JPH05339719A - Melting method of source metal for vacuum vapor deposition - Google Patents

Melting method of source metal for vacuum vapor deposition

Info

Publication number
JPH05339719A
JPH05339719A JP17590692A JP17590692A JPH05339719A JP H05339719 A JPH05339719 A JP H05339719A JP 17590692 A JP17590692 A JP 17590692A JP 17590692 A JP17590692 A JP 17590692A JP H05339719 A JPH05339719 A JP H05339719A
Authority
JP
Japan
Prior art keywords
crucible
electron beam
scanning
vapor deposition
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17590692A
Other languages
Japanese (ja)
Other versions
JP3172588B2 (en
Inventor
Mitsuru Takai
充 高井
Koji Kobayashi
康二 小林
Shunichi Yamanaka
俊一 山中
Toshiyuki Otsuka
俊幸 大塚
Shinji Miyazaki
真司 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP17590692A priority Critical patent/JP3172588B2/en
Publication of JPH05339719A publication Critical patent/JPH05339719A/en
Application granted granted Critical
Publication of JP3172588B2 publication Critical patent/JP3172588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly and wholly heat the crucible by decreasing the scanning rate and scanning length of an electron beam on the edge area of the crucible. CONSTITUTION:An electron beam from the electron gun 19 is deviated by a deviating magnetic field 23 to uniformly irradiate the source metal 17 in a crucible 15 considering that thermal emission is larger in the edge of the crucible than the center area. During the electron beam is repeatedly deviated for irradiation in the X direction or X-Y directions the scanning rate and length of the beam is changed stepwise in a manner that the beam scans slowly with short scanning length in the edge area and faster with long scanning length in the center area. Thereby, the source metal in the crucible which constitutes the vapor source is wholly heated to const. temp. and the obtd. vapor deposition film has uniform compsn. and thickness in both of the longitudinal and the width directions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属の蒸着に関し、さら
に詳しくはるつぼの均一加熱方法に関する。
FIELD OF THE INVENTION The present invention relates to metal deposition, and more particularly to a method for uniformly heating a crucible.

【0002】[0002]

【従来の技術】真空室内において、電子銃から電子ビー
ムを発生させ、これをレンズにより絞ってスポットと
し、るつぼ内に収容された蒸発すべき金属に衝突させて
溶融これを溶融させ、溶融した高温度金属から金属蒸気
を蒸発させて基体に蒸着させる方法が行われている。こ
のような技術は特公平3−41897号、特公平3−3
8340号、特開昭59−178626、特開平3−1
26823号等に記載されている。
2. Description of the Related Art In a vacuum chamber, an electron beam is generated from an electron gun, which is made into a spot by squeezing it by a lens and made to collide with a metal to be vaporized contained in a crucible and melted. A method of evaporating a metal vapor from a temperature metal to deposit it on a substrate is used. Such techniques are disclosed in Japanese Examined Patent Publication No. 3-41897 and Japanese Examined Patent Publication No. 3-3.
8340, JP-A-59-178626, JP-A-3-1.
No. 26823 and the like.

【0003】このような電子銃を使用する真空蒸着装置
では、電子銃から出た高エネルギー電子ビームをるつぼ
に向けて直進させる。るつぼは通常基体の幅方向に細長
く延びた長方形をしており、電子ビームはるつぼの金属
表面をほぼ均一に加熱する目的で偏向磁界または電界の
作用下にるつぼの長さ方向に走査される。例えば、斜め
配向型の蒸着金属磁気記録媒体を製造する場合には、C
oまたはCo合金金属を高純度マグネシア(MgO)製
のるつぼ(ボート)に収容し、電子銃から最大30kV
程度の加速電圧で電子ビームをるつぼに向けて直進させ
て金属に衝突させる。その際に、電子ビームをるつぼの
長さ方向に(場合により更に幅方向にも)走査させて金
属を均一に加熱する(特公平3−38340号)。
In a vacuum vapor deposition apparatus using such an electron gun, a high energy electron beam emitted from the electron gun is made to go straight toward a crucible. The crucible is usually in the shape of a rectangle elongated in the width direction of the substrate, and the electron beam is scanned in the length direction of the crucible under the action of a deflecting magnetic field or electric field in order to heat the metal surface of the crucible almost uniformly. For example, when manufacturing a vapor-deposited metal magnetic recording medium of oblique orientation type, C
O or Co alloy metal is housed in a crucible (boat) made of high-purity magnesia (MgO), and maximum 30kV from electron gun
With an accelerating voltage of a certain degree, the electron beam is directed straight toward the crucible and collides with the metal. At that time, the electron beam is scanned in the length direction of the crucible (and also in the width direction in some cases) to uniformly heat the metal (Japanese Patent Publication No. 3-38340).

【0004】上記の従来の蒸着方法では、蒸着金属の基
体への十分な接着強度が確保できず、十分な耐久性のあ
る蒸着膜を提供できない。その原因は、電子ビームの電
力を約120〜150kW(30kVで4〜5A程度)
以上にすると、溶融金属表面から金属蒸気と共に飛び出
す電子と電子銃からの電子が互いに反発して電子の収束
ができず、実効電力を約100kW以上には出来ず、蒸
気速度を十分に向上させることができなかったからであ
る。なおここに実効電力とは蒸発速度が電子銃の電力に
依存して変化する範囲の電力である(例えば、100〜
150kW加えても蒸発速度が変化しない場合、最大実
効電力は100kWである)。ある。
In the above conventional vapor deposition method, sufficient adhesion strength of the vapor deposited metal to the substrate cannot be ensured, and a vapor deposited film having sufficient durability cannot be provided. The cause is that the electron beam power is about 120 to 150 kW (about 4 to 5 A at 30 kV).
In the above case, the electrons ejected from the surface of the molten metal together with the metal vapor and the electrons from the electron gun repel each other and the electrons cannot be converged, and the effective power cannot be increased to about 100 kW or more, and the vapor velocity is sufficiently improved. Because I couldn't. Here, the effective power is a power in a range in which the evaporation rate changes depending on the power of the electron gun (for example, 100 to 100).
If the evaporation rate does not change even after adding 150 kW, the maximum effective power is 100 kW). is there.

【0005】電子銃の実効電力は、電子銃が放出する電
子ビームの軸線を前記長方形るつぼの中心と前記開口の
中心を結ぶ軸線とをほぼ直角に交差して配置し、前記電
子ビームを磁界によりほぼ直角に偏向して前記るつぼ内
に結像させるとことにより大幅に増大できることがわか
った。
The effective electric power of the electron gun is arranged by intersecting the axis of the electron beam emitted by the electron gun with the axis connecting the center of the rectangular crucible and the center of the opening substantially at right angles, and by applying a magnetic field to the electron beam. It has been found that a substantial increase can be obtained by deflecting the light at a substantially right angle to form an image in the crucible.

【0006】このような装置は、より具体的には、蒸発
すべき金属を収容する細長い長方形るつぼ、前記るつぼ
内に指向する電子ビームを発生させるための電子銃、前
記るつぼに対向して設けられた回転ドラム、前記回転ド
ラムの面に沿ってプラスチック基体を送るための供給及
び巻取り手段、前記回転ドラムの面に沿って設けられ一
部が前記るつぼに対向した開口を有するマスク、及び前
記マスクを開閉するためのシャッタ部材よりなる真空蒸
着装置において実現できる。このような蒸着装置は、例
えばCoまたはCo合金をポリエステル(PET等)に
斜め蒸着して斜めの異方性を有する磁気記録媒体を製造
するのに使用できる。その際に、磁気特性を調整する目
的で蒸着中に酸素、二酸化炭素、窒素、アンモニア、ス
チレン等のガス、特に酸素を導入することが行われてい
る(特公昭3−41897号)。すなわち、ガスはスリ
ット状の出口を有する供給ノズルから放出される。放出
されるガスの流量分布を一定に保持するためにガス供給
源とノズルの間に均圧タンクを使用することもある。
More specifically, such an apparatus is provided opposite to the elongated rectangular crucible containing the metal to be vaporized, the electron gun for generating an electron beam directed in the crucible, and the crucible. Rotating drum, feeding and winding means for feeding a plastic substrate along the surface of the rotating drum, a mask provided along the surface of the rotating drum and having an opening partly facing the crucible, and the mask It can be realized in a vacuum vapor deposition apparatus including a shutter member for opening and closing. Such a vapor deposition apparatus can be used, for example, to obliquely vapor deposit Co or Co alloy on polyester (PET or the like) to manufacture a magnetic recording medium having diagonal anisotropy. At that time, a gas such as oxygen, carbon dioxide, nitrogen, ammonia, styrene or the like, particularly oxygen is introduced during vapor deposition for the purpose of adjusting magnetic properties (Japanese Patent Publication No. Sho 41-41897). That is, the gas is discharged from a supply nozzle having a slit-shaped outlet. A pressure equalizing tank may be used between the gas supply source and the nozzle to keep the flow rate distribution of the discharged gas constant.

【0007】幅方向にも長さ方向にも一定の組成及び厚
さを有する蒸着膜を製造するには、蒸着源を構成するる
つぼ内の原料金属の全体が一定の温度に加熱されること
が重要である。通常は、るつぼの長手方向をX、幅方向
をYとしたとき、るつぼ中の原料金属をX方向の所定長
さにわたって電子ビームで直線状に走査するとか、図2
のようにX−Y方向にジグザグに走査する。あるいはま
た、特公平3−38340号に示されているように、電
子ビームをX方向には三角波偏向信号で一定速度で走査
し、Y方向には正弦波偏向信号で走査する。正弦波偏向
信号では走査の端部で走査速度が低下して過熱するの
で、それを緩和するために更にY方向の正弦波偏向の範
囲をXの関数として更に正弦波的に変調してY方向の加
熱を平均化する。
In order to produce a vapor deposition film having a constant composition and thickness in both the width direction and the length direction, the entire raw material metal in the crucible constituting the vapor deposition source is heated to a constant temperature. is important. Usually, when the longitudinal direction of the crucible is X and the width direction is Y, the raw material metal in the crucible is linearly scanned with an electron beam over a predetermined length in the X direction, or as shown in FIG.
As described above, the scanning is performed in zigzag in the XY directions. Alternatively, as shown in JP-B-3-38340, the electron beam is scanned in the X direction with a triangular wave deflection signal at a constant speed and in the Y direction with a sine wave deflection signal. In the sine wave deflection signal, the scanning speed decreases at the end of the scan and overheating occurs. Therefore, in order to alleviate it, the range of the sine wave deflection in the Y direction is further sinusoidally modulated as a function of X, and the Y direction is changed. Average the heating of.

【0008】[0008]

【発明が解決しようとする課題】上記の電子ビーム走査
方法はいずれも、るつぼ周部の放熱が中央部よりも大き
いことを考慮していない。特にX方向の偏向は三角波偏
向信号によるので、ビームの走査が一定速度になるた
め、端部で熱不足が生じて図3のように全体を一様に加
熱することはできない。これを補償するには、図3の温
度分布に逆比例する偏向速度を設定すれば良いことが容
易に想像できる。
None of the above electron beam scanning methods takes into account that the heat radiation in the peripheral portion of the crucible is larger than that in the central portion. In particular, since the deflection in the X direction is based on the triangular wave deflection signal, the beam scanning is performed at a constant speed, so that heat is insufficient at the end portion and the entire surface cannot be uniformly heated as shown in FIG. It can be easily imagined that the deflection speed inversely proportional to the temperature distribution shown in FIG. 3 may be set to compensate for this.

【0009】しかしながら、このような滑らかに変化す
る偏向信号を生成するには、コンピュータを使用して約
200点程度の偏向速度を設定することが必要になる。
しかし、単一の電子銃を使用した場合、電子ビームの収
束は偏向角度により変わるので、収束レンズ等の条件設
定をその都度やり直す必要がある。制御の遅れを生じさ
せないためには制御速度を上げる必要があり、コンピュ
ータを大型にするなどの処置が必要になる。
However, in order to generate such a smoothly changing deflection signal, it is necessary to set a deflection speed of about 200 points using a computer.
However, when a single electron gun is used, the convergence of the electron beam changes depending on the deflection angle, so it is necessary to redo the condition setting of the converging lens and the like each time. In order to prevent the control delay, it is necessary to increase the control speed, and it is necessary to take measures such as increasing the size of the computer.

【0010】したがって、本発明の目的は単純な偏向手
段によって電子ビームによる一様な加熱を実現できる電
子線走査方法を用いた原料金属の溶融方法を提供するこ
とを目的とする。
Therefore, it is an object of the present invention to provide a method for melting a raw material metal using an electron beam scanning method capable of realizing uniform heating by an electron beam by a simple deflecting means.

【0011】[0011]

【課題を解決するための手段】本発明の真空蒸着におけ
る原料金属溶融方法は、X方向に延びた長方形のるつぼ
ないし蒸発すべき原料金属を収容し、該原料金属に収束
した電子ビームをX方向またはX−Y方向に繰り返し偏
向させながら照射して該金属を溶融させる方法におい
て、前記電子ビームを走査するためのX方向の走査速度
をるつぼの端部で遅くかつ走査長を短く、中心部で速く
かつ走査長を長くなるように段階状に変えることを特徴
とする。本発明によると、電子ビームのX方向の偏向速
度は数点で済み、偏向速度に合わせた収束レンズの修正
等の他の条件設定も対応した回数で済む利益が得られ、
制御が安価迅速になる。例えば、るつぼの長手方向の寸
法を0.8mとしたとき、速度は最大で13段階、通常
は5段階でも十分な効果が得られる。この場合に、階段
はX方向に一定間隔でも良いが、図3から分かるように
るつぼの中央部では温度変化が緩いから精密な制御が必
要でないので、端部で走査長を短く中央部で長くする
と、加熱の均一性を損なわないで段階の数を減らすこと
ができる。次に、るつぼ内が均一加熱が達成されてもる
つぼのX方向の長さがフィルム基体の幅に対して十分に
長くなければ基体の縁部の膜厚が減少する。したがっ
て、好ましくは、X方向の電子ビーム走査長をlとし、
基体の幅をWとしたき、l/W≧1.3とすることによ
り、基体に蒸着される金属膜の基体の幅方向の膜厚を一
定にする。
A method of melting a raw material metal in vacuum vapor deposition according to the present invention includes a rectangular crucible extending in the X direction or a raw material metal to be evaporated, and an electron beam focused on the raw material metal in the X direction. Alternatively, in a method of melting the metal by irradiating it while repeatedly deflecting in the XY direction, the scanning speed in the X direction for scanning the electron beam is slow at the end of the crucible and short and the scanning length is short at the center. It is characterized in that it is changed stepwise so as to be fast and to increase the scanning length. According to the present invention, the deflection speed of the electron beam in the X direction is only required to be several points, and there is an advantage that other conditions such as the correction of the converging lens according to the deflection speed can be set at the corresponding times.
Control is cheap and quick. For example, when the lengthwise dimension of the crucible is 0.8 m, a sufficient effect can be obtained even if the speed is 13 steps at maximum and usually 5 steps. In this case, the stairs may be spaced at regular intervals in the X direction, but as can be seen from FIG. 3, precise control is not required because the temperature change is gentle at the center of the crucible, so the scan length is short at the end and long at the center. Then, the number of steps can be reduced without impairing the heating uniformity. Next, even if uniform heating in the crucible is achieved, the film thickness at the edge of the substrate decreases if the length of the crucible in the X direction is not sufficiently long with respect to the width of the film substrate. Therefore, preferably, the electron beam scanning length in the X direction is 1, and
When the width of the substrate is W and l / W ≧ 1.3, the thickness of the metal film deposited on the substrate in the width direction of the substrate is constant.

【0012】[0012]

【実施例の説明】以下図面を参照して本発明の実施例を
詳しく説明する。図1は本発明の蒸着装置1を示す。た
だし図示の部分は図示しない真空チャンバーに収容され
ており、所定の排気装置を有するものとする。3は矢印
の方向(またはその逆方向)に回転する回転ドラムで、
蒸着基体を構成するポリエステル等の基体フィルム5が
その周りにかけ通され、繰り出しロール9ら回転ドラム
3の周面を通って巻き取りロール7に巻き取られる。回
転ドラム3に近接して一部が開口したマスク11が設け
てあり、蒸着金属が所定の角度以外ではフィルム5に蒸
着しないようにしている。マスク11の外面(または内
面)に沿ってシャッタ13が設けてあり、蒸着の初期及
び終期に矢印の方向にスライドしてマスク11の開口を
遮蔽することにより不要な蒸着を防止する。マスク11
の開口の寸法は、回転ドラム3の軸線方向にはフィルム
5上に所定の蒸着幅が得られるように、回転ドラムの周
方向にはフィルム上に所定の蒸着角度θが得られるよう
に選択する。酸素等のガスを導入するためにガス供給ノ
ズル25をシャッタの13とマスク11の間に配置す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a vapor deposition apparatus 1 of the present invention. However, the illustrated portion is housed in a vacuum chamber (not shown) and has a predetermined exhaust device. 3 is a rotating drum that rotates in the direction of the arrow (or the opposite direction),
A base film 5 made of polyester or the like, which constitutes a vapor deposition base, is passed around it, and is wound around a winding roll 7 from a pay-out roll 9 through the peripheral surface of the rotary drum 3. A mask 11 having an opening is provided in the vicinity of the rotary drum 3 so that the vapor deposition metal is not vapor deposited on the film 5 except at a predetermined angle. A shutter 13 is provided along the outer surface (or inner surface) of the mask 11, and it is slid in the direction of the arrow in the initial and final stages of vapor deposition to block the opening of the mask 11 to prevent unnecessary vapor deposition. Mask 11
The size of the opening is selected so that a predetermined vapor deposition width can be obtained on the film 5 in the axial direction of the rotary drum 3 and a predetermined vapor deposition angle θ can be obtained on the film in the circumferential direction of the rotary drum. . A gas supply nozzle 25 is arranged between the shutter 13 and the mask 11 to introduce a gas such as oxygen.

【0013】マスク11の開口に対向して高純度マグネ
シア(MgO)製等のるつぼ15が配置され、その内部
に蒸着すべき原料金属17が装入されている。るつぼ1
5は必要な蒸着幅を得るのに十分なだけ回転ドラム3の
軸線方向に細長く伸びている。回転ドラムの面に沿って
移動する基体フィルムの幅Wは好ましくはるつぼを走査
する電子ビームの走査長lに対して上に述べた関係を有
するようにし、これにより蒸着膜の厚さを基体幅方向に
一定にすることができる。るつぼ15は所定の蒸着角度
θ(マスクの開口内の位置により若干変動する)が得ら
れるように配置される。るつぼ15に装入した原料金属
17は電子銃19から放出される電子ビーム21により
加熱される。本発明ででは電子銃19の電子ビーム21
の放出方向はるつぼ15とマスク11の開口を結ぶ線に
対してほぼ90度をなす方向に電子ビーム21を放出す
る。この電子ビームは図示しない適当なコンデンサレン
ズ、収束レンズ、及び偏向コイルによる磁界23の作用
により約90度曲げられると同時に小スポット状に収束
されて原料金属17に衝突する。実験によると、図1の
鎖線位置に配置された従来の直進型電子銃19’に比較
して、大幅な電力増大が達成できることが分かった。
A crucible 15 made of high-purity magnesia (MgO) or the like is arranged facing the opening of the mask 11, and a raw material metal 17 to be vapor-deposited therein is charged therein. Crucible 1
Reference numeral 5 is elongated in the axial direction of the rotary drum 3 sufficiently to obtain a required vapor deposition width. The width W of the substrate film moving along the surface of the rotating drum preferably has the above-mentioned relation to the scanning length l of the electron beam scanning the crucible, so that the thickness of the deposited film can be changed to the substrate width. Can be constant in direction. The crucible 15 is arranged so as to obtain a predetermined vapor deposition angle θ (which slightly varies depending on the position in the opening of the mask). The raw metal 17 charged in the crucible 15 is heated by the electron beam 21 emitted from the electron gun 19. In the present invention, the electron beam 21 of the electron gun 19 is used.
The electron beam 21 is emitted in a direction forming an angle of about 90 degrees with respect to the line connecting the crucible 15 and the opening of the mask 11. This electron beam is bent by about 90 degrees by the action of a magnetic field 23 by an appropriate condenser lens, a converging lens, and a deflection coil (not shown), and at the same time, it is converged into a small spot and collides with the raw material metal 17. Experiments have shown that a significant increase in power can be achieved as compared to the conventional straight-ahead electron gun 19 'arranged at the chain line position in FIG.

【0014】最小入射角度θmin は用途により最適角度
は異なるが、特に磁気記録媒体としてCo、またはCo
−Ni合金をポリエチレンテレフタレート等のポリエス
テル等の基体フィルムに斜め蒸着して、磁化容易方向を
基体に対して斜めにとしたい場合には、最小入射角θmi
n を10°〜60°、好ましくは20°〜50°とす
る。Co合金としては特公平3−41897号等に記載
されたものがある。
Although the optimum angle of the minimum incident angle θ min differs depending on the use, especially Co or Co is used as a magnetic recording medium.
-If the Ni alloy is obliquely vapor-deposited on a base film such as polyester such as polyethylene terephthalate to make the easy magnetization direction oblique to the base, the minimum incident angle θmi
n is 10 ° to 60 °, preferably 20 ° to 50 °. Examples of the Co alloy include those described in Japanese Patent Publication No. 3-41897.

【0015】図1の装置の具体的な動作例を挙げると次
の通りである。平均の最小入射角θmin を30度、るつ
ぼの液面と回転ドラム3の蒸着面の平均距離を約300
mm、マスクの開口幅を500mmとし、真空チャンバ
ーを1×10-5Torrに排気し、厚さ7μmのポリエ
チレンテレフタレートフィルム(PET)を100〜2
50m/minで走行させ、Co−Ni合金(80:2
0)のペレットをるつぼ15に間欠供給しながら、電子
銃19の駆動電力40kV×(3〜5A)=120〜2
00kWで溶融し、蒸着を行う。電子銃電力を一定に保
ちながらフィルム搬送速度を調整して蒸着膜厚を約18
00Åとする。また蒸着時にガス供給ノズル25導入す
る酸素主成分のガス量も適宜調整して同等の磁気特性が
得られるように成膜する。
A specific operation example of the apparatus shown in FIG. 1 is as follows. The average minimum incident angle θ min is 30 degrees, and the average distance between the liquid surface of the crucible and the vapor deposition surface of the rotating drum 3 is about 300.
mm, the opening width of the mask is 500 mm, the vacuum chamber is evacuated to 1 × 10 −5 Torr, and a polyethylene terephthalate film (PET) having a thickness of 7 μm is 100 to 2
Co-Ni alloy (80: 2) was run at 50 m / min.
The driving power of the electron gun 19 is 40 kV × (3 to 5 A) = 120 to 2 while intermittently supplying the pellet of 0) to the crucible 15.
It melts at 00 kW and vapor deposition is performed. Adjusting the film transport speed while keeping the electron gun power constant, the deposition film thickness is about 18
00 Å. In addition, the amount of the gas containing oxygen as the main component introduced into the gas supply nozzle 25 during vapor deposition is also appropriately adjusted to form a film so that equivalent magnetic characteristics can be obtained.

【0016】次に図4により本発明の走査方法を説明す
る。Aはるつぼの長手に相当するX方向と、走査速度分
布の関係を示し、Aは適正速度分布、Bは本発明の適正
な段階的な速度分布を示す。曲線Aは図3の一定速度で
走査した場合の温度分布から容易に導くことができ、あ
るいは実験的に定めることができる。なお、Y方向にも
制御することが必要な場合もあるが、これは先に述べた
従来の方法によれば良い。曲線Aは中央部で平坦であ
り、るつぼの両端ほど急峻であるから、それに近似する
段階状折れ線は図のBで近似することができる。
Next, the scanning method of the present invention will be described with reference to FIG. A shows the relationship between the X direction corresponding to the length of the crucible and the scanning speed distribution, A shows an appropriate speed distribution, and B shows an appropriate stepwise speed distribution of the present invention. The curve A can be easily derived from the temperature distribution when scanning at a constant speed in FIG. 3, or can be experimentally determined. Although it may be necessary to control in the Y direction as well, this may be performed by the conventional method described above. Since the curve A is flat in the center and steeper at both ends of the crucible, the stepwise polygonal line that approximates it can be approximated by B in the figure.

【0017】例えば、るつぼの内のり寸法を0.8m×
0.08mとした時、次のように長手方向に走査速度と
走査長を割りつけると一様な温度分布とすることができ
た。 走査長(m) 走査速度(m/秒) 0.00〜0.10 8.4 0.10〜0.25 11.2 0.25〜0.55 16.9 0.55〜0.70 11.2 0.70〜0.80 8.4
For example, the inner dimension of the crucible is 0.8 m ×
When the length was 0.08 m, a uniform temperature distribution could be obtained by allocating the scanning speed and the scanning length in the longitudinal direction as follows. Scan length (m) Scan speed (m / sec) 0.00 to 0.10 8.4 0.10 to 0.25 11.2 0.25 to 0.55 16.9 0.55 to 0.70 11 .2 0.70 to 0.80 8.4

【0018】この条件で、図1に関して述べた動作例に
おける寸法関係で、一定幅は0.60mであった。
Under this condition, the constant width was 0.60 m due to the dimensional relationship in the operation example described with reference to FIG.

【0019】[0019]

【発明の効果】以上のように、本発明によると、最小の
制御で、るつぼの温度を一様にすることができる。また
均一蒸着は長手方向の長さを十分大きくすることにより
容易に達成できる。
As described above, according to the present invention, the temperature of the crucible can be made uniform with the minimum control. Further, uniform vapor deposition can be easily achieved by making the length in the longitudinal direction sufficiently large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用する蒸着装置の例を示す図であ
る。
FIG. 1 is a diagram showing an example of a vapor deposition apparatus used in the present invention.

【図2】電子ビームによるるつぼの走査方法の従来例を
示す図である。
FIG. 2 is a diagram showing a conventional example of a crucible scanning method using an electron beam.

【図3】電子ビームを一定速度で走査させた場合のるつ
ぼ内の温度分布を示す図である。
FIG. 3 is a diagram showing a temperature distribution in a crucible when an electron beam is scanned at a constant speed.

【図4】本発明のガス供給ノズルの部分断面平面図であ
る。
FIG. 4 is a partial cross-sectional plan view of the gas supply nozzle of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸着装置 3 回転ドラム 5 基体フィルム 7 巻き取りロール 9 繰り出しロール 11 マスク 13 シャッタ 15 るつぼ 17 原料金属 19 電子銃 21 電子ビーム 23 偏向磁界 25 ガス供給ノズル 30 るつぼ 32 溶融金属 1 Vapor Deposition Equipment 3 Rotating Drum 5 Base Film 7 Winding Roll 9 Feeding Roll 11 Mask 13 Shutter 15 Crucible 17 Raw Material 19 Electron Gun 21 Electron Beam 23 Deflection Magnetic Field 25 Gas Supply Nozzle 30 Crucible 32 Molten Metal

フロントページの続き (72)発明者 大塚 俊幸 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 (72)発明者 宮崎 真司 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内Front page continuation (72) Inventor Toshiyuki Otsuka 1-13-1, Nihonbashi, Chuo-ku, Tokyo Tea Decay Co., Ltd. (72) Shinji Miyazaki 1-13-1, Nihonbashi, Chuo-ku, Tokyo Tea Decay Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 X方向に延びた長方形のるつぼないし蒸
発すべき原料金属を収容し、該原料金属に収束した電子
ビームをX方向またはX−Y方向に繰り返し偏向させな
がら照射して該金属を溶融させる方法において、前記電
子ビームを走査するためのX方向の走査速度をるつぼの
端部程遅く、中心部程速くなるように数個の段階状に変
えることを特徴とする、真空蒸着における原料金属溶融
方法。
1. A rectangular crucible extending in the X direction or a raw material metal to be evaporated is accommodated, and an electron beam focused on the raw material metal is irradiated while repeatedly deflecting the electron beam in the X direction or the XY direction. In the melting method, the scanning speed in the X direction for scanning the electron beam is changed in several steps so that the scanning speed in the X direction is slower toward the end of the crucible and faster toward the center of the crucible. Metal melting method.
【請求項2】 段階状の走査速度部分の走査長をるつぼ
の端部程短かく、中心部程長くすることを特徴とする、
真空蒸着における原料金属溶融方法。
2. The scanning length of the stepwise scanning speed portion is shorter at the end of the crucible and longer at the center thereof.
Method for melting raw material metal in vacuum deposition.
【請求項3】 X方向の電子ビーム走査長をlとし、基
体の幅をWとしたき、l/W≧1.3としたことを特徴
とする請求項1または2に記載の真空蒸着における原料
金属溶融方法。(この式はるつぼと基体の距離に依存し
ませんか?)
3. The vacuum vapor deposition according to claim 1, wherein the electron beam scanning length in the X direction is 1, the width of the substrate is W, and 1 / W ≧ 1.3. Raw metal melting method. (Does this formula depend on the distance between the crucible and the substrate?)
JP17590692A 1992-06-11 1992-06-11 Raw metal melting method in vacuum deposition Expired - Lifetime JP3172588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17590692A JP3172588B2 (en) 1992-06-11 1992-06-11 Raw metal melting method in vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17590692A JP3172588B2 (en) 1992-06-11 1992-06-11 Raw metal melting method in vacuum deposition

Publications (2)

Publication Number Publication Date
JPH05339719A true JPH05339719A (en) 1993-12-21
JP3172588B2 JP3172588B2 (en) 2001-06-04

Family

ID=16004308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17590692A Expired - Lifetime JP3172588B2 (en) 1992-06-11 1992-06-11 Raw metal melting method in vacuum deposition

Country Status (1)

Country Link
JP (1) JP3172588B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275244A (en) * 2008-05-13 2009-11-26 Ulvac Japan Ltd Vapor deposition method of metallic oxide film, and method for manufacturing plasma display panel
JP2010039478A (en) * 2008-07-09 2010-02-18 Asahi Kasei E-Materials Corp Method of manufacturing wire grid polarizer
JP2012207310A (en) * 2012-07-13 2012-10-25 Ulvac Japan Ltd Vapor deposition method of metal oxide film, and method for manufacturing plasma display panel
CN114657516A (en) * 2020-12-23 2022-06-24 山东浪潮华光光电子股份有限公司 Method for evaporating thick chromium metal layer by using single crucible

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275244A (en) * 2008-05-13 2009-11-26 Ulvac Japan Ltd Vapor deposition method of metallic oxide film, and method for manufacturing plasma display panel
JP2010039478A (en) * 2008-07-09 2010-02-18 Asahi Kasei E-Materials Corp Method of manufacturing wire grid polarizer
JP2012207310A (en) * 2012-07-13 2012-10-25 Ulvac Japan Ltd Vapor deposition method of metal oxide film, and method for manufacturing plasma display panel
CN114657516A (en) * 2020-12-23 2022-06-24 山东浪潮华光光电子股份有限公司 Method for evaporating thick chromium metal layer by using single crucible
CN114657516B (en) * 2020-12-23 2023-10-03 山东浪潮华光光电子股份有限公司 Method for evaporating thick chromium metal layer by using single crucible

Also Published As

Publication number Publication date
JP3172588B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JPH05339719A (en) Melting method of source metal for vacuum vapor deposition
JP3877178B2 (en) Vacuum deposition equipment
JP3091573B2 (en) Vacuum deposition equipment
JP3103676B2 (en) Vacuum evaporation method
JPH0617239A (en) Raw material metal supplying method for vacuum vapor deposition
JP3091577B2 (en) Method of controlling film thickness in vacuum deposition
JP3091576B2 (en) Method of controlling film thickness in vacuum deposition
JP3529393B2 (en) Vacuum deposition equipment
JP3741160B2 (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method
JP3095534B2 (en) Feeding method of raw material pellets in vacuum deposition
JPS62149864A (en) Method for irradiating electron beam
JPH06192823A (en) Vacuum evaporation device
JPH05339715A (en) Vacuum vapor deposition method
JPH0633226A (en) Raw material metal supply method in vacuum deposition
JPH05339717A (en) Supply path of source material for vacuum vapor deposition
JPH11335837A (en) Magnetic medium producing device
JP2864692B2 (en) Vapor deposition equipment
JP3244532B2 (en) Electron beam evaporation method
JP3266009B2 (en) Manufacturing method of magnetic recording medium
JPH0944845A (en) Production of magnetic recording medium and vapor deposition device used therefor
JPH0729171A (en) Manufacturing apparatus of magnetic recording medium
JPS59104475A (en) Machine for e/b vapor deposition
JPH11296853A (en) Manufacturing device for magnetic recording medium and manufacture of its medium using the device
JPH1112724A (en) Vapor deposition device
JPH02250957A (en) Supplying method for vapor deposition material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12