JPH03293737A - Manufacture of resin-sealed semiconductor device - Google Patents

Manufacture of resin-sealed semiconductor device

Info

Publication number
JPH03293737A
JPH03293737A JP9547890A JP9547890A JPH03293737A JP H03293737 A JPH03293737 A JP H03293737A JP 9547890 A JP9547890 A JP 9547890A JP 9547890 A JP9547890 A JP 9547890A JP H03293737 A JPH03293737 A JP H03293737A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
sealed semiconductor
spiral flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9547890A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawada
達男 河田
Hiroshi Suzuki
宏 鈴木
Aizo Kaneda
金田 愛三
Kazuhiko Miyabayashi
和彦 宮林
Takahiro Horie
隆宏 堀江
Takashi Urano
浦野 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9547890A priority Critical patent/JPH03293737A/en
Publication of JPH03293737A publication Critical patent/JPH03293737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a resin-sealed semiconductor device having excellent moisture resistance by molding a plurality of tablets having specific diameters and preliminarily molded from epoxy resin composition in which lowest melting viscosity and spiral flow are specified by a plurality of plungers. CONSTITUTION:A plurality of tablets having 7.4-20mm of diameter and preliminarily molded from epoxy resin composition having 70kgf/cm<2> of pressure, 500-2000P of lowest melting viscosity of epoxy resin composition flowing in a circular tube having phi4 in diameter at the time of 175 deg.C of mold temperature and 15-20in of spiral flow similar to EMMI-1-66 are molded by a plurality of plungers. Since the lowest melting viscosity of the composition is high, the air in a cavity can be pressed to eliminate residual air in the cavity. Thus, no void is generated in a resin-sealed semiconductor device, moisture is scarcely introduced, and moisture resistance is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂封止型半導体装置の製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a resin-sealed semiconductor device.

〔従来の技術〕[Conventional technology]

従来、樹脂封止型半導体装置の製造法は、一つのタブレ
ットを一つのプランジャーで押圧するコンベンショナル
成形法が用いられてきた。しかし、近年、生産性の向上
及びエポキシ樹脂組成物の歩留り向上を目的として複数
個のタブレットを複数個のプランジャーで押圧するマル
チプランジャー成形法が用いらている。
Conventionally, a conventional molding method in which one tablet is pressed with one plunger has been used to manufacture resin-sealed semiconductor devices. However, in recent years, a multi-plunger molding method in which a plurality of tablets are pressed with a plurality of plungers has been used for the purpose of improving productivity and improving the yield of epoxy resin compositions.

しかしながら、上記のように製造法がコンベンショナル
成形法からマルチプランジャー成形法に変わっても、エ
ポキシ樹脂組成物は同しものが使用されてきた。
However, even if the manufacturing method changes from the conventional molding method to the multi-plunger molding method as described above, the same epoxy resin composition has been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

樹脂封止型半導体装置の成形法は、低圧移送成形法が用
いられている。その概要は第1図に示すように、予備加
熱したエポキシ樹脂組成物のタブレットlを金型のボッ
ト内に投入し、金型の熱及びプランジャー2で押圧する
ことにより、溶融したエポキシ樹脂組成物がランチ部を
へて、キャビティ4内に充填され、その後にエポキシ樹
脂組成物の反応によって硬化する。
A low-pressure transfer molding method is used as a molding method for resin-sealed semiconductor devices. The outline is as shown in Figure 1, a preheated epoxy resin composition tablet l is put into a mold bot, and by applying heat from the mold and pressing with a plunger 2, the epoxy resin composition is melted. The material passes through the launch section, is filled into the cavity 4, and is then cured by the reaction of the epoxy resin composition.

これらの工程をエポキシ樹脂組成物の粘度変化、硬度変
化で示すと第2図のようになる。すなわち、ボット内で
エポキシ樹脂組成物が熔融軟化(■)し、急激に粘度が
低下する(■〜■)、その後、硬化反応による増粘(■
〜■)がおこった後にゲル化(■〜■)に至る。
These steps are shown in FIG. 2 in terms of changes in viscosity and hardness of the epoxy resin composition. That is, the epoxy resin composition melts and softens (■) in the bot, the viscosity rapidly decreases (■ to ■), and then increases in viscosity due to a curing reaction (■).
After ~■) occurs, gelation (■~■) occurs.

コンベンショナル成形法に用いらているエポキシ樹脂組
成物は、通常、最低溶融粘度が500P(ポアズ)未満
、スパイラルフローが26〜35in(インチ)の範囲
のものである。上記、エポキシ樹脂組成物を用いて、樹
脂封止型半導体装置をマルチプランジャー成形法で製造
した場合、第2図の■で示したエポキシ樹脂組成物の最
低溶融粘度が低すぎるため、キャビティ内の空気を押し
つぶすことができずに、キャビティ内に残る。その結果
、樹脂封止型半導体装置にボイドが発生し、そこに水分
が浸入し耐湿性が非常に悪くなるものと考えられる。
Epoxy resin compositions used in conventional molding methods usually have a minimum melt viscosity of less than 500 P (poise) and a spiral flow in the range of 26 to 35 inches. When a resin-sealed semiconductor device is manufactured by the multi-plunger molding method using the epoxy resin composition described above, the minimum melt viscosity of the epoxy resin composition shown by ■ in Figure 2 is too low. The air cannot be crushed and remains inside the cavity. As a result, it is thought that voids are generated in the resin-sealed semiconductor device, moisture enters into the voids, and the moisture resistance becomes extremely poor.

〔課題を解決するための手段] 樹脂封止型半導体装置を製造する際、ボイドが発生しな
いように成形すれば、そこへ水分が浸入しずらくなり耐
湿性も良好になる。
[Means for Solving the Problems] When manufacturing a resin-sealed semiconductor device, if molding is performed so that voids are not generated, moisture will be less likely to enter there and moisture resistance will be improved.

そこで、本発明者らは樹脂封止型半導体装置を製造する
際、最低溶融粘度が500〜2000 P。
Therefore, when the present inventors manufacture a resin-sealed semiconductor device, the minimum melt viscosity is 500 to 2000 P.

スパイラルフローが15〜25 inの範囲のエポキシ
樹脂組成物をマルチプランジャー成形法を用いて製造し
た場合に、ボイドの発生がなく耐湿性に優れた半導体装
置が得られることを見出し本発明に到達した。
The present invention was achieved by discovering that when an epoxy resin composition with a spiral flow in the range of 15 to 25 inches is manufactured using a multi-plunger molding method, a semiconductor device with no voids and excellent moisture resistance can be obtained. did.

すなわち本発明は、圧カフ0kgf/cd、金型温度1
75℃の時に44円管内を流れるエポキシ樹脂組成物の
最低溶融粘度が500〜2000P、およびEMMI−
1−66に準したスパイラルフローが15〜20 in
の範囲のエポキシ樹脂組成物を用いて予備成形した直径
が7.4〜20a+mの複数個のタブレットを複数個の
プランジャーで成形することを特徴とする。
That is, in the present invention, the pressure cuff is 0 kgf/cd, the mold temperature is 1
The minimum melt viscosity of the epoxy resin composition flowing in a 44-cylindrical tube at 75°C is 500 to 2000P, and EMMI-
Spiral flow according to 1-66 is 15-20 inches
The method is characterized in that a plurality of tablets having a diameter of 7.4 to 20 a+m are preformed using an epoxy resin composition in the range of 7.4 to 20 a+m and are molded with a plurality of plungers.

前記最低溶融粘度の測定は、日立東京エレクトロニクス
製RP A (Resin Rheorogical 
Parameter Analyzer)を用いて行っ
た。RPA法の概要は、スパイラル状のφ4円管金型に
約65cIiIのエポキシ樹脂組成物を金型温度175
℃、プランジャー圧70kg/dの条件で流した時の粘
度を測定するものである。
The minimum melt viscosity was measured using RP A (Resin Rheological
Parameter Analyzer). The outline of the RPA method is that an epoxy resin composition of about 65cIiI is placed in a spiral φ4 circular tube mold at a mold temperature of 175cm.
The viscosity is measured when flowing under the conditions of ℃ and plunger pressure of 70 kg/d.

粘度の求め方は、(1)弐で示される様にプランジャー
変位量からエポキシ樹脂組成物の流量Qを、φ4円管入
口部分の圧力センサーからエボキソ樹MFi組成物の溶
融時の流入圧力とプランジャーの移送圧の差から、圧力
損失△Pを求め粘度を計算するものである。
To determine the viscosity, (1) As shown in 2, the flow rate Q of the epoxy resin composition is determined from the displacement amount of the plunger, and the inflow pressure when the epoxy resin MFi composition is melted is determined from the pressure sensor at the inlet of the φ4 circular pipe. The viscosity is calculated by determining the pressure loss ΔP from the difference in transfer pressure between the plungers.

8(1 η:粘度 D:円管径 △P:圧力損失Q:流量 l:
流動距離 〔作用〕 本発明による樹脂封止半導体装置の製造法においては、
エポキシ樹脂組成物の最低溶融粘度が高いため、キャビ
ティ内の空気を押しつぶすことができ、キャビティ内に
残らないようにすることができる。そのため、樹脂封止
型半導体装置にボイドが発生せず、水分が浸入しすらく
なり耐湿性が良好ムこなる。
8 (1 η: Viscosity D: Pipe diameter △P: Pressure loss Q: Flow rate l:
Flow distance [effect] In the method for manufacturing a resin-sealed semiconductor device according to the present invention,
Since the minimum melt viscosity of the epoxy resin composition is high, it is possible to crush the air in the cavity and prevent it from remaining in the cavity. Therefore, voids do not occur in the resin-sealed semiconductor device, and moisture easily enters the device, resulting in good moisture resistance.

〔実施例] 以下、本発明を実施例により具体的に述べるが、本発明
はこれら実施例に限定されない。
[Examples] The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

(実施例1〜5.比較例6.7) 第1表に示す組成のエポキシ樹脂組成物を約80℃に加
熱した2軸ロールで約10分間混練し、得られた各組成
物について、流動性の尺度としてEMMI−1−66に
準じ、金型温度180℃1成形圧(プランジャー圧)7
0kg/cill、成形時間90秒でスパイラルフロー
を測定した。
(Examples 1 to 5. Comparative Example 6.7) Epoxy resin compositions having the compositions shown in Table 1 were kneaded for about 10 minutes using twin-screw rolls heated to about 80°C. According to EMMI-1-66, mold temperature 180℃ 1 molding pressure (plunger pressure) 7
Spiral flow was measured at 0 kg/cil and a molding time of 90 seconds.

ボイドは、DIP16Pパッケージを成形し、軟X線装
置を用いて40.5以上のボイドを不良として数えた。
A DIP16P package was molded, and voids of 40.5 or more were counted as defects using a soft X-ray device.

耐湿性は、DIP16Pバノケーノを用い、85℃/8
5%R1(,72h−VPS (215℃/90see
)’−P CT2atmを行った時の50%不良番こ到
達するまでの時間とした。
Moisture resistance is 85℃/8 using DIP16P banokeno.
5%R1(,72h-VPS (215℃/90see
)'-P The time taken to reach 50% defective number when CT2atm was performed.

RPA粘度は、65cnの前記混練組成物を金型温度1
75℃1成形圧(プランジャー圧)70kg/dで、ス
パイラル状のφ4円管成形時の最低熔融粘度を測定した
。第1表中の実施例5、比較例7、のRPA測定結果を
第3図に示す。
The RPA viscosity was determined by mixing the kneaded composition of 65cn at a mold temperature of 1.
The minimum melt viscosity was measured at 75°C and a molding pressure (plunger pressure) of 70 kg/d when molding a spiral φ4 circular tube. The RPA measurement results of Example 5 and Comparative Example 7 in Table 1 are shown in FIG.

第1表に示したように、スパイラルフローが15〜25
in、最低溶融粘度が500〜2000Pの範囲になる
実施例1〜5はボイドが発生していない。一方、上記範
囲外の比較例6はスパイラルフローが短く、最低溶融粘
度が高いため、未充填が発生し、ボイド、耐湿性のサン
プルも製造することができなかった。比較例7は、スパ
イラルフローが長く、最低溶融粘度が低すぎるためボイ
ドが発生した。
As shown in Table 1, the spiral flow is 15 to 25
In Examples 1 to 5, in which the lowest melt viscosity was in the range of 500 to 2000 P, no voids were generated. On the other hand, in Comparative Example 6, which was outside the above range, the spiral flow was short and the minimum melt viscosity was high, so that unfilling occurred and it was not possible to produce a void-proof and moisture-resistant sample. In Comparative Example 7, voids occurred because the spiral flow was long and the minimum melt viscosity was too low.

その結果、ボイドが発生していない実施例1〜5は耐湿
性が比較例6に比べて良好になった。
As a result, Examples 1 to 5 in which no voids were generated had better moisture resistance than Comparative Example 6.

以下余白 〔発明の効果〕 樹脂封止型半導体装置を製造する際、最低溶融粘度が5
00〜2000p、スパイラルフローが15〜25in
の範囲のエポキシ樹脂組成物をマルチプランジャー成形
法を用いて製造することにより、樹脂封止型半導体装置
にボイドが発生せず、水分の浸入が防止され、耐湿性が
良好な樹脂封止型半導体装置を提供することが可能にな
った。
The following margin [Effect of the invention] When manufacturing a resin-sealed semiconductor device, the minimum melt viscosity is 5.
00~2000p, spiral flow 15~25in
By manufacturing an epoxy resin composition in the range of 20 to 30% using the multi-plunger molding method, voids do not occur in the resin-sealed semiconductor device, moisture infiltration is prevented, and the resin-sealed semiconductor device has good moisture resistance. It has become possible to provide semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は低圧移送成形法の概略図、第2圓はエポキシ樹
脂組成物の流動、硬化挙動を示す線図、第3図はRPA
による溶融粘度を示す線図である。 符号の説明 ■ タブレノト    2 プランジャー2 上型  
     4 キャビティ5 カル       6 
下型 7 ランナー     8 ゲート 9 ヘント 第 図 第2図
Figure 1 is a schematic diagram of the low-pressure transfer molding method, the second circle is a diagram showing the flow and curing behavior of the epoxy resin composition, and Figure 3 is the RPA
It is a diagram showing melt viscosity according to. Explanation of symbols ■ Table Note 2 Plunger 2 Upper mold
4 Cavity 5 Cal 6
Lower mold 7 Runner 8 Gate 9 Ghent diagram Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、圧力70kgf/cm^2、金型温度175℃の時
にφ4円管内を流れるエポキシ樹脂組成物の最低溶融粘
度が500〜2000P、およびEMMI−I−66に
準じたスパイラルフローが15〜20inの範囲のエポ
キシ樹脂組成物を用いて予備成形した直径が7.4〜2
0mmの複数個のタブレットを複数個のプランジャーで
成形することを特徴とする樹脂封止型半導体装置の製造
法。
1. When the pressure is 70 kgf/cm^2 and the mold temperature is 175°C, the minimum melt viscosity of the epoxy resin composition flowing in the φ4 circular tube is 500 to 2000 P, and the spiral flow according to EMMI-I-66 is 15 to 20 inches. Preformed using an epoxy resin composition ranging from 7.4 to 2.
A method for manufacturing a resin-sealed semiconductor device, characterized by molding a plurality of 0 mm tablets using a plurality of plungers.
JP9547890A 1990-04-11 1990-04-11 Manufacture of resin-sealed semiconductor device Pending JPH03293737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9547890A JPH03293737A (en) 1990-04-11 1990-04-11 Manufacture of resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9547890A JPH03293737A (en) 1990-04-11 1990-04-11 Manufacture of resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH03293737A true JPH03293737A (en) 1991-12-25

Family

ID=14138730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9547890A Pending JPH03293737A (en) 1990-04-11 1990-04-11 Manufacture of resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH03293737A (en)

Similar Documents

Publication Publication Date Title
JP3430150B2 (en) Method for producing epoxy resin composition for encapsulating optical semiconductor elements
JPH03293737A (en) Manufacture of resin-sealed semiconductor device
JPS63128020A (en) Epoxy resin composition and resin-sealed type semiconductor device
Aleman Flow properties of epoxide prepolymers
JPH0952228A (en) Manufacture of semiconductor sealing epoxy resin composition
JP3540628B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JPS626587B2 (en)
JPH0348654B2 (en)
KR20210039960A (en) Resin molded article for optical semiconductor encapsulation and manufacturing method thereof
JP2760348B2 (en) Thermosetting resin molding material
JPS60224234A (en) Manufacture of semiconductor device
JPH04176134A (en) Manufacture of resin sealed semiconductor device
JP3147334B2 (en) Method for manufacturing semiconductor device
JP2878649B2 (en) Resin tablet for semiconductor encapsulation, manufacturing method thereof and semiconductor encapsulation method
JP2574364B2 (en) Semiconductor device
JP3154471B2 (en) Method for manufacturing semiconductor device
JP2004175901A (en) Semiconductor sealing epoxy resin composition and semiconductor device
JPH0867745A (en) Epoxy resin composition
JPH08264573A (en) Semiconductor sealing method
JPH06209024A (en) Manufacture of resin sealed semiconductor device
CN112592460A (en) Resin molded article for sealing optical semiconductor and method for producing same
JP2985832B2 (en) Resin sealing device for semiconductor device and resin sealing method thereof
JPH11130940A (en) Epoxy resin composition and semiconductor device
JPS626572B2 (en)
KR20210122055A (en) Resin molded article for optical semiconductor encapsulation and manufacturing method thereof