JPH0329386B2 - - Google Patents

Info

Publication number
JPH0329386B2
JPH0329386B2 JP26180886A JP26180886A JPH0329386B2 JP H0329386 B2 JPH0329386 B2 JP H0329386B2 JP 26180886 A JP26180886 A JP 26180886A JP 26180886 A JP26180886 A JP 26180886A JP H0329386 B2 JPH0329386 B2 JP H0329386B2
Authority
JP
Japan
Prior art keywords
zeolite
sio
adsorption
molar ratio
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26180886A
Other languages
Japanese (ja)
Other versions
JPS63116685A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61261808A priority Critical patent/JPS63116685A/en
Publication of JPS63116685A publication Critical patent/JPS63116685A/en
Publication of JPH0329386B2 publication Critical patent/JPH0329386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の目的 産業上の利用分野 この発明は蒸留酒の品質を改善する方法に関す
るものである。 従来の技術 単蒸留で製造される酒類(焼酎、ウイスキー、
ブランデーなど)には高級脂肪酸及びそのエステ
ル類が含まれており、これらの成分は寒冷期に結
晶化して綿状沈殿物を析出したり、或いは酸化さ
れて油臭の原因になつたりして、商品価値を低下
させる。高級脂肪酸及びそのエステル類の除去法
として現在行われている方法は、冷却瀘過法、
活性炭吸着法の2つである。 の冷却瀘過法は、冷却により上記エステルが
晶出してくるのを利用して瀘過除去する方法であ
るが、冷凍機や大きな保温タンクが必要なため設
備費が高く、晶出が完全に終了するまで長時間を
要するなどの欠点がある。 の活性炭吸着法は、数百ppmの活性炭を加え
て上記エステルを吸着させ瀘過除去するものであ
るが、活性炭は吸着の選択性に欠けるため酒質
(味、香り、色)への影響が大きい。また活性炭
を使い捨てにするためコストがかかる。 発明が解決しようとする問題点 本発明は、蒸留酒の風味成分である低級脂肪酸
及びそのエステルは残留させつつ、選択的に高級
脂肪酸及びそのエステルを除去して蒸留酒の品質
を改善することができ、装置費が安く、かつラン
ニングコストも安い方法を提供することを目的と
する。 ロ 発明の構成 問題点を解決するための手段 本発明に係る蒸留酒の品質改善法は、脱アルミ
ニウム処理されたSiO2/Al2O3モル比10以上のY
型ゼオライト及びSiO2/Al2O3モル比50以上の
ZSM−5型ハイシリカゼオライトからなる群か
ら選ばれる1種以上のゼオライトよりなる吸着剤
に蒸留酒を接触させることを特徴とする。 脱アルミニウム処理されたY型ゼオライトは、
SiO2/Al2O3モル比が10以上のものであることが
好ましい。 ペンタシル型ゼオライトはZSM−5で代表さ
れるハイシリカゼオライトであり、そのSiO2
Al2O3モル比が50以上のものであることが好まし
い。 吸着剤の使用方法としては、蒸留酒に所定量を
添加しバツチ的に処理する方法又は固定床式で連
続的に処理する方法のどちらでも良い。処理温度
は室温でよく、加熱冷却は不要である。 吸着剤の使用量は、高級脂肪酸及びそのエステ
ルの量にもよるが、通常は蒸留酒に対して500〜
1000ppm程度の割合が好ましい。 どの方式でも使用済ゼオライトは適当な溶媒、
例えばエチルアルコール、プロピルアルコール、
ブチルアルコール又はアミルアルコール水溶液な
どに接触させて再生し再利用することができる。 しかし対象物が食品であるため、無害、無毒で
あるエチルアルコール水溶液を用いることが望ま
しい。再生にエチルアルコール水溶液を使用する
場合、そのアルコール濃度は蒸留酒のアルコール
濃度以上であり、できれば10%以上高いものであ
ることが溶媒の使用量がより低減されるので望ま
しい。高い方の制限はないが、60%を越えると危
険物扱いとなり法規上の制限を受けるので、60%
以下が好ましい。 溶媒に接触させて使用済ゼオライトを再生する
際の温度は室温でよいが、温度を高めることによ
り再生時間を短縮することができる。その場合の
加熱温度としては60℃以下がエネルギー消費節減
の面から好ましい。 なお固定床流通式吸着塔を用いる場合、再生液
は蒸留酒の吸着処理時とは逆方向に通液した方が
よい。 高級脂肪酸及びそのエステルの物理的・化学的
な性状をあげると、 a アルコールに対する溶解度の温度依存性が大
きい。 b 溶解度のアルコール濃度依存性が大きい。 c 長いアルキル基を持つため疎水性である。 などの性質を持つ。このうちaの性質を利用した
のが冷却法であり、cの性質を利用したのが活性
炭吸着法である。活性炭の場合、疎水性の化合物
だけでなく極性基を持つ化合物も吸着してしまう
ため、味、香り、色に対する影響が非常に大きく
使用量を誤ると酒質への影響が大きい。本発明の
吸着剤では疎水性の強いものを選択的に吸着する
ために酒質への影響は小さい。 シリカの多いゼオライトが疎水性を示すことは
良く知られている。しかし本発明に関して言え
ば、シリカが多くてもフエリエライトが脱アルミ
ニウムモルデナイトでは全く効果がないのに、シ
リカがそれほど多くない脱アルミニウムされたY
型ゼオライトが高い選択性を示すことから、疎水
性の面からだけでは説明できない。 実施例 1 高温水蒸気処理により脱アルミニウムしたY型
ゼオライト(SiO2/Al2O3モル比14)の所定量を
単蒸留した焼酎(アルコール濃度43vol%)200c.c.
に加えて室温で30分撹拌した後、5B瀘紙(東洋
瀘紙)にて瀘過した。 分析はガスクロ法で行ない、吸着の選択性は低
級脂肪酸エステルであるカプリン酸エチルの除去
率と高級脂肪酸エステルであるパルミチン酸エチ
ルの除去率から判定した。 なお原料中のカプリン酸エチルは15ppm、パル
ミチン酸エチルは6ppmであつた。 結果を第1表に示す。実施例1で用いた脱アル
ミニウムされたY型ゼオライトではパルミチン酸
エチルが選択的に吸着除去された。又、油臭前駆
物質であるC18不飽和脂肪酸エチルもパルミチン
酸エチルと同様に除去できた。 さらに、吸着処理後のゼオライト1gに100c.c.
の60vol%エチルアルコール水溶液を加え、室温
で30分撹拌した後、瀘過、乾燥した。乾燥後のゼ
オライトを用い再度吸着実験したところ、再生前
後で吸着性能は全く変化しなかつた。即ち完全に
再生された。 実施例 2 SiO2/Al2O3モル比80のZSM−5を用い、実施
例1と同じ方法で吸着試験を行なつた。第1表に
結果を示す。 第1表に示すとおり実施例2で用いたZSM−
5ゼオライトではパルミチン酸エチルが選択的に
吸着除去された。又、油臭前駆物質であるC18
飽和脂肪酸エチルもパルミチン酸エチルと同様に
除去できた。 実施例1と同様にして使用済吸着剤を再生し再
使用したが、再生前後で吸着性能は全く変化しな
かつた。
B. Field of industrial application of the invention This invention relates to a method for improving the quality of distilled spirits. Conventional technology Alcoholic beverages produced by simple distillation (shochu, whiskey,
Brandy, etc.) contains higher fatty acids and their esters, and these components can crystallize and form flocculent precipitates during cold seasons, or can be oxidized and cause an oily odor. Decrease product value. The methods currently used to remove higher fatty acids and their esters are cold filtration,
There are two activated carbon adsorption methods. The cooling filtration method takes advantage of the crystallization of the above-mentioned esters due to cooling and removes them by filtration, but the equipment costs are high because a refrigerator and a large heat-insulating tank are required, and crystallization cannot be completely prevented. It has the disadvantage that it takes a long time to complete. In the activated carbon adsorption method, several hundred ppm of activated carbon is added to adsorb the above esters and remove them by filtration, but activated carbon lacks adsorption selectivity and has no effect on the quality of sake (taste, aroma, color). big. Furthermore, since the activated carbon is disposable, it is costly. Problems to be Solved by the Invention The present invention is capable of improving the quality of distilled spirits by selectively removing higher fatty acids and their esters while leaving lower fatty acids and their esters, which are flavor components of distilled spirits, remaining. The purpose of the present invention is to provide a method that can be used, has low equipment costs, and low running costs. (b) Means for solving the structural problems of the invention The method for improving the quality of distilled spirits according to the present invention is based on dealuminated Y having a SiO 2 /Al 2 O 3 molar ratio of 10 or more.
type zeolite and SiO 2 /Al 2 O 3 molar ratio of 50 or more
It is characterized by bringing distilled liquor into contact with an adsorbent made of one or more zeolites selected from the group consisting of ZSM-5 type high silica zeolites. The dealuminated Y-type zeolite is
It is preferable that the SiO 2 /Al 2 O 3 molar ratio is 10 or more. Pentasil-type zeolite is a high-silica zeolite represented by ZSM-5, and its SiO 2 /
It is preferable that the Al 2 O 3 molar ratio is 50 or more. The adsorbent may be used either by adding a predetermined amount to distilled liquor and treating it in batches, or by continuously treating it in a fixed bed type. The treatment temperature may be room temperature, and heating and cooling are not necessary. The amount of adsorbent used depends on the amount of higher fatty acids and their esters, but it is usually 500~
A ratio of about 1000 ppm is preferable. In any method, the spent zeolite is treated with a suitable solvent,
For example, ethyl alcohol, propyl alcohol,
It can be regenerated and reused by contacting with butyl alcohol or amyl alcohol aqueous solution. However, since the object is food, it is desirable to use an ethyl alcohol aqueous solution, which is harmless and non-toxic. When an aqueous ethyl alcohol solution is used for regeneration, it is desirable that the alcohol concentration is higher than the alcohol concentration of the distilled liquor, preferably at least 10% higher, since this further reduces the amount of solvent used. There is no higher limit, but if it exceeds 60%, it will be treated as dangerous goods and will be subject to legal restrictions, so 60%
The following are preferred. The temperature at which spent zeolite is regenerated by contacting it with a solvent may be room temperature, but the regeneration time can be shortened by increasing the temperature. In this case, the heating temperature is preferably 60° C. or lower from the viewpoint of saving energy consumption. In addition, when using a fixed bed flow type adsorption tower, it is better to pass the regenerating liquid in the opposite direction to that during the adsorption treatment of distilled liquor. The physical and chemical properties of higher fatty acids and their esters include: a) Solubility in alcohol is highly temperature dependent. b Solubility is highly dependent on alcohol concentration. c It is hydrophobic because it has a long alkyl group. It has properties such as. Among these, the cooling method utilizes property a, and the activated carbon adsorption method utilizes property c. In the case of activated carbon, it adsorbs not only hydrophobic compounds but also compounds with polar groups, so it has a very large effect on taste, aroma, and color, and if the amount used is incorrect, it will have a big impact on the quality of sake. Since the adsorbent of the present invention selectively adsorbs strongly hydrophobic substances, the influence on alcohol quality is small. It is well known that silica-rich zeolites exhibit hydrophobic properties. However, regarding the present invention, ferrierite has no effect at all in dealuminated mordenite even if there is a lot of silica, but dealuminated Y with less silica
Since zeolite-type zeolites exhibit high selectivity, this cannot be explained solely from the perspective of hydrophobicity. Example 1 Shochu (alcohol concentration 43 vol%) 200 c.c. was obtained by simple distillation of a predetermined amount of Y-type zeolite (SiO 2 /Al 2 O 3 molar ratio 14) dealuminated by high-temperature steam treatment.
After stirring at room temperature for 30 minutes, the mixture was filtered through 5B filter paper (Toyo Filter Paper). The analysis was performed by gas chromatography, and the selectivity of adsorption was determined from the removal rate of ethyl caprate, a lower fatty acid ester, and the removal rate of ethyl palmitate, a higher fatty acid ester. The raw materials contained ethyl caprate at 15 ppm and ethyl palmitate at 6 ppm. The results are shown in Table 1. In the dealuminated Y-type zeolite used in Example 1, ethyl palmitate was selectively adsorbed and removed. Furthermore, ethyl C 18 unsaturated fatty acids, which are precursors to oily odor, could also be removed in the same way as ethyl palmitate. Furthermore, 100 c.c. per gram of zeolite after adsorption treatment.
A 60 vol% ethyl alcohol aqueous solution was added thereto, and after stirring at room temperature for 30 minutes, it was filtered and dried. When adsorption experiments were conducted again using the dried zeolite, the adsorption performance did not change at all before and after regeneration. That is, it has been completely regenerated. Example 2 An adsorption test was conducted in the same manner as in Example 1 using ZSM-5 with a SiO 2 /Al 2 O 3 molar ratio of 80. Table 1 shows the results. ZSM- used in Example 2 as shown in Table 1
Ethyl palmitate was selectively adsorbed and removed by 5 zeolite. Furthermore, ethyl C 18 unsaturated fatty acids, which are precursors to oily odor, could also be removed in the same way as ethyl palmitate. The used adsorbent was regenerated and reused in the same manner as in Example 1, but the adsorption performance did not change at all before and after regeneration.

【表】 比較例 1 市販のY型ゼオライト(SiO2/Al2O3モル比
4.8)を用い実施例1と同様の方法で吸着実験を
行なつた。 第2表に示すとおり、脱アルミニウムしていな
いY型ゼオライトでは1000ppm添加してもパルミ
チン酸エチルを全く吸着しなかつた。 比較例 2 市販のモルデナイト(SiO2/Al2O3モル比10)
を塩酸を用いて脱アルミニウムしSiO2/Al2O3
の高いモルデナイトを調製し、実施例1と同じ方
法で吸着実験を行なつた。 第2表に示すとおり、2000ppm使用したにもか
かわらずパルミチン酸エチルを殆ど吸着しなかつ
た。又、SiO2/Al2O3モル比を高くしてもパルミ
チン酸エチル吸着能はそれほど向上せず、むしろ
カプリン酸エチルを吸着するようになつた。 比較例 3 ハイシリカゼオライトの1種であるフエリエラ
イト(SiO2/Al2O3モル比=17)を用いた場合
も、第2表に示すとおり、ごく僅かにパルミチン
酸エチルを吸着するだけであつた。 比較例 4 比表面積900m2/g、20〜50メツシユのやしが
ら活性炭を用いた場合、第2表に示すとおり、パ
ルミチン酸エチルだけでなくカプリン酸エチルも
除去してしまい選択性に乏しかつた。
[Table] Comparative Example 1 Commercially available Y-type zeolite (SiO 2 /Al 2 O 3 molar ratio
4.8), an adsorption experiment was conducted in the same manner as in Example 1. As shown in Table 2, Y-type zeolite that was not dealuminated did not adsorb ethyl palmitate at all even when 1000 ppm was added. Comparative example 2 Commercially available mordenite (SiO 2 /Al 2 O 3 molar ratio 10)
Mordenite with a high SiO 2 /Al 2 O 3 ratio was prepared by dealumination using hydrochloric acid, and an adsorption experiment was conducted in the same manner as in Example 1. As shown in Table 2, almost no ethyl palmitate was adsorbed even though 2000 ppm was used. Furthermore, even if the SiO 2 /Al 2 O 3 molar ratio was increased, the adsorption ability of ethyl palmitate did not improve much, but rather it began to adsorb ethyl caprate. Comparative Example 3 Even when ferrierite (SiO 2 /Al 2 O 3 molar ratio = 17), which is a type of high-silica zeolite, was used, as shown in Table 2, it adsorbed only a small amount of ethyl palmitate. Ta. Comparative Example 4 When coconut shell activated carbon with a specific surface area of 900 m 2 /g and 20 to 50 meshes was used, as shown in Table 2, not only ethyl palmitate but also ethyl caprate was removed, resulting in poor selectivity and Ta.

【表】【table】

【表】 なお、以上に示した吸着処理を行なつた試料及
び未処理試料を−5℃に1週間保持し、濁りを目
視比較したところ、未処理試料及び比較例1〜3
に示した吸着能の低い吸着剤で処理した試料では
濁りを生じたのに対し、実施例1、2及び比較例
4の試料では全く濁りは認められなかつた。 ハ 発明の効果 綿状沈殿生成原因物質及び油臭前駆物質のみ
を選択的に吸着するために酒質への影響が小さ
い。 室温で吸着操作できるために、冷却瀘過法に
比べエネルギーが節約できる。 冷却瀘過法に比べ装置費が安い。 固定床式で使えば、瀘紙代が不要で人手も節
約できる。 冷却瀘過法に比べ処理時間が短い。(冷却瀘
過法では低温で長時間保持し、結晶の生成を完
全にしなければならない) 吸着剤は容易に再生できるので、吸着剤費が
安い。
[Table] The samples subjected to the adsorption treatment shown above and the untreated samples were kept at -5°C for one week and the turbidity was visually compared.
The samples treated with the adsorbent having a low adsorption capacity shown in 1. showed turbidity, whereas the samples of Examples 1 and 2 and Comparative Example 4 showed no turbidity at all. C. Effects of the invention Since only the substances that cause the formation of flocculent precipitates and the precursors of oily odor are selectively adsorbed, the influence on the quality of alcoholic beverages is small. Since the adsorption operation can be performed at room temperature, energy can be saved compared to the cold filtration method. The equipment cost is lower than the cooling filtration method. If you use a fixed bed type, there is no need for filter paper and you can save on manpower. Processing time is shorter than the cooling filtration method. (In the cold filtration method, the material must be kept at a low temperature for a long time to completely form crystals.) Adsorbent costs are low because it can be easily regenerated.

Claims (1)

【特許請求の範囲】 1 脱アルミニウム処理されたSiO2/Al2O3モル
比10以上のY型ゼオライト及びSiO2/Al2O3モル
比50以上のZSM−5型ハイシリカゼオライトか
らなる群から選ばれる1種以上のゼオライトより
なる吸着剤に蒸留酒を接触させることを特徴とす
る蒸留酒の品質改善法。 2 吸着剤として使用するゼオライトが、蒸留酒
を接触させた使用済ゼオライトをエチルアルコー
ル水溶液に接触させて再生したものである特許請
求の範囲第1項記載の蒸留酒の品質改善法。
[Claims] 1. A group consisting of a dealuminated Y-type zeolite with a SiO 2 /Al 2 O 3 molar ratio of 10 or more and a ZSM-5 type high-silica zeolite with a SiO 2 /Al 2 O 3 molar ratio of 50 or more. A method for improving the quality of distilled spirits, which comprises bringing distilled spirits into contact with an adsorbent made of one or more types of zeolites selected from the following. 2. The method for improving the quality of distilled liquor according to claim 1, wherein the zeolite used as an adsorbent is one obtained by regenerating spent zeolite that has been brought into contact with distilled liquor and brought into contact with an aqueous solution of ethyl alcohol.
JP61261808A 1986-11-05 1986-11-05 Improving method for quality of distilled liquor Granted JPS63116685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61261808A JPS63116685A (en) 1986-11-05 1986-11-05 Improving method for quality of distilled liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61261808A JPS63116685A (en) 1986-11-05 1986-11-05 Improving method for quality of distilled liquor

Publications (2)

Publication Number Publication Date
JPS63116685A JPS63116685A (en) 1988-05-20
JPH0329386B2 true JPH0329386B2 (en) 1991-04-24

Family

ID=17367000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61261808A Granted JPS63116685A (en) 1986-11-05 1986-11-05 Improving method for quality of distilled liquor

Country Status (1)

Country Link
JP (1) JPS63116685A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7535594A (en) * 1993-08-14 1995-03-14 Wilhelm Sondgen Gmbh Filters for water or aqueous solutions and associated filtering process
KR100465653B1 (en) * 2001-10-05 2005-01-13 주식회사 두산 Improved Method for Producing Rice Wine
JP2011152116A (en) * 2009-12-28 2011-08-11 Suntory Holdings Ltd Carbon dioxide-containing canned alcoholic beverage
JP2015112050A (en) * 2013-12-10 2015-06-22 サッポロビール株式会社 Shochu and method of producing the same
US11028353B2 (en) 2013-12-25 2021-06-08 The Nikka Whisky Distilling Co., Ltd. Method for removing unwanted component included in beverage
CA2934793C (en) 2013-12-25 2021-07-20 Idemitsu Kosan Co., Ltd. Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method
JP6335813B2 (en) * 2015-02-16 2018-05-30 出光興産株式会社 Method for producing metal-supported zeolite for liquor, metal-supported zeolite for liquor, and method for producing liquor

Also Published As

Publication number Publication date
JPS63116685A (en) 1988-05-20

Similar Documents

Publication Publication Date Title
US10557110B2 (en) Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method
EP0158754A1 (en) Process for dehydrating aqueous lower alkanol mixtures
JP6994074B2 (en) Methods and equipment for removing unnecessary ingredients contained in beverages
JPH0329386B2 (en)
JPS5828318B2 (en) Macropodium sulforangatanoyozaidechiyushuiteetarahinateoyobi / mataha
US6472009B1 (en) Process for reducing alcohol levels in alcoholic beverages
JPH0329385B2 (en)
JP4440591B2 (en) Method and apparatus for purifying distilled liquor
US5618573A (en) Production of vodka by supercooling technology
JPH0335910B2 (en)
JPH0480674B2 (en)
JPH0462714B2 (en)
WO2003048092A1 (en) Purification of tertiary butyl alcohol
EP0625927B1 (en) Adsorbent material and the use thereof for the clarification of aqueous liquids
US4329233A (en) Process for the purification of water
US4374647A (en) Oxygenated fuel dehydration
SU1437351A1 (en) Method of regenerating activated coal used for purifying ethanol amine solution
SU555577A1 (en) Method of activated coal regeneration
JPH0364495B2 (en)
SU829128A1 (en) Method of cleaning saline solutions and sewage from organic compounds
SU899484A1 (en) Process for purifying effluents from trichloroethylene
JPS63230068A (en) Recover of esters from fermentation gas
Khan et al. Adsorption studies of tartaric acid from aqueous solution on charcoal
SU1133832A1 (en) Method of sorbent activation
SU912751A1 (en) Process for producing vodka