JPS63116685A - Improving method for quality of distilled liquor - Google Patents
Improving method for quality of distilled liquorInfo
- Publication number
- JPS63116685A JPS63116685A JP61261808A JP26180886A JPS63116685A JP S63116685 A JPS63116685 A JP S63116685A JP 61261808 A JP61261808 A JP 61261808A JP 26180886 A JP26180886 A JP 26180886A JP S63116685 A JPS63116685 A JP S63116685A
- Authority
- JP
- Japan
- Prior art keywords
- distilled liquor
- zeolite
- contact
- quality
- type zeolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000010457 zeolite Substances 0.000 claims abstract description 28
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 23
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 235000019441 ethanol Nutrition 0.000 claims abstract description 13
- 239000003463 adsorbent Substances 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 5
- 235000015096 spirit Nutrition 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 15
- 150000002148 esters Chemical class 0.000 abstract description 10
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 9
- 239000000194 fatty acid Substances 0.000 abstract description 9
- 229930195729 fatty acid Natural products 0.000 abstract description 9
- 150000004665 fatty acids Chemical class 0.000 abstract description 7
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 239000002243 precursor Substances 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 239000002244 precipitate Substances 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 2
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- RGXWDWUGBIJHDO-UHFFFAOYSA-N ethyl decanoate Chemical compound CCCCCCCCCC(=O)OCC RGXWDWUGBIJHDO-UHFFFAOYSA-N 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- XIRNKXNNONJFQO-UHFFFAOYSA-N ethyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC XIRNKXNNONJFQO-UHFFFAOYSA-N 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- -1 fatty acid ester Chemical class 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 235000013334 alcoholic beverage Nutrition 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940067592 ethyl palmitate Drugs 0.000 description 2
- 229910001657 ferrierite group Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 235000020083 shōchū Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- PVNIQBQSYATKKL-UHFFFAOYSA-N Glycerol trihexadecanoate Natural products CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000013532 brandy Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000504 effect on taste Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
Landscapes
- Alcoholic Beverages (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
イ3発明の目的
産業上の利用分野
この発明は蒸留酒の品質を改善する方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION A.3 Objective of the Invention Industrial Application Field This invention relates to a method for improving the quality of distilled spirits.
従来の技術
弔蒸留で製造される酒類(焼酎、ウィスキー、ブランデ
ーなど)には高級脂肪酸及びそのエステル類が含まれて
おり、これらの成分は寒冷期に結晶化して綿状沈殿物を
析出したり、或いは酸化されて油臭の原因になったりし
て、商品価値を低ドさせる。高級脂肪酸及びそのエステ
ル類の除去法として現在性われている方法は、■冷却濾
過υ1、■活性炭吸着法の2つである。Conventional technology Alcoholic beverages (shochu, whiskey, brandy, etc.) produced by funeral distillation contain higher fatty acids and their esters, and these components crystallize in cold weather and form flocculent precipitates. Or, it may be oxidized and cause an oily odor, reducing the product value. There are two methods currently available for removing higher fatty acids and their esters: (1) cooling filtration υ1 and (2) activated carbon adsorption method.
■の冷却濾過法は、冷却により一■−記エステルが晶出
]7てくるのを利用して濾過除去する方法であるが、冷
凍機や大きな保温タンクが必要なため設備費が高く、晶
出が完全に終了するまで長時間を要するなどの欠点があ
る。The cooling filtration method described in (2) is a method of filtering and removing the esters that crystallize out by cooling, but the equipment costs are high because a refrigerator and a large heat-insulating tank are required. There are disadvantages such as the fact that it takes a long time for the output to completely finish.
■の活性炭吸着法は、数百PPmの活性炭を加えて−1
−記エステルを吸着させ濾過除去するものであるが、活
性炭は吸着の選択性に欠けるため酒質(味、香り、色)
への影響が大きい。また活性炭を使い捨てにするためコ
ストがかかる。■The activated carbon adsorption method involves adding several hundred PPm of activated carbon to -1
- The esters are adsorbed and removed by filtration, but activated carbon lacks selectivity in adsorption, so the quality of liquor (taste, aroma, color)
has a large impact on Furthermore, since the activated carbon is disposable, it is costly.
発明が解決しようとする問題点
本発明は、蒸留酒の風味成分である低級脂肪酸及びその
エステルは残留させつつ、選択的に高級脂肪酸及びその
エステルを除去して蒸留酒の品質を改善することができ
、装置費が安く、かつランニングコストも安い方法を提
供することを目的とする。Problems to be Solved by the Invention The present invention improves the quality of distilled spirits by selectively removing higher fatty acids and their esters while leaving lower fatty acids and their esters, which are flavor components of distilled spirits, remaining. The purpose of the present invention is to provide a method that can be used, has low equipment costs, and low running costs.
口0発明の構成
問題点を解決するための手段
本発明に係る蒸留酒の品質改善法は、脱アルミニウム処
理されたY型ゼオライト及びペンタシル型ゼオライトか
らなる群から選ばれる1種以」−のゼオライトよりなる
吸着剤に蒸留酒を接触させることを特徴とする。Means for Solving the Constituent Problems of the Invention The method for improving the quality of distilled spirits according to the present invention is a method for improving the quality of distilled spirits using one or more zeolites selected from the group consisting of dealuminated Y-type zeolites and pentasil-type zeolites. It is characterized by bringing distilled liquor into contact with an adsorbent consisting of:
脱アルミニウム処理されたY型ゼオライトは、S i
02 /AQ、203モル比が10以1−のものである
ことが好ましい。The dealuminated Y-type zeolite is S i
It is preferable that the molar ratio of 02/AQ and 203 is 10 or more and 1-.
ペンタシル型ゼオライトはZSM−5で代表されるハイ
シリカゼオライトであり、そのSiO2/A1203モ
ル比が50以I−のものであることが好ましい。The pentasil type zeolite is a high silica zeolite represented by ZSM-5, and preferably has a SiO2/A1203 molar ratio of 50 or more.
吸着剤の使用方法としては、蒸留酒に所定部を添加しバ
ッチ的に処理する方法又は固定床式で連続的に処理する
方法のどちらでも良い。処理温度は室温でよく、加熱冷
却は不及である。The adsorbent may be used either by adding a predetermined amount to distilled liquor and treating it batchwise, or by continuously treating it in a fixed bed. The treatment temperature may be room temperature, and heating and cooling are not necessary.
吸着剤の使用量は、高級脂肪酸及びそのエステルの量に
もよるが、通常は蒸留酒に対]7て500〜11000
pp程度の割合が好ましい。The amount of adsorbent used depends on the amount of higher fatty acids and their esters, but is usually 500 to 11,000 for distilled spirits.
A ratio of about pp is preferable.
どの方式でも使用済ゼオライ]・は適当な溶媒、例えば
エチルアルコール、プロピルアルコール、ブチルアルコ
ール又はアミルアルコール水溶液などに接触させて再生
し11f利用することができる。In any method, the used zeolite can be regenerated by contacting it with a suitable solvent, such as an aqueous solution of ethyl alcohol, propyl alcohol, butyl alcohol, or amyl alcohol, and can be used for 11f.
しかし対象物が食品であるため、無害、無毒であるエチ
ルアルコール水溶液を用いることが望ましい。再生にエ
チルアルコール水溶液を使用する場合、そのアルコール
濃度は蒸留酒のアルコール濃度以上であり、できれば1
0%以上高いものであることが溶媒の使用量がより低減
されるので望ましい。高い方の制限はないが、60%を
越えると危険物扱いとなり法規−にの制限を受けるので
、60%以下が好ましい。However, since the object is food, it is desirable to use an ethyl alcohol aqueous solution, which is harmless and non-toxic. When using an aqueous ethyl alcohol solution for regeneration, the alcohol concentration must be higher than the alcohol concentration of the distilled liquor, preferably 1.
It is desirable that it be higher than 0% because the amount of solvent used can be further reduced. There is no higher limit, but if it exceeds 60%, it is treated as a dangerous substance and is subject to legal restrictions, so it is preferably 60% or less.
溶媒に接触させて使用済ゼオライトを再生する際の温度
は室温でよいが、温度を高めることにより再生時間を短
縮することができる。その場合の加熱温度としては60
℃以下がエネルギー消費節減の面から好ましい。The temperature at which spent zeolite is regenerated by contacting it with a solvent may be room temperature, but the regeneration time can be shortened by increasing the temperature. In that case, the heating temperature is 60
℃ or less is preferable from the viewpoint of saving energy consumption.
なお固定床流通式吸着塔を用いる場合、再生液は蒸留酒
の吸着処理時とは逆方向に通液した方がよい。In addition, when using a fixed bed flow type adsorption tower, it is better to pass the regenerating liquid in the opposite direction to that during the adsorption treatment of distilled liquor.
高級脂肪酸及びそのエステルの物理的・化学的な性状を
あげると、
a、アルコールに対する溶解度の温度依存性が大きい。The physical and chemical properties of higher fatty acids and their esters are as follows: a. Solubility in alcohol is highly temperature dependent.
b、溶解度のアルコール濃度依存性が大きい。b. Solubility is highly dependent on alcohol concentration.
C3長いアルキル基を持つため疎水性である。It is hydrophobic because it has a long C3 alkyl group.
などの性質を持つ。このうちaの性質を利用したのが冷
却法であり、Cの性質を利用したのが活性炭吸着法であ
る。活性炭の場合、疎水性の化合物だけでなく極性基を
持つ化合物も吸着してしまうため、味、香り、色に対す
る影響が非常に大きく使用液を誤ると酒質への影響が大
きい。本発明の吸着剤では疎水性の強いものを選択的に
吸着するために酒質への影響は小さい。It has properties such as. Among these, the cooling method utilizes the property a, and the activated carbon adsorption method utilizes the property C. In the case of activated carbon, it adsorbs not only hydrophobic compounds but also compounds with polar groups, which has a very large effect on taste, aroma, and color, and if the wrong liquid is used, it will have a big impact on the quality of the alcoholic beverage. Since the adsorbent of the present invention selectively adsorbs strongly hydrophobic substances, the influence on alcohol quality is small.
シリカッ多いゼオライトが疎水性を示すことは良く知ら
れている。しかし本発明に関して言えば、シリカが多く
てもフェリエライトや脱アルミニウムモルデナイトでは
全く効果がないのに、シリカがそれほど多くない脱アル
ミニウムされたY型ゼオライトが高い選択性を示すこと
から、疎水性の面からだけでは説明できない。It is well known that silica-rich zeolites exhibit hydrophobic properties. However, in relation to the present invention, ferrierite and dealuminated mordenite have no effect even if they have a large amount of silica, whereas dealuminated Y-type zeolite, which does not have much silica, shows high selectivity. It cannot be explained from the surface alone.
実施例1
高温水蒸気処理により脱アルミニウムしたY型ゼオライ
ト(Si02/Aす203モル比14)の所定量を単蒸
留した焼酎(アルコール濃度43vo1%)200cc
に加えて室温で30分攪拌[7た後、5B濾紙(東洋濾
紙)にて濾過した。Example 1 200cc of shochu (alcohol concentration 43vo1%) obtained by simple distillation of a predetermined amount of Y-type zeolite (Si02/A203 molar ratio 14) dealuminated by high-temperature steam treatment
After stirring at room temperature for 30 minutes [7], the mixture was filtered using 5B filter paper (Toyo Roshi).
分析はカスクロ法で行ない、吸着の選択性は低級脂肪酸
エステルであるカプリン酸エチルの除去率と高級脂肪酸
エステルであるバルミチン酸エチルの除去率から判定し
た。The analysis was carried out by the casslometry method, and the selectivity of adsorption was determined from the removal rate of ethyl caprate, which is a lower fatty acid ester, and the removal rate of ethyl valmitate, which is a higher fatty acid ester.
なお原料中のカプリン酸エチルLl 15 p p m
、パルミチンmエチルは6ppmであった。In addition, ethyl caprate Ll in the raw materials 15 p p m
, palmitin m-ethyl was 6 ppm.
結果を第1表に示す。実施例1で用いた脱アルミニウム
されたY型ゼオライトではバルミチン酸エチルが選択的
に吸着除去された。又、油臭前駆物質であるC Il+
不飽和脂肪酸エチルもパルミチン酸エチルと同様に除去
できた。The results are shown in Table 1. In the dealuminated Y-type zeolite used in Example 1, ethyl valmitate was selectively adsorbed and removed. In addition, C Il+ which is an oil odor precursor
Ethyl unsaturated fatty acids could also be removed in the same way as ethyl palmitate.
さらに、吸着処理後のゼオライト1gに100CCの6
0vo 1%エチルアルコール水溶液を加え、室温で3
0分攪拌した後、濾過、乾燥した。Furthermore, 100 CC of 6 is added to 1 g of zeolite after adsorption treatment.
Add 0vo 1% ethyl alcohol aqueous solution and incubate at room temperature for 3
After stirring for 0 minutes, the mixture was filtered and dried.
乾燥後のゼオライ]・を用い再度吸着実験したところ、
再生前後で吸着性能は全く変化しなかった。After drying, we conducted an adsorption experiment again using zeolite].
There was no change in adsorption performance before and after regeneration.
即ち完全に再生された。That is, it has been completely regenerated.
実施例2
S i 02 /A1203モJl/比80(7)ZS
M’−5を用い、実施例1と同じ方法で吸着試験を行な
った。第1表に結果を示す。Example 2 S i 02 /A1203MoJl/Ratio 80(7)ZS
An adsorption test was conducted using M'-5 in the same manner as in Example 1. Table 1 shows the results.
第1表に示すとおり実施例2で用いたZSI’1l−5
ゼオライトではバルミチン酸エチルが選択的に吸着除去
された。ヌ、油臭前駆物質であるC I11不飽和脂肪
酸エチルもパルミチン酸丁−チルと同様に除去できた。ZSI'1l-5 used in Example 2 as shown in Table 1
Ethyl balmitate was selectively adsorbed and removed by zeolite. Ethyl CI11 unsaturated fatty acid, which is an oil odor precursor, could also be removed in the same manner as citilate palmitate.
実施例1と同様にして使用済吸箔剤を再生し再使用した
が、再生前後で吸着性能は全く変化しなかった。The used foil absorbing agent was regenerated and reused in the same manner as in Example 1, but the adsorption performance did not change at all before and after regeneration.
第1表
比較例1
市販(7)Y型ゼオ−yイト(S i 02 /Au2
03モル比4.8)を用い実施例1と同様の方法で吸着
実験を行なった。Table 1 Comparative Example 1 Commercially available (7) Y-type zeolite (S i 02 /Au2
An adsorption experiment was conducted in the same manner as in Example 1 using 0.03 molar ratio 4.8).
第2表に示すとおり、脱アルミニウムしていないY型ゼ
オライトでは11000pp添加してもバルミチン酸エ
チルを全く吸着しなかった。As shown in Table 2, the non-dealuminated Y-type zeolite did not adsorb ethyl balmitate at all even when 11,000 pp was added.
比較例2
市販(7) % ルデナイt・(S i 02 /An
20s モル比10)を塩酸を用いて脱アルミニウムし
5i02/Au203比の高いモルデナイトを調製し、
実施例1と同じ方法で吸着実験を行なった。Comparative Example 2 Commercially available (7)% Rudenite (S i 02 /An
20s molar ratio 10) was dealuminated using hydrochloric acid to prepare mordenite with a high 5i02/Au203 ratio,
An adsorption experiment was conducted in the same manner as in Example 1.
ft52表に示すトオリ、7000ppm使用したにも
かかわらずバルミチン酸エチルを殆ど吸着しなかった。Even though 7000 ppm of the filtrate shown in the ft52 table was used, hardly any ethyl valmitate was adsorbed.
又、S i 02 /Al2O5モル比を高くしてもパ
ルミチン酸エチル吸着能はそれほど向上せず、むしろカ
プリン酸エチルを吸着するようになった。Furthermore, even if the S i 02 /Al2O5 molar ratio was increased, the adsorption capacity for ethyl palmitate did not improve much, but rather ethyl caprate was adsorbed.
比較例3
ハイシリカゼオライトの1種であるフェリエライト(S
i02/Al2O3モル比−17)を用いた場合も、第
2表に示すとおり、ごく僅かにバルミチン酸エチルを吸
着するだけであった。Comparative Example 3 Ferrierite (S
Even when the i02/Al2O3 molar ratio -17) was used, as shown in Table 2, only a very small amount of ethyl balmitate was adsorbed.
比較例4
比表面積900 m 2/ g、20〜50メツシユの
やしから活性炭を用いた場合、第2表に示すとおり、バ
ルミチン酸エチルだけでなくカプリン酸エチルも除去し
てしまい選択性に乏しかった。Comparative Example 4 When activated carbon was used from palms with a specific surface area of 900 m2/g and 20 to 50 meshes, as shown in Table 2, not only ethyl valmitate but also ethyl caprate was removed, resulting in poor selectivity. Ta.
(以下余白)
第2表
なお、以」二に示した吸着処理を行なった試料及び未処
理試料を一5℃にIF間保持し、濁りを目視比較したと
ころ、未処理試料及び比較例1〜3に示した吸着能の低
い吸着剤で処理した試料では濁りを生じたのに対し、実
施例1.2及び比較例4の試料では全く濁りは認められ
なかった。(Margins below) Table 2 In addition, when the samples subjected to the adsorption treatment shown in 2 below and the untreated samples were kept at -5°C for an IF period and the turbidity was visually compared, the untreated samples and Comparative Examples 1 to 2 were visually compared. The sample treated with the adsorbent with low adsorption capacity shown in No. 3 developed turbidity, whereas the samples of Example 1.2 and Comparative Example 4 showed no turbidity at all.
ハ1発明の効果
■綿状沈殿生成原因物質及び油臭前駆物質のみを選択的
に吸着するために酒質への影響が小さい。C1. Effects of the invention - Only the substances that cause the formation of flocculent precipitates and the precursors of oily odor are selectively adsorbed, so the influence on alcohol quality is small.
■室温で吸着操作できるために、冷却濾過法に比ベエネ
ルギーが節約できる。■Since adsorption can be performed at room temperature, energy can be saved compared to cold filtration methods.
■冷却濾過法に比べ装置費が安い。■Equipment costs are lower than the cooling filtration method.
■固定床式で使えば、濾紙代が不要で人「も節約できる
。■If you use a fixed bed type, you won't need to pay for filter paper, which will save you money.
■冷却濾過法に比へ処理時間が短い。(冷却濾過法では
低温で長時間保持し、結晶の生成を完全にしなければな
らない)
■吸着剤は容易に再生できるので、吸;?′i剤費が安
い。■Processing time is shorter compared to the cooling filtration method. (In the cold filtration method, it must be kept at a low temperature for a long time to completely form crystals.) ■Since the adsorbent can be easily regenerated, the adsorbent can be easily regenerated; 'The cost of i-drugs is low.
Claims (1)
タシル型ゼオライトからなる群から選ばれる1種以上の
ゼオライトよりなる吸着剤に蒸留酒を接触させることを
特徴とする蒸留酒の品質改善法。 2 脱アルミニウム処理されたY型ゼオライトがSiO
_2/Al_2O_3モル比10以上のものである特許
請求の範囲第1項記載の蒸留酒の品質改善法。 3 ペンタシル型ゼオライトがSiO_2/Al_2O
_3モル比50以上のものである特許請求の範囲第1項
記載の蒸留酒の品質改善法。 4 吸着剤として使用するゼオライトが、蒸留酒を接触
させた使用済ゼオライトをエチルアルコール水溶液に接
触させて再生したものである特許請求の範囲第1項、第
2項又は第3項記載の蒸留酒の品質改善法。[Scope of Claims] 1. Quality improvement of distilled liquor characterized by bringing distilled liquor into contact with an adsorbent made of one or more zeolites selected from the group consisting of dealuminated Y-type zeolite and pentasil-type zeolite. Law. 2 The dealuminated Y-type zeolite is SiO
The method for improving the quality of distilled spirits according to claim 1, wherein the molar ratio of _2/Al_2O_3 is 10 or more. 3 Pentasil type zeolite is SiO_2/Al_2O
_3 The method for improving the quality of distilled liquor according to claim 1, wherein the molar ratio is 50 or more. 4. The distilled liquor according to claim 1, 2, or 3, wherein the zeolite used as an adsorbent is one obtained by regenerating a used zeolite that has been brought into contact with a distilled liquor and brought into contact with an aqueous solution of ethyl alcohol. quality improvement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61261808A JPS63116685A (en) | 1986-11-05 | 1986-11-05 | Improving method for quality of distilled liquor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61261808A JPS63116685A (en) | 1986-11-05 | 1986-11-05 | Improving method for quality of distilled liquor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63116685A true JPS63116685A (en) | 1988-05-20 |
JPH0329386B2 JPH0329386B2 (en) | 1991-04-24 |
Family
ID=17367000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61261808A Granted JPS63116685A (en) | 1986-11-05 | 1986-11-05 | Improving method for quality of distilled liquor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63116685A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995005239A1 (en) * | 1993-08-14 | 1995-02-23 | Wilhelm Söndgen Gmbh | Filters for water or aqueous solutions and associated filtering process |
KR100465653B1 (en) * | 2001-10-05 | 2005-01-13 | 주식회사 두산 | Improved Method for Producing Rice Wine |
JP2011152116A (en) * | 2009-12-28 | 2011-08-11 | Suntory Holdings Ltd | Carbon dioxide-containing canned alcoholic beverage |
JP2015112050A (en) * | 2013-12-10 | 2015-06-22 | サッポロビール株式会社 | Shochu and method of producing the same |
WO2015098733A1 (en) * | 2013-12-25 | 2015-07-02 | 出光興産株式会社 | Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method |
WO2015098762A1 (en) * | 2013-12-25 | 2015-07-02 | ニッカウヰスキー株式会社 | Device and method for removing unwanted component included in beverage |
JP2016150281A (en) * | 2015-02-16 | 2016-08-22 | 出光興産株式会社 | Production method of metal-supported zeolite for alcoholic beverage, metal-supported zeolite for alcoholic beverage, and production method of alcoholic beverage |
-
1986
- 1986-11-05 JP JP61261808A patent/JPS63116685A/en active Granted
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995005239A1 (en) * | 1993-08-14 | 1995-02-23 | Wilhelm Söndgen Gmbh | Filters for water or aqueous solutions and associated filtering process |
KR100465653B1 (en) * | 2001-10-05 | 2005-01-13 | 주식회사 두산 | Improved Method for Producing Rice Wine |
JP2011152116A (en) * | 2009-12-28 | 2011-08-11 | Suntory Holdings Ltd | Carbon dioxide-containing canned alcoholic beverage |
JP2015112050A (en) * | 2013-12-10 | 2015-06-22 | サッポロビール株式会社 | Shochu and method of producing the same |
US10385299B2 (en) | 2013-12-25 | 2019-08-20 | Idemitsu Kosan Co., Ltd. | Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method |
WO2015098762A1 (en) * | 2013-12-25 | 2015-07-02 | ニッカウヰスキー株式会社 | Device and method for removing unwanted component included in beverage |
JPWO2015098733A1 (en) * | 2013-12-25 | 2017-03-23 | 出光興産株式会社 | Metal-supported zeolite for liquor and method for producing liquor |
WO2015098733A1 (en) * | 2013-12-25 | 2015-07-02 | 出光興産株式会社 | Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method |
US10557110B2 (en) | 2013-12-25 | 2020-02-11 | Idemitsu Kosan Co., Ltd. | Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method |
US11028353B2 (en) | 2013-12-25 | 2021-06-08 | The Nikka Whisky Distilling Co., Ltd. | Method for removing unwanted component included in beverage |
JP2016150281A (en) * | 2015-02-16 | 2016-08-22 | 出光興産株式会社 | Production method of metal-supported zeolite for alcoholic beverage, metal-supported zeolite for alcoholic beverage, and production method of alcoholic beverage |
WO2016133055A1 (en) * | 2015-02-16 | 2016-08-25 | 出光興産株式会社 | Method for producing metal-supported zeolite for alcoholic beverages, metal-supported zeolite for alcoholic beverages, and method for producing alcoholic beverages |
US11452985B2 (en) | 2015-02-16 | 2022-09-27 | Idemitsu Kosan Co., Ltd. | Method for producing metal-supported zeolite for alcoholic beverages, metal-supported zeolite for alcoholic beverages, and method for producing alcoholic beverages |
Also Published As
Publication number | Publication date |
---|---|
JPH0329386B2 (en) | 1991-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2589751A1 (en) | PROCESS FOR ADSORPTING PROTEINS FROM FLUIDS | |
JP6994074B2 (en) | Methods and equipment for removing unnecessary ingredients contained in beverages | |
JPS63116685A (en) | Improving method for quality of distilled liquor | |
US5006356A (en) | Treatment of fruit-based or vegetable-based beverages with precipitated magnesium silicate | |
US4156025A (en) | Purification of beverages | |
JP4440591B2 (en) | Method and apparatus for purifying distilled liquor | |
JPH0329385B2 (en) | ||
JPH0335910B2 (en) | ||
JP4358525B2 (en) | Liquor purification method | |
US3405057A (en) | Method for improving molecular sieves | |
JPH0462714B2 (en) | ||
KR101512301B1 (en) | Method for manufacturing whisky | |
EP0625927B1 (en) | Adsorbent material and the use thereof for the clarification of aqueous liquids | |
US2105701A (en) | Process for purification of beverages | |
US4374647A (en) | Oxygenated fuel dehydration | |
US2892757A (en) | Purification of alcohol | |
JPH01153058A (en) | Recovery of flavor from flavor-containing solution | |
SU912751A1 (en) | Process for producing vodka | |
KR100249766B1 (en) | The method for deodorizing spirits of wine with the porosity cellurose of the green tea | |
Khan et al. | Adsorption studies of tartaric acid from aqueous solution on charcoal | |
RU2065492C1 (en) | Method of vodka production | |
SU1437351A1 (en) | Method of regenerating activated coal used for purifying ethanol amine solution | |
SU829128A1 (en) | Method of cleaning saline solutions and sewage from organic compounds | |
JPH0329384B2 (en) | ||
IE43383B1 (en) | Clarification of vinegar or fermented beverages |