JPH01108364A - Method for supplying material for vapor deposition of vapor source - Google Patents

Method for supplying material for vapor deposition of vapor source

Info

Publication number
JPH01108364A
JPH01108364A JP26350687A JP26350687A JPH01108364A JP H01108364 A JPH01108364 A JP H01108364A JP 26350687 A JP26350687 A JP 26350687A JP 26350687 A JP26350687 A JP 26350687A JP H01108364 A JPH01108364 A JP H01108364A
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
evaporation
melting part
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26350687A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nehashi
清 根橋
Shuichi Okabe
修一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP26350687A priority Critical patent/JPH01108364A/en
Publication of JPH01108364A publication Critical patent/JPH01108364A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To maintain the initial shape of a material for vapor deposition and to form a uniform and good film by evaporating the material for vapor deposition while shifting the melting part thereof continuously on a prescribed locus and by replenishing the granular bodies of the material for vapor deposition to the position evading the melting part. CONSTITUTION:A crucible 7 contg. the material 3 for vapor deposition for plating molded to a doughnut shape is rotated around an axial line O in a vacuum chamber of a vapor deposition plating device. The above-mentioned material 3 for vapor deposition is melted by an electron beam. The material A for vapor deposition is deposited by evaporation from the melting part A of the material 3 for vapor deposition while said melting part A is shifted continuously along the circular orbit, by which said material is deposited on a substrate (not shown) and the film is formed. The granular bodies 21 of the material for vapor deposition are supplied from a storage hopper 22 via a feeding device 23 and a charging chute 24 to the position of the material 3 for vapor deposition evading the melting part A at the present point of the time on the locus where the above-mentioned melting part A shifts in the above-mentioned vapor source. Further, the granular bodies 21 are continuously replenished by each consumed component by evaporation of the material 3. The initial shape of the material 3 is thereby maintained and the stable operation is attained.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、めっき用の蒸着材料の溶解部を所定の軌跡
に沿って連続的にずらしつつ、その溶解部から蒸着材料
を蒸発させる蒸発源を対象として、その蒸発源にて消費
される蒸着材料を供給する方[従来の技術] この種の蒸発源は、イオンブレーティング装置や真空蒸
着装置などの蒸着めっき装置に備えられている。
Detailed Description of the Invention [Industrial Field of Application] This invention relates to an evaporation source that evaporates vapor deposition material from the melting part while continuously shifting the melting part of the vapor deposition material for plating along a predetermined trajectory. [Prior art] This type of evaporation source is provided in evaporation plating apparatuses such as ion blating apparatuses and vacuum evaporation apparatuses.

まず、蒸発源を備えた蒸着めっき装置として、イオンブ
レーティング装置の構成例を第7図により説明する。
First, a configuration example of an ion blating apparatus as a vapor deposition plating apparatus equipped with an evaporation source will be described with reference to FIG.

チャンバI内には、真空状態のところに、例えば、窒素
や炭素等の反応ガス2が供給される。この反応ガス2に
は、放電を生じさせるためのアルゴン等の不活性ガスが
混合されている。
A reaction gas 2 such as nitrogen or carbon is supplied into the chamber I in a vacuum state. This reaction gas 2 is mixed with an inert gas such as argon for causing discharge.

チャンバ1内の底部には、蒸着材料3を所定の蒸気圧(
10−” 〜l 0−3Torr)が得られるまで、温
度でいえば、融点よりも少し高い温度まで加熱して蒸発
させ、蒸発物質4にするための蒸発源5が設けである。
The vapor deposition material 3 is placed at the bottom of the chamber 1 at a predetermined vapor pressure (
An evaporation source 5 is provided to evaporate the material by heating it to a temperature slightly higher than the melting point until a temperature of 10-'' to 10-3 Torr is obtained.

蒸発源5は、電子ビーム6を利用した、いわゆる電子ビ
ーム蒸発源であり、水冷されたルツボ7に蒸着材料3を
入れ、これに電子ビーム6を直接チャンバlの側壁には
、ルツボ7より電位が高い直流放電電極板8が設けであ
る。
The evaporation source 5 is a so-called electron beam evaporation source that uses an electron beam 6. The evaporation material 3 is placed in a water-cooled crucible 7, and the electron beam 6 is directly applied to the side wall of the chamber 1 to generate an electric potential from the crucible 7. A DC discharge electrode plate 8 with a high voltage is provided.

該直流放電電極板8は、モリブデン(Mo )、タンタ
ル(Ta)、タングステン(W)等で形成され、蒸発源
5から熱電子(c”)9を放出させて、萌記反応ガス2
や、蒸発物質4に衝突させ、該反応ガス2や蒸発物質4
をイオン化し、あるいは励起する6のである。
The DC discharge electrode plate 8 is made of molybdenum (Mo), tantalum (Ta), tungsten (W), etc., and emits thermoelectrons (c'') 9 from the evaporation source 5 to discharge the moe reaction gas 2.
or collide with the evaporated substance 4, and the reaction gas 2 and evaporated substance 4 are
6, which ionizes or excites.

チャンバI内の上方には、めっきされる被蒸着基板10
が配置されている。被蒸着基板IOは、ルツボ7より電
位が低く、ヒータ11によって加熱されるようになって
いる。
Above the chamber I is a substrate 10 to be plated.
is located. The deposition target substrate IO has a lower potential than the crucible 7 and is heated by the heater 11.

なお、蒸発源5と被蒸着基板10との間には、開閉可能
なシャッタ12が設けられている。また、ルツボ7と直
流放電電極板8との間、およびルツボ7と被蒸着基板I
Oとの間の各々に、直流電源13.14が接続されてい
る。また、図中、15は真空排気である。
Note that a shutter 12 that can be opened and closed is provided between the evaporation source 5 and the deposition target substrate 10. Also, between the crucible 7 and the DC discharge electrode plate 8, and between the crucible 7 and the deposition substrate I
Direct current power supplies 13 and 14 are connected to each of the terminals between Further, in the figure, 15 is a vacuum pump.

以上の構成において、電子ビーム6によって加熱された
蒸着材料は、蒸発物質4となってチャンバ1内に蒸発す
る。このとき、蒸発源5から直流放電it電極板へ向け
て放出される熱電子(eつ9が、蒸発物質4に衝突して
、電子を弾き出し、正イオン化する。また、反応ガス2
も同様に熱電子9の衝突により正イオン化する。
In the above configuration, the evaporation material heated by the electron beam 6 becomes the evaporation substance 4 and evaporates into the chamber 1 . At this time, thermionic electrons (9) emitted from the evaporation source 5 toward the DC discharge electrode plate collide with the evaporation substance 4, kicking out the electrons and positively ionizing the reaction gas 2.
is also positively ionized by the collision of thermionic electrons 9.

これら正イオン化された蒸発物質4と反応ガス2は、電
位の低い被蒸着基板10に引かれて衝突する。そして、
蒸発物質4と反応ガス2が化合して蒸着膜を形成する。
These positively ionized evaporated substances 4 and reaction gas 2 are attracted to the deposition target substrate 10, which has a low potential, and collide with them. and,
Evaporated substance 4 and reaction gas 2 combine to form a deposited film.

このように、イオンブレーティング装置は、蒸発物質4
をイオン化するので、被蒸着基板10に確実に付着し、
長期間使用しても剥離しない強固なめっきか得られる。
In this way, the ion blating device uses the evaporated material 4
Since it ionizes, it reliably attaches to the substrate 10 to be evaporated,
A strong plating that does not peel off even after long-term use is obtained.

ところで、このようなイオンブレーティング装置におい
ては、蒸着面積が小さくて操業時間が例えば1〜2時間
時間色短い場合は、蒸着材料3が小さく、ルツボ7は単
に定位置に固定するだけでよかった。つまり、電子ビー
ム6が当たって蒸着材料3が溶解する蒸発位置は一定で
よかった。しかし、蒸着面積が大きくて操業時間が例え
ば10時間以上と長い場合は、蒸着材料3を大きくし、
そして時間の経過とともに蒸着材料3の蒸発位置を連続
的にずらす必要がある。
By the way, in such an ion blating apparatus, when the evaporation area is small and the operating time is short, for example, by 1 to 2 hours, the evaporation material 3 is small and the crucible 7 only needs to be fixed in a fixed position. In other words, the evaporation position where the electron beam 6 hits and melts the evaporation material 3 needs to be constant. However, if the evaporation area is large and the operation time is long, for example 10 hours or more, the evaporation material 3 should be made larger.
Then, it is necessary to continuously shift the evaporation position of the evaporation material 3 as time passes.

蒸着材料3の蒸発位置をずらす方法としては、第3図お
よび第4図に表すように、ルツボ7を回転させる方法が
一般的である。
A common method for shifting the evaporation position of the vapor deposition material 3 is to rotate the crucible 7, as shown in FIGS. 3 and 4.

すなわち、ドーナツ状に形成した蒸着材料3(通称「ル
ツボまんじゅう」)をルツボ7に載せ、そして操業中に
、軸線0を中心としてルツボ7を繰り返し回転させるこ
とにより、電子ビーム6の当たる位置、つまり蒸発する
溶解部Aの位置を連続的にずらすようになっている。結
局、溶解部Aの位置は、蒸着材料3の形状に沿うリング
状の軌跡を描くようにしてずれていく。そして、その軌
跡はルツボ7の繰り返しの回転によって順次重なってい
き、蒸着材料3は除々に消費されて、その状態が第5図
(a)、(b)、(c)に表すようにしだいに変化する
ことになる。
That is, by placing the vapor deposition material 3 formed in a donut shape (commonly known as "crucible bun") on the crucible 7, and repeatedly rotating the crucible 7 about the axis 0 during operation, the position where the electron beam 6 hits, that is, The position of the melting part A that evaporates is continuously shifted. Eventually, the position of the melted part A shifts in a manner that it draws a ring-shaped locus that follows the shape of the vapor deposition material 3. The trajectories overlap one after another due to repeated rotations of the crucible 7, and the vapor deposition material 3 is gradually consumed, and the state gradually changes as shown in FIGS. 5(a), (b), and (c). It's going to change.

第5図(a)は当初の状態であり、ルツボ7が回転して
蒸着材料3が消費されるにつれて、同図(b)、(c)
のように除々に薄くなっていく。
Fig. 5(a) shows the initial state, and as the crucible 7 rotates and the vapor deposition material 3 is consumed, Fig. 5(b) and (c)
It gradually becomes thinner like this.

特に、蒸着材料3のリング状の中央付近Pが凹状となっ
て、薄くなる。
In particular, the ring-shaped center P of the vapor deposition material 3 becomes concave and becomes thinner.

[発明が解決しようとする問題点] 上述したように、従来の場合は、操業の進行にともなっ
て蒸着材料3がしたいに薄くなる。そのため、電子ビー
ム6のパワーが一定であっても蒸着材料3が過熱されて
溶解し過ぎたり、また蒸着材料3の熱変形によってルツ
ボ7からの冷却の程度が変化してしまう。
[Problems to be Solved by the Invention] As described above, in the conventional case, the vapor deposition material 3 gradually becomes thinner as the operation progresses. Therefore, even if the power of the electron beam 6 is constant, the vapor deposition material 3 may be overheated and melted too much, or the degree of cooling from the crucible 7 may change due to thermal deformation of the vapor deposition material 3.

その結果、蒸着材料3の溶解部が変動して、熱電子量の
変動(イオン化電流の変動)と、蒸着物質4の量の変動
を招き、結局、被蒸着基板10への膜の生成変動を起こ
して、均一で良好な膜の生成を妨げるという問題があっ
た。
As a result, the melted portion of the vapor deposition material 3 fluctuates, leading to fluctuations in the amount of thermionic electrons (fluctuations in the ionization current) and fluctuations in the amount of the vapor deposition material 4, which ultimately leads to fluctuations in the formation of the film on the substrate 10 to be deposited. This poses a problem in that the formation of a uniform and good film is hindered.

このような問題を対策案としては、電子ビーム6のパワ
ーを調整したり、直流放電電極板8にかかる電源13の
電圧を調整したりする等の方法がある。しかし、これら
の方法のためには複雑な補正操業が必要となって、操業
上の新たな問題を招く結果となる。
As a countermeasure to this problem, there are methods such as adjusting the power of the electron beam 6 or adjusting the voltage of the power source 13 applied to the DC discharge electrode plate 8. However, these methods require complex correction operations, resulting in new operational problems.

また、他の対策案としては、第6図に表すように、操業
中において、投入シュート17から蒸着材料3を補給す
る方法が考えられる。この場合、蒸着材料3をチップ材
とすることが考えられる。
Another possible countermeasure is to replenish the deposition material 3 from the input chute 17 during operation, as shown in FIG. In this case, it is conceivable to use the vapor deposition material 3 as a chip material.

それは、普通、蒸着材料3を形成する際には、ルツボ7
にチップ材を入れ、そしてチャンバー1内を真空状態に
して、チップ材をドーナツ状に連続して溶着させる方法
を採っているからである。チップ材は、例えば厚さ2n
+m、1辺20mm程度である。なお、蒸着材料3はイ
ンゴットから削り出してつくるのが理想的ではある。し
かし、コストが極めて高くなるため現実的ではない。こ
のようなことから、蒸着材料3を補給する場合には、チ
ップ材として補給することが考えられる。
It is normally used in the crucible 7 when forming the vapor deposition material 3.
This is because a method is employed in which the chip material is placed in the chamber 1, the interior of the chamber 1 is evacuated, and the chip material is continuously welded in a donut shape. The chip material has a thickness of 2n, for example.
+m, and each side is about 20 mm. Note that it is ideal that the vapor deposition material 3 is made by cutting out an ingot. However, this is not realistic as the cost would be extremely high. For this reason, when replenishing the vapor deposition material 3, it is conceivable to replenish it as a chip material.

ところが、蒸着材料3をチップ材として補給した場合に
は、第6図に表すように、チップ材がルツボ7の縁や中
心部などの電子ビーム6の当たらない部分に投入された
り、電子ビーム6の溶解可能量以上に投入されることが
ある。そして、このような場合には、チップ材が蒸着材
料3内に溶けずに残り、蒸着材料3の形状が不均一なも
のとなって、安定操業ができない。結局、蒸着材料3が
使い物とならなくなる。
However, when the vapor deposition material 3 is supplied as a chip material, as shown in FIG. In some cases, more than the amount that can be dissolved may be added. In such a case, the chip material remains undissolved in the vapor deposition material 3, and the shape of the vapor deposition material 3 becomes non-uniform, making stable operation impossible. Eventually, the vapor deposition material 3 becomes unusable.

この発明は、これらの事情を考慮してなされたものであ
り、蒸着材料の当初の形状を維持するように、蒸着材料
を供給することによって、安定操業を実現し、均一で良
好な膜を生成することかできる蒸発源の蒸着材料供給方
法を提供することを目的とする。
This invention was made in consideration of these circumstances, and by supplying the vapor deposition material in such a way that the original shape of the vapor deposition material is maintained, stable operation is realized and a uniform and good film is produced. An object of the present invention is to provide a method for supplying an evaporation material to an evaporation source that can perform the following steps.

[問題点を解決するための手段] この発明の蒸発源の蒸着材料供給方法は、めっき用の蒸
着材料の溶解部を所定の軌跡に沿って連続的にずらしつ
つ、その溶解部から蒸着材料を蒸発させる蒸発源におい
て、 蒸着材料の溶解部がずれる軌跡上でかつ現時点の溶解部
を避けた蒸着材料の位置に、蒸着材料の蒸発による消費
量分ずつ、蒸着材料の粒状体を連続的に供給することを
特徴とする。
[Means for Solving the Problems] The method for supplying vapor deposition material to an evaporation source of the present invention continuously shifts the melted portion of the vapor deposition material for plating along a predetermined trajectory, and removes the vapor deposition material from the melted portion. In the evaporation source, granules of vapor deposition material are continuously supplied in an amount equivalent to the amount consumed by evaporation of the vapor deposition material to a position of the vapor deposition material on the trajectory where the melted part of the vapor deposition material shifts and avoids the current melted part. It is characterized by

[作用] この発明の蒸発源の蒸着材料供給方法は、蒸着材料の消
費量分ずつ、蒸着材料の上に粒状体の蒸着材料を安定し
た形で供給することにより、蒸着材料の断面積および形
状を当初のままに維持して、膜の生成条件を一定に保っ
て均一で良好な膜をつくると共に、長期間の安定操業を
実現する。
[Operation] The method for supplying vapor deposition material to an evaporation source of the present invention improves the cross-sectional area and shape of the vapor deposition material by stably supplying the granular vapor deposition material onto the vapor deposition material in an amount equal to the consumption amount of the vapor deposition material. By maintaining the film as it was originally, the film formation conditions are kept constant to produce a uniform and good film, and to achieve stable operation over a long period of time.

[実施例コ 以下、この発明の一実施例を第1図および第2図に基づ
いて説明する。なお、図中において、前述した従来例と
同様の部分には向−符号を付してその説明を省略する。
[Example 1] An example of the present invention will be described below with reference to FIGS. 1 and 2. In the drawings, parts similar to those in the prior art example described above are designated by arrows and their explanations will be omitted.

本実施例は、前述した従来例の場合と同様のイオンブレ
ーティング装置の蒸発源5を対象として、その蒸発源5
のルツボ7の上に蒸着材料3を供給する方法の一例であ
る。
In this embodiment, the evaporation source 5 of an ion blating device similar to that of the conventional example described above is used.
This is an example of a method for supplying the vapor deposition material 3 onto the crucible 7.

図において、21は供給用の粒状蒸着材料であり、貯蔵
ホッパー22内に貯蔵されている。粒状蒸着材料21は
、粒状である以外はその形状は特定されず、例えば球、
四角などの粒状であってもよい。貯蔵ホッパー22の下
端には、粒状蒸着材料21を切り出して排出する切り出
し装置23が備えられており、切り出された粒状蒸着材
料21は、投入シュート24内を滑ってルツボ7上に投
入される。粒状蒸着材料21の投入位置は、ルツボ7の
回転にともなってずれる蒸着材料3の溶解部Aの軌跡上
、つまりドーナツ状の蒸着材料3に沿うリング状の軌跡
上であって、かつ現時点の溶解部Aを避けた位置となっ
ている。本実施例の場合は、現時点の溶解部Aの位置、
つまり電子ビーム6の照射位置から、ルツボ7の回転方
向に180°ずれた位置が粒状蒸着材料21の投入位置
となっている。また、投入シュート24は、第2図中の
矢印方向に角度が調整できるようになっており、これに
より投入角度可変式となっている。
In the figure, 21 is a granular vapor deposition material for supply, which is stored in a storage hopper 22. The shape of the granular vapor deposition material 21 is not specified except that it is granular, for example, a sphere,
It may be granular, such as square. A cutting device 23 for cutting out and discharging the granular vapor deposition material 21 is provided at the lower end of the storage hopper 22, and the cut granular vapor deposition material 21 slides within the input chute 24 and is introduced onto the crucible 7. The injection position of the granular vapor deposition material 21 is on the locus of the melted part A of the vapor deposition material 3 that shifts as the crucible 7 rotates, that is, on the ring-shaped trajectory along the doughnut-shaped vapor deposition material 3, and on the current melting point. It is located away from part A. In the case of this example, the current position of the melted part A,
In other words, a position shifted by 180 degrees in the rotational direction of the crucible 7 from the irradiation position of the electron beam 6 is the input position of the granular vapor deposition material 21 . Further, the angle of the charging chute 24 can be adjusted in the direction of the arrow in FIG. 2, thereby making the charging angle variable.

実際の操業に際しては、ルツボ7を回転させ、かつ電子
ビーム6を当てて蒸着材料3を蒸発させつつ、粒状蒸着
材料21を投入する。その投入量は、蒸着材料3の消費
量分となるように切り出し装置23を制御する。そのた
めに、予め単位時間当たりの蒸着材料3の消費量を経験
的に求めておき、その消費1分だけ粒状蒸着材料21を
連続的に供給する。
During actual operation, the crucible 7 is rotated and the granular vapor deposition material 21 is introduced while the vapor deposition material 3 is evaporated by being irradiated with the electron beam 6. The cutting device 23 is controlled so that the input amount is equal to the consumption amount of the vapor deposition material 3. For this purpose, the consumption amount of the vapor deposition material 3 per unit time is determined empirically in advance, and the granular vapor deposition material 21 is continuously supplied for one minute of consumption.

供給される粒状蒸着材料21は、それ自体が粒状である
ため、ルツボ7の上に一定の形を成すように落ちる。し
かも、粒状蒸着材料2Iの供給量が蒸着材料3の消費量
と同量であるため、操業の経過に拘わらず、蒸着材料3
の断面積および形状は当初のままとなる。したがって、
蒸着材料3とルツボ7との関係が常に一定となり、蒸着
材料3が電子ビーム6から受ける熱と、ルツボ7によっ
て冷却される熱は、常に一定の熱平衡状態を維持するこ
とになる。結局、イオン化電流の安定、蒸発物質の質量
の安定、非蒸着基板lOへの膜の生成安定となり、均一
で良好な膜ができることになる。
Since the supplied granular vapor deposition material 21 is granular itself, it falls onto the crucible 7 in a certain shape. Moreover, since the supply amount of the granular vapor deposition material 2I is the same as the consumption amount of the vapor deposition material 3, regardless of the progress of the operation, the vapor deposition material 3
The cross-sectional area and shape of will remain as they were originally. therefore,
The relationship between the vapor deposition material 3 and the crucible 7 is always constant, and the heat that the vapor deposition material 3 receives from the electron beam 6 and the heat cooled by the crucible 7 always maintain a constant thermal equilibrium state. As a result, the ionization current is stabilized, the mass of the evaporated substance is stabilized, and the film on the non-evaporated substrate 1O is stabilized, resulting in a uniform and good film.

また、蒸着材料3の消費量に見合った分だけ蒸着材料2
1を補給するため、長時間の安定操業が可能となる。し
たがって、蒸着材料3の容量の変化に対応する複雑な補
正操業が不要となり、粒状蒸着材料21の供給装置の構
造や運転がシンプルな6のとなる。
In addition, the amount of vapor deposition material 2 corresponding to the consumption amount of vapor deposition material 3 is
1, it is possible to operate stably for a long time. Therefore, a complicated correction operation corresponding to a change in the capacity of the vapor deposition material 3 is not required, and the structure and operation of the supply device for the granular vapor deposition material 21 are simplified as shown in item 6.

ちなみに、粉の蒸着材料を供給した場合には、電子ビー
ム6によってほぼ瞬時に溶解したり飛び散ったりしてイ
オン化電流を乱したり、また投入シュート24からの投
入時に舞い上がったり、飛び散ったりしてしまう。また
チップや塊の蒸着材料を供給した場合には、溶は残った
り、不均一に投入されて、蒸着材料3の形状を不均一な
ものとし、イオン化電流を変動させることになる。した
がって、蒸着材料が粉、チップ、および塊の場合は、い
ずれも均一で良好な膜を生成することができない。
By the way, if a powdered vapor deposition material is supplied, it will be melted or scattered almost instantly by the electron beam 6, disturbing the ionization current, or it will fly up or scatter when it is introduced from the input chute 24. . Furthermore, if chips or lumps of vapor deposition material are supplied, the melt may remain or be applied unevenly, making the shape of the vapor deposition material 3 nonuniform and causing fluctuations in the ionization current. Therefore, if the vapor deposition material is powder, chips, or lumps, it is impossible to produce a uniform and good film.

[効果] 以上説明したように、この発明の蒸発源の蒸着材料供給
方法は、蒸着材料の粒状体を補給するから、蒸着材料の
上に粒状体の蒸着材料を安定した形で供給することがで
きる。したがって、蒸着材料の断面積゛および形状を当
初のままに維持し、膜の生成条件を一定に保って均一で
良好な膜をつくることができる。
[Effect] As explained above, the method for supplying vapor deposition material to an evaporation source of the present invention replenishes the vapor deposition material particles, so that the vapor deposition material in the form of particles can be stably supplied onto the vapor deposition material. can. Therefore, the cross-sectional area and shape of the vapor-deposited material can be maintained as they were originally, and the film formation conditions can be kept constant to form a uniform and good film.

また、蒸着材料の消費量分ずつ蒸着材料の粒状体を補給
するから、長期間の操業が可能となり、しかし当初の蒸
着材料の容量を特に大きくする必要かなく、経済的であ
る。
Furthermore, since granules of vapor deposition material are replenished in proportion to the consumed amount of vapor deposition material, long-term operation is possible, and there is no need to particularly increase the initial capacity of vapor deposition material, which is economical.

また、蒸着材料の断面積および形状を当初のまま推持し
て、安定した操業ができるため、蒸着材料の減少に対応
するような複雑な補正操業が不要となり、操業が極めて
容易となる。また、粒状体の蒸着材料の供給量を一定に
して、供給装置の構造および運転をシンプルなしのとす
ることもできる。
In addition, stable operation can be performed by maintaining the cross-sectional area and shape of the vapor deposition material as they were originally, so there is no need for complicated correction operations to cope with the reduction in the amount of vapor deposition material, making the operation extremely easy. Furthermore, the structure and operation of the supply device can be simplified by keeping the supply amount of the granular vapor deposition material constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の一実施例を説明するた
めの図であり、第1図は要部の平面図、第2図は第1図
の■−■線に沿う断面図である。 第3図ないし第6図は従来例を説明するための図であり
、第3図は要部の平面図、第4図は第3図のIV−IV
線に沿う断面図、第5図(a)、(b)、(C)は操業
の進行にともなう蒸着材料の消費情況の説明図、第6図
はチップ状の蒸着材料の供給情況の説明図である。 第7図は一般的なイオンブレーティング装置の概略構成
図である。 l・・・・・・チャンバー、  3・・・・・・蒸着材
料、6・・・・・・電子ビーム、  7・・・・・・ル
ツボ、IO・・・・・・被蒸着基板、 21・・・・・・蒸着材料の粒状体、 22・・・・・・貯蔵ホッパー、 23・・・・・・切り出し装置、 24・・・・・・投入シュート、 A・・・・・・溶解
部。 出願人 石川島播磨重工業株式会社 第1図 Lや 第5図 ♀ 第6図 第7図
Figures 1 and 2 are diagrams for explaining one embodiment of the present invention. Figure 1 is a plan view of the main part, and Figure 2 is a sectional view taken along the line ■-■ in Figure 1. be. 3 to 6 are diagrams for explaining the conventional example, FIG. 3 is a plan view of the main part, and FIG. 4 is a diagram IV-IV of FIG. 3.
A cross-sectional view along the line, Figures 5 (a), (b), and (C) are explanatory diagrams of the consumption situation of vapor deposition material as the operation progresses, and Figure 6 is an explanatory diagram of the supply situation of chip-shaped vapor deposition material. It is. FIG. 7 is a schematic diagram of a general ion brating device. l... Chamber, 3... Vapor deposition material, 6... Electron beam, 7... Crucible, IO... Substrate to be vapor deposited, 21 ...Particles of vapor deposition material, 22...Storage hopper, 23...Cutting device, 24...Input chute, A...Dissolution Department. Applicant Ishikawajima Harima Heavy Industries Co., Ltd. Figure 1 L and Figure 5 ♀ Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 めっき用の蒸着材料の溶解部を所定の軌跡に沿って連続
的にずらしつつ、その溶解部から蒸着材料を蒸発させる
蒸発源において、 蒸着材料の溶解部がずれる軌跡上でかつ現時点の溶解部
を避けた蒸着材料の位置に、蒸着材料の蒸発による消費
量分ずつ、蒸着材料の粒状体を連続的に供給することを
特徴とする蒸発源の蒸着材料供給方法。
[Claims] In an evaporation source that evaporates the vapor deposition material from the melting portion while continuously shifting the melting portion of the vapor deposition material for plating along a predetermined trajectory, A method for supplying evaporation material for an evaporation source, characterized in that granules of evaporation material are continuously supplied to a position of the evaporation material avoiding the current melting part in an amount equivalent to the amount consumed by evaporation of the evaporation material.
JP26350687A 1987-10-19 1987-10-19 Method for supplying material for vapor deposition of vapor source Pending JPH01108364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26350687A JPH01108364A (en) 1987-10-19 1987-10-19 Method for supplying material for vapor deposition of vapor source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26350687A JPH01108364A (en) 1987-10-19 1987-10-19 Method for supplying material for vapor deposition of vapor source

Publications (1)

Publication Number Publication Date
JPH01108364A true JPH01108364A (en) 1989-04-25

Family

ID=17390474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26350687A Pending JPH01108364A (en) 1987-10-19 1987-10-19 Method for supplying material for vapor deposition of vapor source

Country Status (1)

Country Link
JP (1) JPH01108364A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467427B1 (en) * 2000-11-10 2002-10-22 Helix Technology Inc. Evaporation source material supplier
EP1422313A1 (en) * 2002-11-05 2004-05-26 Theva Dünnschichttechnik GmbH Apparatus and method for vacuum vapor deposition of a coating material with continuated material replenishment
WO2006083735A1 (en) * 2005-02-04 2006-08-10 Eastman Kodak Company Feeding particulate material to a heated surface
CN106119781A (en) * 2016-07-27 2016-11-16 京东方科技集团股份有限公司 Vaporising device, evaporated device and evaporation coating method
DE102015117182A1 (en) * 2015-10-08 2017-04-13 Von Ardenne Gmbh Method and device for evaporating material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114181A (en) * 1974-06-19 1976-02-04 Airco Inc KISHITSUNOHI FUKUHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114181A (en) * 1974-06-19 1976-02-04 Airco Inc KISHITSUNOHI FUKUHOHO

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467427B1 (en) * 2000-11-10 2002-10-22 Helix Technology Inc. Evaporation source material supplier
EP1422313A1 (en) * 2002-11-05 2004-05-26 Theva Dünnschichttechnik GmbH Apparatus and method for vacuum vapor deposition of a coating material with continuated material replenishment
WO2004041985A3 (en) * 2002-11-05 2004-06-17 Theva Duennschichttechnik Gmbh Device and method for the evaporative deposition of a high-temperature superconductor in a vacuum with continuous material introduction
JP2006504869A (en) * 2002-11-05 2006-02-09 テバ ドュンシッヒトテヒニク ゲーエムベーハー Apparatus and method for depositing a coating material
WO2006083735A1 (en) * 2005-02-04 2006-08-10 Eastman Kodak Company Feeding particulate material to a heated surface
US7398605B2 (en) 2005-02-04 2008-07-15 Eastman Kodak Company Method of feeding particulate material to a heated vaporization surface
DE102015117182A1 (en) * 2015-10-08 2017-04-13 Von Ardenne Gmbh Method and device for evaporating material
CN106119781A (en) * 2016-07-27 2016-11-16 京东方科技集团股份有限公司 Vaporising device, evaporated device and evaporation coating method

Similar Documents

Publication Publication Date Title
US5709784A (en) Process and apparatus for workpiece coating
US2960457A (en) Apparatus for vaporizing coating materials
US4424104A (en) Single axis combined ion and vapor source
JPH01108364A (en) Method for supplying material for vapor deposition of vapor source
EP1081247A2 (en) Arc type ion plating apparatus
JP2001058266A (en) Arc type evaporation source
JP2017020056A (en) Alloy nitride film formation device and alloy nitride film formation method
JP2946387B2 (en) Ion plating equipment
JPH11315370A (en) Ion plating device for forming sublimable metallic compound thin film
JPH01108363A (en) Method and apparatus for producing lumped body of material for vapor deposition
JPH03140467A (en) Sputtering device
JPH1088325A (en) Device for forming thin coating
JP2001348660A (en) Apparatus and method for depositing film
JPH05287513A (en) Ion plating device
JPH02290971A (en) Sputtering device
JPS6357938B2 (en)
JPH0196371A (en) Ion plating method
JP2000282223A (en) Device and method for film formation
JP3330159B2 (en) Dynamic mixing device
JP2994591B2 (en) Evaporation method and apparatus for vacuum deposition
JP2004204314A (en) Film-forming method and film-forming apparatus
JP2001192817A (en) Film deposition method and system
JPS58217674A (en) Ion plating apparatus equipped with plural evaporation sources
JP2022025333A (en) Plasma gun, film forming device, and negative ion generating device
JPH036370A (en) Ion plating method