JPH03267366A - Thin film formation device and its operation - Google Patents

Thin film formation device and its operation

Info

Publication number
JPH03267366A
JPH03267366A JP6897490A JP6897490A JPH03267366A JP H03267366 A JPH03267366 A JP H03267366A JP 6897490 A JP6897490 A JP 6897490A JP 6897490 A JP6897490 A JP 6897490A JP H03267366 A JPH03267366 A JP H03267366A
Authority
JP
Japan
Prior art keywords
base material
thin film
ion beam
axis
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6897490A
Other languages
Japanese (ja)
Inventor
Masayasu Furuya
降矢 正保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6897490A priority Critical patent/JPH03267366A/en
Publication of JPH03267366A publication Critical patent/JPH03267366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the strong thin film in which the direction of crystal growth is uniformly dispersed by swinging a base material along the plane including a ion beam axis and a vapor-deposition axis while rotating the base material when the vapor deposition and the ion-beam injection is simultaneously carried out on the surface of the base material. CONSTITUTION:The material to be made into thin film is heated and evaporated with the electron beam from an EB-gun 5 in a vacuum chamber 1, and the evaporated material 9 is directed to the surface of the base material 2. On the other hand, the ion beam 8 generated at an ion source 6 is directed to the surface of the base material 2. At this time, the rotating motion and swinging motion are given to the base material 2, and the angle theta made by the ion beam axis 11 and the vapor-evaporation axis 12 and the angle phi made by the surface of the base material 2 and the ion beam axis 11 are detected, and either the amount of ion beam or the amount of vapor-evaporation is controlled. By this method, the strong film in which the direction of crystal growth is uniformly dispersed on the surface of the base material 2 is formed, and moreover its composition ratio is allowed to be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属材料や非金属材料の表層改質に用いら
れる薄膜形成装置であって、真空チャンバ内に、面に垂
直な軸線まわりに自転可能に配置された母材の表面に真
空蒸着またはスパッタ蒸着により薄膜を形成する装置と
、該母材の同一表面にイオンビームを注入する装置とを
備え、母材表面への蒸着とイオンビーム注入とを同時に
行なって母材表面に新たな’fil膜を形成する薄膜形
成装置の構成と、その運転方法とに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a thin film forming apparatus used for surface layer modification of metallic materials and non-metallic materials. It is equipped with a device that forms a thin film by vacuum evaporation or sputter deposition on the surface of a base material arranged to be rotatable, and a device that implants an ion beam onto the same surface of the base material. The present invention relates to the configuration of a thin film forming apparatus that forms a new 'fil film on the surface of a base material by simultaneously performing injection and its operation method.

〔従来の技術〕[Conventional technology]

金属材料や非金属材料の表層を改質する方法には、母材
表面に直接イオンを打ち込むイオン注入法や、母材表面
に予め金属YiWaを作っておき、それにイオンを打ち
込むミキシング法などがある。
Methods for modifying the surface layer of metallic and nonmetallic materials include the ion implantation method, in which ions are directly implanted into the surface of the base material, and the mixing method, in which metal YiWa is prepared in advance on the surface of the base material and ions are implanted into it. .

このミキシング法は、一般に膜界面よりも大きい飛程を
もつ高エネルギーイオンを注入し、膜材原子と母材原子
、あるいは金属3m膜が多層に形成されている場合には
各層の原子を互いに混合して、母材表面に化合物や固溶
体などの新たな薄膜を形成しようとするものである。し
かしながら、この方法では、イオンを打ち込んでも、浸
透できる深さはせいぜい0.1〜0.2nどまりという
限界があった。
This mixing method generally involves implanting high-energy ions with a range larger than the film interface, and mixing the film material atoms and base material atoms, or the atoms of each layer when a metal 3m film is formed in multiple layers, with each other. The aim is to form a new thin film of a compound or solid solution on the surface of the base material. However, in this method, even if ions are implanted, the depth to which they can penetrate is limited to 0.1 to 0.2 nm at most.

これに対し、本発明が対象とするダイナミックミキシン
グ法は、母材の表面に、蒸着による薄膜形成とイオン注
入とを同時に行うものであり、有効な効果を得ることが
できる0例えば、硬質材料であるチタンナイトライド(
T、N)膜を母材表面に作るには、母材にチタンの金属
蒸気を当てながら窒素イオンを同時に注入する。これに
より母材表面にT、N合金層が形成されていくが、この
場合にはT、N合金層が膜として単に母材表面に付着す
るのではなく、母材との混合層を形成しつつこの混合層
を介して母材と合金層とが一体化した。剥離しにくい薄
膜を作ることができる。なお、イオン注入量と、蒸着量
との比を変えることにより、任意の組成比の膜が形成で
きるのも大きな特徴である。
In contrast, the dynamic mixing method targeted by the present invention simultaneously performs thin film formation by vapor deposition and ion implantation on the surface of the base material, and can obtain effective effects. A titanium night ride (
To form a T, N) film on the surface of a base material, nitrogen ions are simultaneously implanted while exposing the base material to titanium metal vapor. As a result, a T and N alloy layer is formed on the surface of the base material, but in this case, the T and N alloy layer does not simply adhere to the surface of the base material as a film, but forms a mixed layer with the base material. The base material and the alloy layer were integrated through this mixed layer. A thin film that is difficult to peel off can be created. Note that another major feature is that a film with an arbitrary composition ratio can be formed by changing the ratio between the ion implantation amount and the vapor deposition amount.

(発明が解決しようとする課題〕 ダイナミックミキシング法による11N!形成に際して
は、蒸着&−ト(単位時間当りの母材表面への蒸着量)
、イオンビームのエネルギ(イオンのもつ運動エネルギ
)、イオン電流、母材表面に対するイオン打込み角度等
の最適条件を見い出して表層改質を行なっているが、形
成される薄膜の柱状結晶は、イオン打込み方向により多
く成長する傾向があり、形成膜が粗なものになり、強固
さに欠ける問題があった。この問題解決のために、成膜
時に母材を自転させる等の対策も講ぜられているが、そ
の効果はまだ不充分なものであった。
(Problem to be solved by the invention) When forming 11N! using the dynamic mixing method, the amount of vapor deposition &-t (amount of vapor deposited on the base material surface per unit time)
, the surface layer is modified by finding the optimal conditions such as ion beam energy (kinetic energy of ions), ion current, and ion implantation angle with respect to the base material surface, but the columnar crystals of the thin film formed are There was a problem that the film tends to grow more in one direction, resulting in a rougher film and lack of strength. In order to solve this problem, measures such as rotating the base material during film formation have been taken, but the effects have not been sufficient.

この発明の目的は、薄膜形成後の熱処理による再結晶化
など、新たな操作を必要とすることなく強固な膜が形成
される薄膜形成装置の構成と、目的とした膜組成を一定
に維持しつつ薄膜を形成することのできる装置の運転方
法とを提供することである。
The purpose of this invention is to provide a thin film forming apparatus that can form a strong film without requiring any new operations such as recrystallization through heat treatment after thin film formation, and to maintain a constant target film composition. It is an object of the present invention to provide a method for operating an apparatus capable of forming a thin film while maintaining the thickness of the film.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を解決するために、この発明においては、真空
チャンバ内に、面に垂直な軸線まわりに自転可能に配置
された母材の表面に真空蒸着またはスパッタ蒸着により
薄膜を形成する装置と2該母材の同一表面にイオンビー
ムを注入する装置とを備え、母材表面への蒸着とイオン
ビーム注入とを同時に行なって母材表面に新たな薄膜を
形成する。ダイナミックミキシング法によるI膜形成装
置を、母材を自転させつつイオンビーム軸と蒸着軸とを
含む面の方向に母材を揺動させることができるように構
成し、薄膜形成時に、イオンビーム軸と蒸着軸との成す
角および母材表面とイオンビーム軸との成す角を検出し
つつイオンビーム量とifr量の、少なくともいずれか
一方を制御する運転方法をとるものとする。
In order to solve the above object, the present invention includes a device for forming a thin film by vacuum deposition or sputter deposition on the surface of a base material arranged in a vacuum chamber so as to be rotatable about an axis perpendicular to the surface; A new thin film is formed on the surface of the base material by simultaneously performing vapor deposition and ion beam implantation onto the surface of the base material. The I-film forming apparatus using the dynamic mixing method is configured so that the base material can be rotated and oscillated in the direction of a plane including the ion beam axis and the evaporation axis. An operating method is used in which at least one of the ion beam amount and the ifr amount is controlled while detecting the angle between the base material surface and the ion beam axis and the angle between the base material surface and the ion beam axis.

〔作用〕[Effect]

薄膜形成装置をこのように構成すれば、fl膜形成時に
母材が自転しつつイオンビーム軸と蒸着軸とを含む面の
方向に揺動するから、イオンの打込み角が時間とともに
変化し、薄膜の結晶成長の方向が一方向に片寄ることが
なくなり、均一に分散され得る。これにより、より強固
な薄膜を形成することができる。
If the thin film forming apparatus is configured in this way, the base material rotates and oscillates in the direction of the plane including the ion beam axis and the evaporation axis during the fl film formation, so the ion implantation angle changes with time, and the thin film The direction of crystal growth is no longer biased in one direction and can be uniformly distributed. Thereby, a stronger thin film can be formed.

一方、母材が揺動することにより、母材表面でのイオン
ビーム密度と蒸着密度との比が変化するので、上述のよ
うにイオンビーム軸と蒸着軸との成す角および母材表面
とイオンビーム軸との成す角を検出しつつイオンビーム
量と蒸着量の、少なくともいずれか一方を制御する運転
方法をとることにより、膜の組成比を一定に保ちつつ薄
膜を形成することができ、形成膜の品質を一定に維持す
ることができる。
On the other hand, as the base material oscillates, the ratio between the ion beam density and the evaporation density on the base material surface changes. By using an operating method that controls at least one of the ion beam amount and the evaporation amount while detecting the angle formed with the beam axis, it is possible to form a thin film while keeping the composition ratio of the film constant. The quality of the membrane can be maintained constant.

〔実施例〕〔Example〕

本発明の実施例を第1図および第2図に示す。 An embodiment of the invention is shown in FIGS. 1 and 2.

真空チャンバ1内には、表面に薄膜が形成される板状も
しくは膜状の母材2が母材ホールダ3の面に装着され、
この母材2は母材ホールダ3の装着面に垂直な、従って
母材2の表面に垂直なモータ4の回転軸により回転駆動
される。図中の符号5は、この実施例では、電子ビーム
を、薄膜物質を構成する蒸発材に照射して加熱し、蒸発
させる電子ビーム加熱真空蒸着装置(以下、EBガンと
略記する)を示し、蒸発した薄膜物質は真空中を直進し
て母材表面へ向かう。蒸着装置としては、このように、
薄膜物質を構成する蒸発材を真空中で照射加熱5抵抗加
熱、誘導加熱などの手段により加熱、蒸発させる真空蒸
着装置のほか、真空中に放電ガスを導入し、電極間に電
圧を印加してグロー放電を発生させてプラズマを生成し
、プラズマ中の正イオンを陰極上のターゲットに衝突さ
せてターゲット原子をはじき出し、この原子を母材表面
へ向かわせるスパッタ蒸着装置があり、真空蒸着装置と
同様に本発明が対象とする薄膜形成装置を構成させるこ
とができる。また、符号6は、薄膜物質を構成する気体
元素のイオンを生成してビーム化するイオン源であり、
熱陰極アーク放電を利用したイオンS(例えば、周壁に
スリットが形成された金属容器内をスリットと平行に金
属容器から絶縁して熱陰極線もしくは熱陰極棒を走らせ
、この熱陰極と金属容器との間に電圧を印加して金属容
器内に対象ガスのプラズマを発生させ、スリット前面に
配設された引出し電極に対熱陰極負電位を与えてスリッ
トからイオンビームを引き出すイオン源)や、マイクロ
波放電を利用したイオン源(例えば、対象ガスが導入さ
れる筒状のマイクロ波共振器を励磁ソレノイドで囲んで
共振器内に磁界を発生させ、この磁界とマイクロ波とに
よる電子サイクロトロン共鳴効果により対象ガスをプラ
ズマ化し、共振器の軸方向端面の孔の前面に配設された
引出し電極によりイオンビームを形成させるイオン源)
が用いられる。また、符号7は、真空チャンバ1内を真
空に保つための真空排気装置である。
Inside the vacuum chamber 1, a plate-shaped or film-shaped base material 2 on which a thin film is formed is mounted on the surface of a base material holder 3,
This base material 2 is rotationally driven by a rotating shaft of a motor 4 that is perpendicular to the mounting surface of the base material holder 3, and thus perpendicular to the surface of the base material 2. In this embodiment, reference numeral 5 in the figure indicates an electron beam heating vacuum evaporation device (hereinafter abbreviated as EB gun) that irradiates the evaporation material constituting the thin film substance with an electron beam to heat and evaporate it. The evaporated thin film substance travels straight through the vacuum toward the surface of the base material. As a vapor deposition device, as shown above,
In addition to vacuum evaporation equipment that heats and evaporates the evaporation material that makes up the thin film substance in a vacuum using means such as irradiation heating, resistance heating, and induction heating, there is also a vacuum evaporation equipment that heats and evaporates the evaporation material that makes up the thin film substance in a vacuum using means such as resistance heating and induction heating. There is a sputter deposition device that generates plasma by generating a glow discharge, causes positive ions in the plasma to collide with a target on a cathode, and repels the target atoms, directing these atoms toward the surface of the base material. The thin film forming apparatus to which the present invention is directed can be constructed. Further, reference numeral 6 is an ion source that generates ions of gaseous elements constituting the thin film material and converts them into a beam.
Ion S using hot cathode arc discharge (for example, a hot cathode ray or hot cathode rod is run inside a metal container with a slit formed in the peripheral wall insulated from the metal container parallel to the slit, and the hot cathode and the metal container are connected to each other. A plasma of the target gas is generated in a metal container by applying a voltage between the slits, and a negative potential is applied to the extraction electrode placed in front of the slit to draw out the ion beam from the slit. An ion source that uses electric discharge (for example, a cylindrical microwave resonator into which the target gas is introduced is surrounded by an excitation solenoid to generate a magnetic field within the resonator, and the electron cyclotron resonance effect of this magnetic field and microwaves causes the target gas to be introduced into the resonator). (Ion source that converts gas into plasma and forms an ion beam using an extraction electrode placed in front of a hole on the axial end face of a resonator)
is used. Further, reference numeral 7 denotes a vacuum evacuation device for keeping the inside of the vacuum chamber 1 in a vacuum.

ここで母材2.母材ホールダ3およびモータ4は、母材
表面中心を紙面と垂直方向に通る直線を軸線として、イ
オンビーム軸11(第2図)、蒸着軸12を含む面の方
向に揺動できるよう、ここには特に図示しないが、真空
チャンバ1の壁面を紙面に垂直方向に両側からそれぞれ
貫通してモータ4のハウジングと一体化された。前記軸
線を軸線とする揺動軸が真空チャンバ壁面に回転自在に
支承され、この画描動軸の一方が適宜の揺動機構2例え
ば別置された回転円板の周縁側に一方端が連結された連
結棒の他方端と、揺動軸に固着されるレバーを介して連
結される。
Here, base material 2. The base material holder 3 and motor 4 are mounted here so that they can swing in the direction of the plane including the ion beam axis 11 (FIG. 2) and the vapor deposition axis 12, with the axis being a straight line passing through the center of the base material surface in a direction perpendicular to the plane of the paper. Although not particularly shown in the figure, it penetrates the wall surface of the vacuum chamber 1 from both sides in a direction perpendicular to the plane of the paper and is integrated with the housing of the motor 4. A rocking shaft having the axis as its axis is rotatably supported on the wall surface of the vacuum chamber, and one end of this drawing shaft is connected to an appropriate rocking mechanism 2, for example, on the peripheral side of a separately placed rotating disk. The other end of the connecting rod is connected to the other end of the connecting rod via a lever fixed to the swing shaft.

薄膜形成時には、母材2は回転運動と揺動運動とをしな
がら、下部に設けられているEBガン5からの蒸発物9
を表面に受けると同時に、イオン源6からのイオンビー
ム8を受ける。母材表面に対するイオンビーム8の入射
角は、揺動両端でのイオンビーム入射角の間で連続的に
変わるので、結晶成長方向が一定になるのを防ぎ、強固
な薄膜が形成される。
When forming a thin film, the base material 2 rotates and oscillates, and the evaporated matter 9 from the EB gun 5 installed at the bottom is removed.
at the same time as the ion beam 8 from the ion source 6 is received. Since the incident angle of the ion beam 8 with respect to the base material surface changes continuously between the ion beam incident angles at both ends of the swing, the direction of crystal growth is prevented from becoming constant, and a strong thin film is formed.

なお、母材を揺動させることにより、母材の受ける蒸着
レートとイオン注入レート、および両者の比が変化する
。いま、第2図において、母材表面とイオンビーム軸1
1との成す角をφ、イオンビーム軸11と蒸発軸12と
の成す角をθとすれば、蒸着レートR,とイオン注入レ
ートR1とはそれぞれ、 Rv  W−Rv@  cos  (□ −φ−θ)π R,=R,。 cos  (−φ) となる、ただし、Rvo、Rt。はそれぞれ母材表面に
垂直に入射するときの蒸着レートとイオン注入レートと
である。これらの式から明らかなように、各レートは角
φ、θで変化するが、−船釣にθは一定なので、角φに
よって各レートが変化する。
Note that by swinging the base material, the evaporation rate and ion implantation rate received by the base material, and the ratio of the two, change. Now, in Figure 2, the base material surface and the ion beam axis 1
1 is the angle formed by φ, and the angle formed between the ion beam axis 11 and the evaporation axis 12 is θ, then the vapor deposition rate R and the ion implantation rate R1 are respectively Rv W−Rv@ cos (□ −φ− θ)π R,=R,. cos (-φ), where Rvo, Rt. are the evaporation rate and the ion implantation rate when the ions are incident perpendicularly to the base material surface, respectively. As is clear from these equations, each rate changes with the angles φ and θ, but since θ is constant in boat fishing, each rate changes depending on the angle φ.

形成される薄膜の品質を維持するには、各レートおよび
レート比を一定にすることが望ましい。このために角φ
を検知し、この角をもとにして蒸着レートとイオン注入
レートとを制御しつつ薄膜を形成するようにする。ここ
で、角φの検出は、例えば、精密に電圧を分割する目的
で作られた可変抵抗器を備えたポテンショメータを用い
て行う。
In order to maintain the quality of the formed thin film, it is desirable to keep each rate and rate ratio constant. For this the angle φ
is detected, and a thin film is formed while controlling the evaporation rate and ion implantation rate based on this angle. Here, the angle φ is detected using, for example, a potentiometer equipped with a variable resistor made for the purpose of precisely dividing voltage.

この場合は角度の検出が目的であるから、ポテンショメ
ータは可変抵抗器が円弧状もしくは全円状に形成された
回転型のものを用い、その揺動接点を先端に保持するレ
バーを揺動軸で揺動駆動して角度を検出する。また、蒸
着レートの制御は、例えば光学式膜厚モニタを用いて膜
厚を検出しつつ、蒸着装置がEBガンである場合には、
前記膜厚信迂 号と角度信号とでEBガンの加働電圧あるいは熱フィラ
メントの加熱電流を調整して蒸発量を制御して行う。イ
オン注入レートの制御は、イオン源が熱陰極アーク放電
を利用するものでは、熱陰極とこれを包囲する金属容器
との間の加速電圧や熱陰極の加熱電流を調整することに
よりアーク電流を制御して行い、イオン源がマイクロ波
放電を利用するものでは、共振器に投入するマイクロ波
電力を調整して行う。第3図および第4図にそれぞれ両
イオン源における被調整量と、引き出されるイオンビー
ム電流との関係を示す。
In this case, since the purpose is to detect angles, a rotary type potentiometer with a variable resistor formed in an arc shape or a full circle is used, and the lever that holds the swing contact at the tip is attached to the swing shaft. The angle is detected by swinging drive. In addition, the evaporation rate can be controlled by detecting the film thickness using an optical film thickness monitor, for example, and when the evaporation device is an EB gun.
The amount of evaporation is controlled by adjusting the applied voltage of the EB gun or the heating current of the hot filament using the film thickness signal and the angle signal. If the ion source uses hot cathode arc discharge, the ion implantation rate can be controlled by adjusting the accelerating voltage between the hot cathode and the surrounding metal container and the heating current of the hot cathode. If the ion source uses microwave discharge, the microwave power input to the resonator is adjusted. FIG. 3 and FIG. 4 respectively show the relationship between the adjusted amount in both ion sources and the extracted ion beam current.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明においては、真空チャン
バ内に、面に垂直な軸線まわりに自転可能に配置された
母材の表面に真空蒸着またはスパッタ蒸着により薄膜を
形成する装置と、該母材の同一表面にイオンビームを注
入する装置とを備え、母材表面への蒸着とイオンビーム
注入とを同時に行なって母材表面に新たな薄膜を形成す
るグイナミソクミキシング法による薄膜形成装置を、母
材を自転させつつイオンビーム軸と蒸着軸とを含む面の
方向に母材を揺動させることができるように構成したの
で、母材表面へのイオン注入角を時間的に連続して変化
させることができ、母材表面に形成される薄膜の結晶成
長方向が一方向に片寄ることなく均一に分散され、膜形
成後の熱処理による再結晶化のような新たな操作を必要
とすることなく強固な薄膜が形成されるようになった。
As described above, the present invention includes an apparatus for forming a thin film by vacuum deposition or sputter deposition on the surface of a base material arranged in a vacuum chamber so as to be rotatable around an axis perpendicular to the surface; This equipment is equipped with a device that implants an ion beam onto the same surface of the material, and uses the Guinami Soku mixing method to form a new thin film on the surface of the base material by performing vapor deposition and ion beam implantation on the surface of the base material at the same time. Since the base material is configured to be able to rotate in the direction of the plane containing the ion beam axis and the evaporation axis while rotating, the ion implantation angle to the base material surface can be adjusted continuously over time. The crystal growth direction of the thin film formed on the surface of the base material is uniformly distributed without being biased in one direction, and new operations such as recrystallization by heat treatment after film formation are required. A strong thin film was now formed.

また、この装置の運転方法として、イオンビーム軸と蒸
着軸との成す角および母材表面とイオンビーム軸との成
す角を検出しつつイオンビーム量と蒸着量の、少なくと
もいずれか一方を制御する運転方法としたので、目的と
した組成成分比率を保ちつつ薄膜を形成することができ
、形成薄膜の品質を維持することができる。
In addition, as a method of operating this device, at least one of the ion beam amount and the evaporation amount is controlled while detecting the angle formed between the ion beam axis and the evaporation axis and the angle formed between the base material surface and the ion beam axis. Because of this operating method, it is possible to form a thin film while maintaining the intended composition ratio, and the quality of the formed thin film can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による薄膜形成装置構成の一実施例を示
す説明図、第2図は本発明による薄膜形成装置運転時の
被検出量を示す説明図、第3図および第4図はそれぞれ
熱陰極アーク放電利用のイオン源およびマイクロ波放電
利用のイオン源における。¥ii膜形成装置運転時の被
検出量検出値に基づく被調整量と引き出されるイオンビ
ーム電流との関係を示す線図である。 1:真空チャンバ、2:母材、4:モータ、5:EBガ
ン(Ti子ビーム加熱真空蒸着装置)、6:イオン源(
イオンビーム注入装置)、B:イオンビーム、9:蒸発
物、10:揺動軸、11:イオンビーム軸、12:蒸着
軸、φ、θ:被検出角。 箱動?[1lIO−。 \ 5EBカン 91発物 第1図 第2図 第 3 図 第 図
FIG. 1 is an explanatory diagram showing an example of the configuration of the thin film forming apparatus according to the present invention, FIG. 2 is an explanatory diagram showing the detected amount during operation of the thin film forming apparatus according to the present invention, and FIGS. 3 and 4 are respectively In ion sources using hot cathode arc discharge and ion sources using microwave discharge. FIG. 2 is a diagram showing the relationship between the amount to be adjusted based on the detected value of the amount to be detected and the extracted ion beam current during operation of the film forming apparatus. 1: Vacuum chamber, 2: Base material, 4: Motor, 5: EB gun (Ti beam heating vacuum evaporation device), 6: Ion source (
ion beam implanter), B: ion beam, 9: evaporated material, 10: swing axis, 11: ion beam axis, 12: vapor deposition axis, φ, θ: detected angle. Hakodo? [1lIO-. \ 5EB Kan91 Issues Figure 1 Figure 2 Figure 3 Figure

Claims (1)

【特許請求の範囲】 1)真空チャンバ内に、面に垂直な軸線まわりに自転可
能に配置された母材の表面に真空蒸着またはスパッタ蒸
着により薄膜を形成する装置と、該母材の同一表面にイ
オンビームを注入する装置とを備え、母材表面への蒸着
とイオンビーム注入とを同時に行なって母材表面に新た
な薄膜を形成する薄膜形成装置において、母材を自転さ
せつつイオンビーム軸と蒸着軸とを含む面の方向に母材
を揺動させることができるように構成されたことを特徴
とする薄膜形成装置。 2)請求項第1項に記載の薄膜形成装置の運転方法であ
って、薄膜形成時に、イオンビーム軸と蒸着軸との成す
角および母材表面とイオンビーム軸との成す角を検出し
つつイオンビーム量と蒸着量の、少なくともいずれか一
方を制御することを特徴とする薄膜形成装置の運転方法
[Claims] 1) An apparatus for forming a thin film by vacuum deposition or sputter deposition on the surface of a base material arranged in a vacuum chamber so as to be able to rotate about an axis perpendicular to the surface, and the same surface of the base material. In a thin film forming apparatus that simultaneously performs vapor deposition and ion beam implantation on the surface of a base material to form a new thin film on the surface of the base material, the ion beam axis is rotated while the base material rotates. 1. A thin film forming apparatus characterized in that it is configured to be able to swing a base material in the direction of a plane including the and the vapor deposition axis. 2) A method for operating a thin film forming apparatus according to claim 1, wherein during thin film formation, the angle between the ion beam axis and the deposition axis and the angle between the base material surface and the ion beam axis are detected. A method of operating a thin film forming apparatus, characterized by controlling at least one of an ion beam amount and a vapor deposition amount.
JP6897490A 1990-03-19 1990-03-19 Thin film formation device and its operation Pending JPH03267366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6897490A JPH03267366A (en) 1990-03-19 1990-03-19 Thin film formation device and its operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6897490A JPH03267366A (en) 1990-03-19 1990-03-19 Thin film formation device and its operation

Publications (1)

Publication Number Publication Date
JPH03267366A true JPH03267366A (en) 1991-11-28

Family

ID=13389154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6897490A Pending JPH03267366A (en) 1990-03-19 1990-03-19 Thin film formation device and its operation

Country Status (1)

Country Link
JP (1) JPH03267366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626721A1 (en) * 1993-04-06 1994-11-30 Siemens Aktiengesellschaft Process of forming a surface profile in the surface of a substrate
JP2011216821A (en) * 2010-04-02 2011-10-27 Tdk Corp Method of manufacturing chip component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626721A1 (en) * 1993-04-06 1994-11-30 Siemens Aktiengesellschaft Process of forming a surface profile in the surface of a substrate
JP2011216821A (en) * 2010-04-02 2011-10-27 Tdk Corp Method of manufacturing chip component

Similar Documents

Publication Publication Date Title
US4982696A (en) Apparatus for forming thin film
JPH03267366A (en) Thin film formation device and its operation
JP3056222B2 (en) Sputtering apparatus and sputtering method
EP0887435B1 (en) Free-standing rotating evaporation source
JP3544907B2 (en) Magnetron sputtering equipment
JP3409874B2 (en) Ion plating equipment
JPH05117843A (en) Thin film forming method
JPH0726197B2 (en) Thin film forming method and apparatus
JP3330159B2 (en) Dynamic mixing device
JPH01108364A (en) Method for supplying material for vapor deposition of vapor source
JPH05166236A (en) Apparatus for producing magneto-optical recording medium
JPH0548299B2 (en)
JPS61195968A (en) Production of alloy film deposited by evaporation
JPS6263669A (en) Vapor depositing apparatus using electron beam
JPH1088325A (en) Device for forming thin coating
JP3227768B2 (en) Method for controlling crystal orientation of copper thin film
JP2634487B2 (en) Abrasion resistant film formation method by ion plating
JP3610372B2 (en) Film formation method and apparatus by negative ion irradiation and simultaneous vapor deposition
JPH06264238A (en) Ion plating device and method for controlling thickness and composition distribution of vapor deposited film formed by ion plating
JPH0758031A (en) Ion deposition thin film forming apparatus and film forming method using the same
JPH02160609A (en) Target for forming oxide superconductor
JPH03274257A (en) Method and apparatus for producing thin oxide film
JPH0754147A (en) Dynamic mixing device
JPH11241158A (en) Vacuum deposition device using electron beam
JPH06306587A (en) Ion-plating device