処理基板上に金属窒化物または金属酸化物などの薄膜
を形成するために用いられる薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film forming apparatus used to form a thin film of metal nitride or metal oxide on a substrate to be processed.

〔発明の概要〕[Summary of the invention]

ホロー陰極放電によって生じた電子ビームを偏向し、遺
発物質表面を走査しながら電子ビームで照射することが
可能な磁場を発生する電磁石を備える薄膜形成装置。
A thin film forming apparatus equipped with an electromagnet that generates a magnetic field that deflects the electron beam generated by hollow cathode discharge and scans the surface of the residual material while irradiating it with the electron beam.

〔従来の技術〕[Conventional technology]

従来の技術ではホロー陰極放電によって生じた電子ビー
ムを蒸発物質表面の狭い領域を局所的に照射するのみで
、電子ビームを偏向し、走査しながら蒸発物質表面の広
い領域を照射することができなかった。
Conventional technology only locally irradiates a narrow area of the surface of the evaporated material with the electron beam generated by hollow cathode discharge; it is not possible to deflect and scan the electron beam to irradiate a wide area of the surface of the evaporated material. Ta.

〔発明が解決しようとする課題] たとえば、窒化珪素、窒化アルミニウムなどの窒化物薄
膜、または、酸化珪素、酸化アルミニウムなどの酸化物
薄膜を得ようとする場合、真空容器内に窒素ガスまたは
酸素ガスを導入する。
[Problems to be Solved by the Invention] For example, when trying to obtain a nitride thin film such as silicon nitride or aluminum nitride, or an oxide thin film such as silicon oxide or aluminum oxide, nitrogen gas or oxygen gas is will be introduced.

このとき、ルツボ内で高温となった珪素またはアルミニ
ウムなどの蒸発物質は窒素または酸素雰囲気にさらされ
るため、著しく窒化または酸化してしまう。蒸発物質が
窒化または酸化すると融点が高くなる。そのため、蒸発
物質は溶融しにくくなり、直接電子ビームが照射されて
いる狭い領域のみが特に高温となり、溶融、蒸発する、
そのため、蒸発物質は場面が均一に熔融せず、電子ビー
ムが蒸発物質の一部に穴を掘るようなことが起こる、つ
まり第5図の断面図に示すように従来の技術のルツボ内
の蒸発物質の状態となり、窒化物層20と局部的な溶融
部となる。このような状態になると、ルツボ内の蒸発物
質の一部のみしか蒸発できないため、蒸発速度が不安定
になったり、蒸着できる時間が短くなって、必要な膜厚
まで膜を形成できなくなってしまう。
At this time, the evaporated substance such as silicon or aluminum, which has reached a high temperature in the crucible, is exposed to a nitrogen or oxygen atmosphere, so that it is significantly nitrided or oxidized. When the vaporized substance is nitrided or oxidized, its melting point increases. Therefore, the evaporated substance becomes difficult to melt, and only the narrow area that is directly irradiated with the electron beam becomes particularly high temperature, causing it to melt and evaporate.
Therefore, the evaporated material is not melted uniformly, and the electron beam may dig a hole in a part of the evaporated material. It becomes a substance state and becomes a nitride layer 20 and a local melted part. In this situation, only a portion of the evaporation material in the crucible can be evaporated, making the evaporation rate unstable and the deposition time shortened, making it impossible to form a film to the required thickness. .

また、電子ビームが蒸発物質に深く穴を掘り、ルツボを
壊してしまうこともありうる。
Additionally, the electron beam could burrow deep into the evaporated material and destroy the crucible.

従来の技術ではホロー陰極放電によって生じた電子ビー
ムを蒸発物質表面の狭い領域を局所的に照射するのみで
あったため、上記のような問題が起こりやすかった。
In the conventional technology, the electron beam generated by the hollow cathode discharge is only used to locally irradiate a narrow area on the surface of the evaporated material, so the above-mentioned problems tend to occur.

また、被処理基板にバイアスとして高周波電圧を印加す
る場合、従来の技術では蒸発物質の蒸発速度が不安定な
ため、雰囲気中のイオン密度が安定セず、高周波インピ
ーダンスの整合がうまくとれす、処理中に顧繁に整合器
を調整する必要かあった。
In addition, when applying a high frequency voltage as a bias to the substrate to be processed, with conventional technology, the evaporation rate of the evaporated substance is unstable, so the ion density in the atmosphere is not stable, making it difficult to properly match the high frequency impedance. During the process, Gu Cheng had to adjust the matching device.

〔課題を解決するための手段〕 ホロー陰極によって生じた電子ビームを偏向できる磁場
を発生する電磁石を備えることにより、電子ビームを走
査しながら、蒸発物質表面の比較的広い面積を照射する
ことにより、蒸発物質が局所的に照射、加熱される問題
を解決した。これにより、窒化、または酸化されはじめ
た領域にも電子ビームが照射され、加熱、蒸発するため
、著しく窒化または酸化された層ができにくくなる。
[Means for solving the problem] By providing an electromagnet that generates a magnetic field capable of deflecting the electron beam generated by the hollow cathode, a relatively wide area of the surface of the evaporated substance is irradiated while scanning the electron beam. Solved the problem of locally irradiating and heating evaporated substances. As a result, regions that have begun to be nitrided or oxidized are also irradiated with the electron beam, heated and evaporated, making it difficult to form a significantly nitrided or oxidized layer.

〔作用〕[Effect]

磁場が存在すると、電子ビームはローレンツ力によって
その進路に偏向を受ける。したがって、電磁石を用いて
時間的に変化する磁場をつくり、電子ビームを走査しな
がら蒸発物質表面の広い面積を照射することができる。
In the presence of a magnetic field, the electron beam is deflected in its path by the Lorentz force. Therefore, by using an electromagnet to create a magnetic field that changes over time, it is possible to irradiate a wide area of the surface of the evaporated material while scanning the electron beam.

これにより、窒化、または酸化されはじめた領域にも電
子ビームが照射され、加熱、蒸発されるため、著しく窒
化または酸化された層ができにくくなる。
As a result, the electron beam is applied to a region that has begun to be nitrided or oxidized, and the region is heated and evaporated, making it difficult to form a significantly nitrided or oxidized layer.

〔実施例〕〔Example〕

図面を用いて本発明の実施例について説明する。 Embodiments of the present invention will be described using the drawings.

第1図は実施例の概要を示す正面断面図である。FIG. 1 is a front sectional view showing an outline of the embodiment.

第2図(a)、第2図(b)、および第3図(a)、第
3図(b)は実施例のルツボまわりの概要を示す図で、
各図の(a)は平面図、(b)は正面図である。
Fig. 2(a), Fig. 2(b), and Fig. 3(a), Fig. 3(b) are diagrams showing an overview of the crucible and surroundings of the example.
In each figure, (a) is a plan view, and (b) is a front view.

電子ビーム1を偏向するための磁場を発生する電磁石は
コイル2と鉄心3から構成され、低周波発振機4および
低周波増幅器5により駆動される。
An electromagnet that generates a magnetic field for deflecting the electron beam 1 is composed of a coil 2 and an iron core 3, and is driven by a low frequency oscillator 4 and a low frequency amplifier 5.

!磁石に発生させる磁場の強さは、ホロー陰極6近傍で
10〜数10ガウスである。電磁石に交流を流を流して
電子と−ム1を走査する場合、電流の大きさ、振幅を変
化させることにより、電子ビーム1の走査の振幅、速さ
を変化させることができる。
! The strength of the magnetic field generated by the magnet is 10 to several tens of Gauss near the hollow cathode 6. When the electron beam 1 is scanned by passing an alternating current through the electromagnet, the scanning amplitude and speed of the electron beam 1 can be changed by changing the magnitude and amplitude of the current.

第2図または第3図のように2つのt磁石をたがいに直
交して配置しであるため、2次元的に任意の方向に電子
ビーム1を偏向、走査することができる。
Since the two t-magnets are arranged perpendicularly to each other as shown in FIG. 2 or 3, the electron beam 1 can be deflected and scanned two-dimensionally in any direction.

実施例の薄n々形成装置を用いて窒化アルミニウム膜、
および、窒化珪素膜の形成を試みたところ、従来の方法
のように、茶発物質7の表面が著しく窒化したり、電子
ビーム1711<茶発物質に深く穴を掘るような状態と
はならなかった。第4図(a)、第4図(b)は実施例
でのルツボ内の痕発物質の状態を模式的に表した断面図
である。第5図は従来の技術でのルツボ内の蒸発物質の
状態を模式的に表した断面図である。
Aluminum nitride film,
When trying to form a silicon nitride film, the surface of the tea material 7 did not become significantly nitrided or the electron beam 1711 did not dig a deep hole into the tea material, unlike in the conventional method. Ta. FIG. 4(a) and FIG. 4(b) are cross-sectional views schematically showing the state of the trace material in the crucible in the example. FIG. 5 is a cross-sectional view schematically showing the state of evaporated substances in a crucible according to a conventional technique.

また、膜の形成中、被処理基板8にバイアスとして高周
波電圧を印加したが、従来の技術のよう°に毅繁に整合
器9の調整を行なう必要はなかった。
Furthermore, although a high frequency voltage was applied as a bias to the substrate 8 to be processed during the film formation, there was no need to adjust the matching device 9 as thoroughly as in the conventional technique.

第6図は実施例で形成した窒化アルミニウム膜のオージ
ェN子分光分析の結果を示したものである。第7図は従
来の技術で形成した窒化アルミニウム膜のオージェ電子
分光分析の結果を示したものである。実施例では、アル
ミニウムの蒸発速度が安定しているため、膜厚方向に−
様な組成の膜が形成されている。
FIG. 6 shows the results of Auger N-molecule spectroscopy of the aluminum nitride film formed in the example. FIG. 7 shows the results of Auger electron spectroscopy of an aluminum nitride film formed by the conventional technique. In the example, since the evaporation rate of aluminum is stable, -
Films with various compositions are formed.

上記とは逆に、処理中、ホロー陰極放電の放電電流およ
び窒素ガス流量を時間的に変化させることにより、膜厚
方向に組成を変化させた化合物膜を得ることも可能であ
る。
Contrary to the above, it is also possible to obtain a compound film whose composition changes in the film thickness direction by temporally changing the discharge current of the hollow cathode discharge and the nitrogen gas flow rate during the treatment.

〔発明の効果〕〔Effect of the invention〕

暴発物質の一部のみが蒸発し、穴を掘るような状態とは
ならないため、従来の技術に比べ、蒸着時間が延びる。
Because only a portion of the explosive material evaporates and no burrowing occurs, the deposition time is longer than with conventional techniques.

また、ルツボを壊してしまう危険もない。Also, there is no risk of breaking the crucible.

従来の技術に比べ、蒸発物質の蒸発速度が安定になる。Compared to conventional techniques, the evaporation rate of evaporated substances becomes more stable.

したがって、形成される膜は膜厚方向に均質なものが得
られる。逆に蒸発量を制御して、膜厚方向に組成を変化
させた化合物膜を得ることも可能となる。また、被処理
基板のバイアスとして高周波電圧を印加している場合、
蒸発速度が安定となることから、電源と負荷のインピー
ダンス整合が行ないやすい。
Therefore, the formed film is homogeneous in the film thickness direction. Conversely, by controlling the amount of evaporation, it is also possible to obtain a compound film whose composition changes in the film thickness direction. In addition, when applying a high frequency voltage as a bias to the substrate to be processed,
Since the evaporation rate is stable, it is easy to match the impedance between the power source and the load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概要を示す正面断面図である
。第2図(a)、第21D (b) 、および第3図(
a)、第3図(b)は本発明の実施例のルツボまわりの
要部を示す図である。それぞれに(a)は平面図、(b
)は側面図である。 第4図(a)、第4図(b)は本発明の実施例でのルツ
ボ内の蒸発物質の状態を方向を変えて示した断面図であ
る。第5図は従来の技術でのルツボ内の蒸発物質の状態
を示した断面図である。 第6図は実施例で形成した窒化アルミニウム膜のオージ
ェ電子分光分析の結果を示した特性図である。第7図は
従来の技術で形成した窒化アルミニウム膜のオージェ電
子分光分析の結果を示した特性図である。 電子ビーム コイル 鉄心 低周波発振機 低周波増幅機 ホロー陰極 蒸発物質 8゜ 9゜ 10゜ 11゜ 12゜ 13゜ 14゜ 15゜ 16゜ 17゜ 1B。 19゜ 20゜ 被処理基板 整合器 高周波電源 ホロー陰極用電源 ルツボ 真空容器 ガス導入管 アルゴンガス導入管 被処理基板保持具 シャッター ヒーター 冷却水通路 窒化物層 以上
FIG. 1 is a front sectional view showing an outline of an embodiment of the present invention. Figures 2(a), 21D(b), and 3(
a) and FIG. 3(b) are diagrams showing the main parts around the crucible in the embodiment of the present invention. (a) is a plan view, (b)
) is a side view. FIG. 4(a) and FIG. 4(b) are cross-sectional views showing the state of the evaporated substance in the crucible in an embodiment of the present invention in different directions. FIG. 5 is a cross-sectional view showing the state of evaporated substances in a crucible according to a conventional technique. FIG. 6 is a characteristic diagram showing the results of Auger electron spectroscopy of the aluminum nitride film formed in the example. FIG. 7 is a characteristic diagram showing the results of Auger electron spectroscopy of an aluminum nitride film formed by a conventional technique. Electron beam coil iron core low frequency oscillator low frequency amplifier hollow cathode evaporation material 8゜9゜10゜11゜12゜13゜14゜15゜16゜17゜1B. 19゜20゜ Processing substrate matching device High frequency power supply Hollow cathode power supply Crucible Vacuum container Gas introduction tube Argon gas introduction tube Processing substrate holder Shutter heater Cooling water passage Nitride layer or more

Claims (1)

【特許請求の範囲】[Claims] (1)ホロー陰極放電により生じた電子ビームを蒸発物
質に照射し、加熱、蒸発させ、被処理基板上に薄膜を形
成する薄膜形成装置において、ホロー陰極放電によって
生じた電子ビームを偏向し、蒸発物質表面を走査しなが
ら電子ビームで照射することが可能な磁場を発生する電
磁石を備えることを特徴とする薄膜形成装置。
(1) In a thin film forming apparatus that irradiates an evaporative substance with an electron beam generated by a hollow cathode discharge, heats and evaporates it, and forms a thin film on a substrate to be processed, the electron beam generated by a hollow cathode discharge is deflected and evaporated. A thin film forming apparatus characterized by comprising an electromagnet that generates a magnetic field capable of scanning a material surface and irradiating it with an electron beam.
JP9832090A 1990-04-12 1990-04-12 Thin film forming apparatus Pending JPH03294476A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9832090A JPH03294476A (en) 1990-04-12 1990-04-12 Thin film forming apparatus
US07/684,062 US5346554A (en) 1990-04-12 1991-04-11 Apparatus for forming a thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9832090A JPH03294476A (en) 1990-04-12 1990-04-12 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPH03294476A true JPH03294476A (en) 1991-12-25

Family

ID=14216617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9832090A Pending JPH03294476A (en) 1990-04-12 1990-04-12 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPH03294476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079456A (en) * 2014-10-16 2016-05-16 住友重機械工業株式会社 Film deposition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168860A (en) * 1987-07-15 1989-07-04 Kawasaki Steel Corp Vaporizer for ion plating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168860A (en) * 1987-07-15 1989-07-04 Kawasaki Steel Corp Vaporizer for ion plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079456A (en) * 2014-10-16 2016-05-16 住友重機械工業株式会社 Film deposition apparatus

Similar Documents

Publication Publication Date Title
JPH0543785B2 (en)
JPH0456761A (en) Thin film forming device
JPH03294476A (en) Thin film forming apparatus
US5346554A (en) Apparatus for forming a thin film
JPH03122283A (en) Apparatus for coating surface of base sheet
JPH07252645A (en) Thin film forming device
JPH0441667A (en) Thin film forming device
JPH04191364A (en) Method and device for ion plating
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
JPH0641730A (en) Vapor deposition method
JPH05339719A (en) Melting method of source metal for vacuum vapor deposition
JPS62185875A (en) Apparatus for forming film in vapor phase
JPH07335551A (en) Laser application device
JP4094994B2 (en) Electron source equipment
JPH0598429A (en) Method for manufacturing transparent electrically conductive film and apparatus for manufacturing transparent electrically conductive film
JP2874436B2 (en) Vacuum evaporation method
JPH0790555A (en) Electron beam ablation device
JPH04114904A (en) Preparation of high-quality thin superconducting film of oxide
KR20010020339A (en) Vacuum deposition apparatus using electron beams
JPH04268071A (en) Vapor deposition method with energy beam
JP3140248B2 (en) Method and apparatus for controlling ion energy
JP2001081549A (en) Electron beam vapor deposition method
JPS61194172A (en) Electron beam heater for vapor deposition device
JPH03267366A (en) Thin film formation device and its operation