JPH0952228A - Manufacture of semiconductor sealing epoxy resin composition - Google Patents

Manufacture of semiconductor sealing epoxy resin composition

Info

Publication number
JPH0952228A
JPH0952228A JP7209479A JP20947995A JPH0952228A JP H0952228 A JPH0952228 A JP H0952228A JP 7209479 A JP7209479 A JP 7209479A JP 20947995 A JP20947995 A JP 20947995A JP H0952228 A JPH0952228 A JP H0952228A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
kneading
temperature
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7209479A
Other languages
Japanese (ja)
Other versions
JP3009027B2 (en
Inventor
Nobutaka Takasu
信孝 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16573529&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0952228(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP7209479A priority Critical patent/JP3009027B2/en
Publication of JPH0952228A publication Critical patent/JPH0952228A/en
Application granted granted Critical
Publication of JP3009027B2 publication Critical patent/JP3009027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Abstract

PROBLEM TO BE SOLVED: To extremely reduce a void occurrence rate by removing air entrainment and bubble and to be able to improve solder heat resistance by setting specific pressure reduction and temperature by using a biaxial kneading extruder of the same direction as a kneader when epoxy resin composition is thermally kneaded. SOLUTION: (A) Epoxy resin having a melting point of 50 to 130 deg.C and containing 70wt.% or more of crystalline epoxy having two or more epoxy groups in one molecule in total epoxy resin, (B) phenol resin curing agent having 5 poise or more of melting viscosity at 150 deg.C, (C) curing accelerator, (D) molten silica powder of 76 to 94wt.% contained in the total resin composition, (E) epoxy resin composition indispensably containing silane coupling are thermally kneaded. In this case, the kneader of the same direction is held under the pressure reducing condition of 250mmHg or less, the temperature of the composition discharged from the extruder after kneading is the melting point or higher of the crystalline epoxy resin of the component (A), and 90 to 140 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形性、半田耐熱性、耐
湿信頼性に優れた半導体封止用エポキシ樹脂組成物の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an epoxy resin composition for semiconductor encapsulation which is excellent in moldability, solder heat resistance, and moisture resistance reliability.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止方法
としてエポキシ樹脂のトランスファー成形による方法が
低コスト、大量生産に適した方法として採用され、信頼
性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂
の改良により向上が図られてきた。しかし、近年の電子
機器の小型化、軽量化、高性能化の市場動向において、
半導体の高集積化も年々進み、また半導体パッケージの
表面実装化が促進されるなかで、半導体封止材料への要
求は益々厳しいものとなってきている。このため、従来
からの封止材料では解決出来ない問題点も出てきてい
る。その最大の問題点は、半導体パッケージの表面実装
の採用によりパッケージが半田浸漬、あるいはリフロー
工程で急激に200℃以上の高温にさらされ、このため
にパッケージが割れたり、チップあるいはリードフレー
ムと封止樹脂との界面剥離が生じて耐湿性が低下するこ
と、即ち半田耐熱性である。この半田耐熱性の向上を目
的として、エポキシ樹脂封止材料に関しては耐熱エポキ
シの使用、半田浸漬時の応力低減やリードフレーム、チ
ップとの接着性向上のための可撓性樹脂の使用、接着性
付与成分の添加、無機質充填材の配合量の増量、あるい
はシリカへのシランカップリング剤の処理条件の改良等
数多くの提案がなされてきている。
2. Description of the Related Art As a sealing method for semiconductor elements such as IC and LSI, a transfer molding method of epoxy resin is adopted as a method suitable for low cost and mass production, and epoxy resin and curing agent are also used in terms of reliability. Improvements have been made by improving phenolic resins. However, in recent market trends of miniaturization, weight reduction, and high performance of electronic devices,
The demand for semiconductor encapsulation materials is becoming more and more stringent as the integration of semiconductors is increasing year by year and the surface mounting of semiconductor packages is being promoted. For this reason, there are some problems that cannot be solved by conventional sealing materials. The biggest problem is that the surface mounting of the semiconductor package causes the package to be rapidly exposed to high temperature of 200 ° C or higher during solder dipping or reflow process, which may cause the package to crack or seal the chip or lead frame. Deterioration of the moisture resistance due to interfacial peeling from the resin, that is, solder heat resistance. For the purpose of improving this solder heat resistance, use of heat resistant epoxy for epoxy resin encapsulation material, use of flexible resin to reduce stress when dipping solder and improve adhesion to lead frame and chip. Many proposals have been made such as addition of an imparting component, increase in the amount of the inorganic filler compounded, or improvement of the treatment conditions of the silane coupling agent on silica.

【0003】これらのうちで現在最も効果的と考えら
れ、広く採用されているのがエポキシおよび硬化剤成分
として、成形温度での溶融粘度の低い樹脂を使用し、ま
た硬化剤として可撓性骨格を有するフェノール樹脂を使
用し、かつ組成物中の溶融シリカの含有率を高めた樹脂
組成物である。この組成物によれば溶融シリカの含有率
が高いために低吸湿化及び低熱膨張化が達成出来る上
に、可撓性構造の硬化剤により基材との接着力が向上す
るため半田耐熱性が良好であり、更に低溶融粘度の樹脂
の使用により成形時の溶融樹脂組成物が低粘度を保ち、
流動性が高いため金型内への充填性が良好である。エポ
キシ樹脂としては、特に常温で固体で、溶融時の粘度が
極端に低下する結晶性のエポキシ樹脂が広く使用され始
められている(例えば、特開平5−175364、特開
平5−343570、特開平6−80763各号公報
等)。
Of these, the most effective and widely adopted at present are epoxy and a curing agent that use a resin having a low melt viscosity at the molding temperature and a flexible skeleton as a curing agent. A resin composition in which a phenolic resin having the above is used and the content of fused silica in the composition is increased. According to this composition, since the content of fused silica is high, it is possible to achieve low hygroscopicity and low thermal expansion, and the curing agent having a flexible structure improves the adhesive strength to the base material, resulting in solder heat resistance. Good, and by using a resin having a low melt viscosity, the molten resin composition at the time of molding maintains a low viscosity,
Since it has high fluidity, it can be easily filled into the mold. As the epoxy resin, a crystalline epoxy resin which is solid at room temperature and whose viscosity when melted extremely decreases has been widely used (for example, JP-A-5-175364, JP-A-5-343570, and JP-A-5-343570). 6-80763, etc.).

【0004】しかしながら近年パッケージの薄型化に伴
い、パッケージ中に占める半導体封止材料の厚みが一段
と薄くなってきており、例えば、1mm厚のTSOPの
場合など、チップの上面に形成される封止材料の厚み
は、0.2〜0.3mm程度となる。このために半導体
封止材料中にピンホールやボイド(空洞)が存在すると
耐湿信頼性、電気絶縁性が著しく低下してしまう。ピン
ホール・ボイドに関しては従来より、タブレット変形や
流動樹脂の乱流による成形時のエアーの巻き込み、ある
いはタブレット中に含まれる水分が原因として考えられ
てきた(例えば、特開昭61−138620、特開昭6
3−237910,特開昭64−61028,特開平1
−129424各号公報等)。
However, in recent years, the thickness of the semiconductor encapsulating material in the package has been further reduced with the thinning of the package. For example, in the case of 1 mm thick TSOP, the encapsulating material formed on the upper surface of the chip. Has a thickness of about 0.2 to 0.3 mm. Therefore, if pinholes or voids are present in the semiconductor encapsulating material, the moisture resistance reliability and electrical insulation will be significantly reduced. With regard to pinholes and voids, it has been conventionally considered to be caused by tablet deformation, air entrapment during molding due to turbulent flow of a flowing resin, or water contained in the tablet (for example, Japanese Patent Laid-Open No. 61-138620). Kaisho 6
3-237910, JP-A-64-61028, JP-A-1
-129424, etc.).

【0005】しかし、エアーの巻き込み防止やタブレッ
ト吸湿の防止等の従来の手法では、確かにピンホール・
ボイドを低減出来る効果があるにはあるが皆無とならな
かった。また、水分以外の揮発分もボイドの原因として
挙げられており(例えば、特開昭61−261316号
公報)、このためエポキシ樹脂組成物の揮発成分を低減
する方法を既に提案済みである(例えば、特願平5−2
66192、特願平6−34308各号公報)。これら
で提案された樹脂組成物でのボイド低減効果は著しく高
く、樹脂組物の種類によってはボイドを皆無とすること
が可能となった。ところが、半田耐熱性を更に向上させ
るために、低粘度の樹脂、特に結晶性のエポキシ樹脂を
用いて溶融シリカの含有量を増大させた樹脂組成物にあ
っては揮発分を低減するだけでは、特に薄型パッケージ
で問題となる0.2mm以下のピンホール・ボイドにつ
いて十分でなく、更なる改良が必要であることが判明し
た。
However, in the conventional methods such as prevention of air entrapment and prevention of tablet moisture absorption, pinholes and
It has the effect of reducing voids, but it has not completely disappeared. Volatile components other than water are also mentioned as a cause of voids (for example, Japanese Patent Laid-Open No. 61-261316), and therefore a method for reducing the volatile components of the epoxy resin composition has already been proposed (for example, , Japanese Patent Application No. 5-2
66192, Japanese Patent Application No. 6-34308). The void reduction effect in the resin compositions proposed by these is remarkably high, and it became possible to eliminate voids depending on the type of resin assembly. However, in order to further improve the solder heat resistance, in a resin composition in which the content of fused silica is increased by using a low-viscosity resin, particularly a crystalline epoxy resin, it is only necessary to reduce the volatile content. In particular, it was found that the pinhole voids of 0.2 mm or less, which is a problem in a thin package, are not sufficient, and further improvement is necessary.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上のよう
な状況に鑑み、ボイド発生の機構について更に検討を続
けた結果なされたもので、エポキシ樹脂組成物を加熱混
練する工程で発生する空気の巻き込みや、混練時及び成
形時に起こる結晶性樹脂の溶融過程で生じる気泡を樹脂
組成物中から効率的に取り除くことでボイド発生率を極
端に低減させ、かつ半田耐熱性に優れた半導体封止用エ
ポキシ樹脂組成物の製造方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made as a result of further studies on the mechanism of void generation in view of the above situation. Air generated in the step of heating and kneading an epoxy resin composition. The void entrapment is extremely reduced by efficiently removing the air bubbles generated in the resin composition during the entrainment of the resin and the melting process of the crystalline resin that occurs during kneading and molding, and the semiconductor encapsulation has excellent solder heat resistance. It is an object of the present invention to provide a method for producing an epoxy resin composition for use.

【0007】[0007]

【課題を解決するための手段】本発明は、(A)融点が
50〜130℃で、かつ1分子にエポキシ基を2個以上
有する結晶性エポキシを総エポキシ樹脂中に70重量%
以上含むエポキシ樹脂、(B)150℃での溶融粘度が
5ポイズ以下のフェノール樹脂硬化剤、(C)硬化促進
剤、(D)総樹脂組成物中に76〜94重量%含まれる
溶融シリカ粉末、(E)シランカップリング剤を必須成
分とするエポキシ樹脂組成物を加熱混練するに際し、混
練装置として同方向2軸混練押し出し機を用い、かつこ
の同方向2軸混練押し出し機の系内を250mmHg以
下の減圧条件下に保ち、更に混練後に該同方向2軸混練
押し出し機から吐出されるエポキシ樹脂組成物の温度が
エポキシ樹脂組成物中の(A)成分の結晶性エポキシ樹
脂の融点以上の温度であり、かつ90〜140℃である
ことを特徴とする半導体エポキシ樹脂組成物の製造方法
である。
According to the present invention, (A) a crystalline epoxy having a melting point of 50 to 130 ° C. and having two or more epoxy groups in one molecule is 70% by weight in the total epoxy resin.
Epoxy resin containing the above, (B) phenol resin curing agent having a melt viscosity of 5 poise or less at 150 ° C., (C) curing accelerator, and (D) fused silica powder contained in an amount of 76 to 94% by weight in the total resin composition. , (E) When heat-kneading an epoxy resin composition containing a silane coupling agent as an essential component, a same-direction biaxial kneading extruder is used as a kneading device, and the system of the same-direction biaxial kneading extruder is 250 mmHg. The temperature of the epoxy resin composition maintained under the following reduced pressure conditions and further discharged from the same-direction biaxial kneading extruder after kneading is equal to or higher than the melting point of the crystalline epoxy resin of the component (A) in the epoxy resin composition. And a temperature of 90 to 140 ° C., which is a method for producing a semiconductor epoxy resin composition.

【0008】以下に本発明を詳細に説明する。本発明に
用いられるエポキシ樹脂は、融点が50〜130℃であ
り、かつ1分子中にエポキシ基を2個以上有する結晶性
エポキシ樹脂を総エポキシ樹脂中に70重量%以上含む
エポキシ樹脂である。結晶性エポキシ樹脂は、融点以下
で固形であるが融点以上の温度で溶融し、極めて低粘度
の液状物となるため、エポキシ樹脂組成物中の溶融シリ
カの含有量を多くしても成形時の溶融粘度が低く、流動
性に優れ、素子の金線変形やリードフレームの変形を防
止することができる。しかしながら、融点が50℃未満
であるとエポキシ樹脂組成物を製造するため他の成分と
混合する際に、摩擦熱等の温度上昇により溶融がはじま
り、作業性が悪くなるため生産性に劣る。一方、融点が
130℃を越えるとエポキシ樹脂組成物を加熱混練する
際にエポキシ樹脂を溶融するために高温が必要になり、
そのため混練中に反応が進行し、成形時の流動性が低下
してしまう。融点はキャピラリーガラス中の樹脂の融解
を外観で判定する通常の測定方法や、またはDSCによ
る結晶融解時の吸熱ピークの測定などで簡単に求めるこ
とができる。
The present invention will be described in detail below. The epoxy resin used in the present invention is an epoxy resin having a melting point of 50 to 130 ° C. and a crystalline epoxy resin having two or more epoxy groups in one molecule in an amount of 70% by weight or more in the total epoxy resin. The crystalline epoxy resin is solid below the melting point but melts at a temperature above the melting point and becomes a liquid having an extremely low viscosity. Therefore, even if the content of fused silica in the epoxy resin composition is increased, The melt viscosity is low, the fluidity is excellent, and the gold wire deformation of the element and the lead frame deformation can be prevented. However, when the melting point is less than 50 ° C., when the epoxy resin composition is mixed with other components to produce it, melting is started due to a temperature rise such as frictional heat and the workability deteriorates, resulting in poor productivity. On the other hand, when the melting point exceeds 130 ° C., a high temperature is required to melt the epoxy resin when the epoxy resin composition is heated and kneaded,
Therefore, the reaction progresses during kneading, and the fluidity at the time of molding decreases. The melting point can be easily obtained by a usual measuring method for judging the melting of the resin in the capillary glass by appearance or by measuring an endothermic peak at the time of crystal melting by DSC.

【0009】この結晶性エポキシ樹脂の例としては、
3,3’,5,5’−テトラメチルビフェノールジグリ
シジルエーテル、3,3’,5,5’−テトラメチルビ
スフェノールFジグリシジルエーテル、ハイドロキノン
ジグリシジルエーテル、4,4’−ジヒドロキシジフェ
ニルエーテルジグリシジルエーテルなどが挙げられる
が、これらに限定されるものではない。この結晶性エポ
キシ樹脂の使用量は、総エポキシ樹脂量の70重量%以
上が望ましい。70重量%未満ではエポキシ樹脂の溶融
粘度の低減効果が十分でなく、成形時の流動性が低下し
てしまう。この結晶性エポキシと併用可能なエポキシ樹
脂とはエポキシ基を有するモノマー、オリゴマー、ポリ
マー全般を指し、例えば、ビスフェノールA型エポキシ
樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナ
フタレン型エポキシ樹脂、トリフェノールメタン型エポ
キシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタ
ジエン変性フェノール類のエポキシ樹脂等が挙げられる
が、これらに限定されるものではない。また、これらの
エポキシ樹脂は単独でも併用しても差し支えない。
As an example of this crystalline epoxy resin,
3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether, 3,3 ′, 5,5′-tetramethylbisphenol F diglycidyl ether, hydroquinone diglycidyl ether, 4,4′-dihydroxydiphenyl ether diglycidyl ether However, the present invention is not limited to these. The amount of this crystalline epoxy resin used is preferably 70% by weight or more of the total amount of epoxy resin. If it is less than 70% by weight, the effect of reducing the melt viscosity of the epoxy resin is not sufficient, and the fluidity at the time of molding is reduced. The epoxy resin that can be used in combination with this crystalline epoxy refers to all monomers, oligomers, and polymers having an epoxy group, such as bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, naphthalene type epoxy resin, triphenol methane type epoxy resin. Examples thereof include resins, naphthalene type epoxy resins, dicyclopentadiene-modified phenolic epoxy resins, and the like, but are not limited thereto. Further, these epoxy resins may be used alone or in combination.

【0010】本発明の(B)成分であるフェノール樹脂
硬化剤は150℃での溶融粘度が5ポイズ以下であるこ
とを特徴とする。溶融粘度が150℃で5ポイズを越え
ると、得られるエポキシ樹脂組成物の溶融粘度が上昇す
るために成形時の流動性が低下し、金型内の成形品の未
充填や金線変形、リードフレーム変形(いわゆるパッド
シフト)が発生する。フェノール樹脂の150℃での溶
融粘度の測定方法としては、ICI粘度計が簡便であ
り、かつ一般的である。(B)成分のフェノール樹脂硬
化剤としては、エポキシ樹脂と硬化反応を行い架橋構造
を形成することができるフェノール性水酸基を有するモ
ノマー、オリゴマー、ポリマー全般を指し、具体的に
は、フェノールノボラック樹脂、キシリレン変性フェノ
ール樹脂、テルペン変性フェノール樹脂、ジシクロペン
タジエン変性フェノール樹脂、ビスフェノールA、トリ
フェノールメタンなどが例示されるが、これらに限定さ
れるものではない。これらのフェノール樹脂硬化剤も単
独でも併用しても差し支えない。半田耐熱性の点から特
に効果のあるフェノール樹脂硬化剤としては、特に式
(1)で示されるp−もしくはm−キシリレン構造で変
性されたフェノール樹脂であり、通常はフェノールとp
−キシリレングリコールジメチルエーテル、或いはm−
キシリレングリコールジメチルエーテルとの重縮合反応
により合成される。この構造のフェノール樹脂は通常の
フェノールノボラック樹脂に比べ、熱時の低弾性率化、
基材との高密着性、低吸水などの特長を有し、半田浸漬
時の熱応力の低減とパッケージクラック発生の防止に効
果的である。
The phenol resin curing agent which is the component (B) of the present invention is characterized by having a melt viscosity at 150 ° C. of 5 poise or less. When the melt viscosity exceeds 5 poises at 150 ° C., the melt viscosity of the obtained epoxy resin composition rises, so that the fluidity at the time of molding is lowered, resulting in unfilling of the molded product in the mold, deformation of the gold wire, and lead. Frame deformation (so-called pad shift) occurs. As a method for measuring the melt viscosity of a phenol resin at 150 ° C., the ICI viscometer is simple and common. Examples of the phenol resin curing agent as the component (B) include all monomers, oligomers and polymers having a phenolic hydroxyl group capable of forming a crosslinked structure by curing reaction with an epoxy resin, specifically, a phenol novolac resin, Examples thereof include, but are not limited to, xylylene-modified phenol resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, bisphenol A, and triphenolmethane. These phenol resin curing agents may be used alone or in combination. A phenol resin curing agent that is particularly effective from the viewpoint of solder heat resistance is a phenol resin modified with a p- or m-xylylene structure represented by the formula (1), and usually phenol and p
-Xylylene glycol dimethyl ether or m-
It is synthesized by a polycondensation reaction with xylylene glycol dimethyl ether. Phenolic resin with this structure has a lower elastic modulus when heated than ordinary phenol novolac resin,
It has features such as high adhesion to the base material and low water absorption, and is effective in reducing thermal stress during solder immersion and preventing package cracking.

【0011】[0011]

【化1】 (Rは水素、アルキル基を表す)Embedded image (R represents hydrogen or an alkyl group)

【0012】式(1)のフェノール樹脂硬化剤のp−キ
シリレン構造とm−キシリレン構造の比率は特に限定さ
れるものではなく、p−キシリレン構造、m−キシリレ
ン構造のそれぞれ単独の樹脂であっても、あるいはそれ
ぞれ単独の樹脂の併用であっても、または1分子中にp
−キシリレン構造とm−キシリレン構造とが共存してい
てもなんら差し支えない。150℃での溶融粘度が5ポ
イズ以下とするためには、m+nの値は1から10まで
で、かつこれらの混合物である。
The ratio of the p-xylylene structure to the m-xylylene structure of the phenol resin curing agent of the formula (1) is not particularly limited, and the p-xylylene structure and the m-xylylene structure are independent resins. , Or even if each resin is used in combination, or p in one molecule
It does not matter if the -xylylene structure and the m-xylylene structure coexist. In order to have a melt viscosity at 150 ° C. of 5 poise or less, the value of m + n is 1 to 10 and a mixture thereof.

【0013】(C)成分の硬化促進剤としては、前記エ
ポキシ樹脂とフェノール樹脂硬化剤との架橋反応の触媒
となるものであり、具体的には1,8−ジアザビシクロ
(5,4,0)ウンデセン−7等のアミジン化合物、
トリフェニルホスフィン等の有機ホスフィン化合物、2
−メチルイミダゾール等のイミダゾール化合物等が例示
できる。これらの硬化促進剤は単独であっても、また併
用であっても差し支えない。(D)成分の溶融シリカ粉
末は破砕状、球状のどちらでも使用可能であるが、フィ
ラー含有量を高め、かつエポキシ樹脂組成物の粘度の上
昇を抑えるためには球状シリカを主に用いる方が好まし
い。更に球状シリカの配合量を高めるためには、球状シ
リカの粒度分布をより広くするように調整することが望
ましい。溶融シリカ粉末の配合量は成形性と半田耐熱性
とのバランスから総エポキシ樹脂組成物中に76〜94
重量%含むことが望ましい。溶融シリカの配合量が76
%未満であると、半田耐熱性が不十分であり、一方94
重量%を越えると、溶融粘度の低い樹脂を用いても成形
時の流動性が低下してしまう。
The component (C) curing accelerator serves as a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin curing agent, and is specifically 1,8-diazabicyclo (5,4,0). amidine compounds such as undecene-7,
Organic phosphine compounds such as triphenylphosphine, 2
Examples thereof include imidazole compounds such as methylimidazole. These curing accelerators may be used alone or in combination. Although the fused silica powder of the component (D) can be used in either a crushed form or a spherical form, spherical silica is mainly used in order to increase the filler content and suppress the increase in the viscosity of the epoxy resin composition. preferable. In order to further increase the compounding amount of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica so as to be wider. The blending amount of the fused silica powder is 76 to 94 in the total epoxy resin composition from the balance of moldability and solder heat resistance.
It is desirable to include it by weight. Blended amount of fused silica is 76
%, The solder heat resistance is insufficient, while 94
If the content is more than wt%, the fluidity at the time of molding will be reduced even if a resin having a low melt viscosity is used.

【0014】(E)成分のシランカップリング剤として
は、具体的にはγ−グリシドキシプロピルトリメトキシ
シラン、γ−アミノプロピルトリメトキシシラン、γ−
メルカプトプロピルトリメトキシシラン、ビニルトリエ
トキシシラン等が挙げられるが、これに限定するもので
なく、またこれらの単独でも併用でも差し支えない。ま
た、(E)成分のシランカップリング剤は、予め(D)
成分の溶融シリカ粉末に均一に処理した後加熱処理をし
てもよいし、あるいは(A)成分ないし(C)成分に
(D)成分を添加して混合しても差し支えない。また半
導体封止用エポキシ樹脂組成物は、(A)から(E)ま
での成分以外にも必要に応じて臭素化エポキシ樹脂、三
酸化アンチモン等の難燃剤、カーボンブラックに代表さ
れる着色剤、天然ワックス及び合成ワックス等の離型
剤、シリコーンオイル等の低応力添加剤が適宜配合され
ており、本発明のエポキシ樹脂組成物の製造方法におい
てもこれらが配合されても何ら差し支えない。
Specific examples of the silane coupling agent as the component (E) include γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane and γ-.
Examples thereof include mercaptopropyltrimethoxysilane and vinyltriethoxysilane. However, the present invention is not limited thereto, and these may be used alone or in combination. Further, the silane coupling agent as the component (E) is previously prepared as the component (D).
The fused silica powder as the component may be uniformly treated and then heat-treated, or the component (D) may be added to and mixed with the components (A) to (C). In addition to the components (A) to (E), the epoxy resin composition for semiconductor encapsulation may optionally contain a brominated epoxy resin, a flame retardant such as antimony trioxide, and a colorant typified by carbon black. A release agent such as natural wax and synthetic wax, and a low stress additive such as silicone oil are appropriately blended, and they may be blended in the method for producing an epoxy resin composition of the present invention.

【0015】本発明は、上記半導体封止用エポキシ樹脂
組成物の製造方法に関わるものである。上記組成物を成
形する際に発生するピンホール・ボイドとエポキシ樹脂
組成物の製造方法との相関を詳しく検討した結果、以下
に示す知見が得られた。溶融時の粘度が低い樹脂成分と
多量の溶融シリカを含有するエポキシ樹脂組成物を加熱
混練するためには、混練方法として同方向2軸混練押し
出し機を用いるのが最も適している。その他の混練方法
として、例えばロールが挙げられるが、エポキシ樹脂組
成物の溶融シリカの含有量が多くなるに従ってロールへ
の巻き付け性が極端に低下し、樹脂成分の溶融さえ不可
能である。また、1軸押し出し混練機、または異方向2
軸押し出し混練機の場合では、十分な溶融ゾーンが得ら
れないため吐出した材料中に溶融シリカの凝集物が多数
認められる。同方向2軸混練押し出し機では、上記混練
方法に較べはるかに安定した混練物が得られ、既にこれ
に関わる製造方法も提案されている(特開平6−226
736号公報)。しかしながら、本発明でのエポキシ樹
脂組成物、即ち結晶性エポキシ樹脂と高含有量の溶融シ
リカとを組み合わせた組成物では、ただ単に同方向2軸
押し出し混練機を用いただけでは十分な効果が得られな
いことが判明した。即ち、結晶性エポキシを含む樹脂組
成物の同方向2軸混練機による加熱混練に際しては、樹
脂組成物温度が結晶性エポキシ樹脂の融点以上、かつ9
0〜140℃の範囲になるように条件を設定し、管理す
ることが必要である。
The present invention relates to a method for producing the epoxy resin composition for semiconductor encapsulation. As a result of detailed examination of the correlation between the pinhole voids generated when molding the above composition and the method for producing the epoxy resin composition, the following findings were obtained. In order to heat-knead an epoxy resin composition containing a resin component having a low viscosity during melting and a large amount of fused silica, it is most suitable to use a co-directional biaxial kneading extruder as a kneading method. As another kneading method, for example, a roll can be mentioned. However, as the content of the fused silica in the epoxy resin composition increases, the winding property around the roll becomes extremely low, and it is even impossible to melt the resin component. Also, a single-screw extrusion kneader or different direction 2
In the case of the axial extrusion kneading machine, since a sufficient melting zone cannot be obtained, many fused silica aggregates are recognized in the discharged material. With the same-direction biaxial kneading extruder, a much more stable kneaded product can be obtained as compared with the above kneading method, and a manufacturing method relating to this is already proposed (Japanese Patent Laid-Open No. 6-226).
736). However, in the epoxy resin composition of the present invention, that is, a composition in which a crystalline epoxy resin and a high content of fused silica are combined, a sufficient effect can be obtained simply by using the same-direction twin-screw extruder. Turned out not. That is, when the resin composition containing the crystalline epoxy is heated and kneaded by the same-direction biaxial kneader, the temperature of the resin composition is equal to or higher than the melting point of the crystalline epoxy resin, and 9
It is necessary to set and manage the conditions so that the temperature is in the range of 0 to 140 ° C.

【0016】この理由として、結晶性エポキシ樹脂は、
一度溶融すれば極めて低粘度の液状状態を示すが、一方
融点以下の温度では安定な固体状態を示すからである。
この点で、例えば従来のオルソクレゾールノボラック型
エポキシ樹脂の様に広い分子量分布を有する樹脂と異な
る。従来の非結晶性エポキシ樹脂では、低分子量成分か
ら順に低温度から溶融をはじめるため、一度溶融した低
分子量成分の溶媒効果により高分子量成分も溶融する。
一方結晶性エポキシ樹脂は、その分子量がほぼ一定であ
り、ある温度(融点)になって初めて溶融する。従っ
て、この結晶性エポキシ樹脂を用いたエポキシ樹脂組成
物を加熱混練する場合、結晶性エポキシ樹脂の融点以上
にエポキシ樹脂組成物が加熱されないとエポキシ樹脂は
固形状態のまま他の成分と混合されるに過ぎない。この
ような条件で混練された樹脂組成物は、ミクロな状態で
は溶融し残った結晶成分が分散しており、成形時にその
成分が溶融する際に急激な体積変化を起こすため、ミク
ロなボイドが発生する。またこの成分が単独で低粘度成
分として流動するためバリが発生する。
The reason for this is that the crystalline epoxy resin is
This is because once melted, it exhibits a liquid state of extremely low viscosity, while at temperatures below the melting point it exhibits a stable solid state.
In this respect, it differs from a resin having a wide molecular weight distribution such as a conventional orthocresol novolac type epoxy resin. In the conventional non-crystalline epoxy resin, since melting starts from a low temperature in order from a low molecular weight component, the high molecular weight component also melts due to the solvent effect of the once melted low molecular weight component.
On the other hand, the crystalline epoxy resin has a substantially constant molecular weight and melts only at a certain temperature (melting point). Therefore, when an epoxy resin composition using this crystalline epoxy resin is kneaded by heating, the epoxy resin is mixed with other components in a solid state unless the epoxy resin composition is heated to a temperature higher than the melting point of the crystalline epoxy resin. Nothing more than. The resin composition kneaded under such conditions has a crystalline component that is melted and remains dispersed in a microscopic state and causes a rapid volume change when the component melts during molding, resulting in micro voids. appear. Further, since this component alone flows as a low-viscosity component, burrs are generated.

【0017】しかしながら、融点が90℃未満の結晶性
エポキシ樹脂を含む組成物の混練の場合では、樹脂組成
物温度が90℃未満では結晶性エポキシ樹脂は溶融する
にもかかわらず、硬化剤であるフェノール樹脂の軟化温
度の影響、および溶融シリカとの混練均一化の効果の点
で十分な混練効果が得られない。また、混練時の樹脂組
成物の温度が140℃を越えるとエポキシ樹脂と硬化剤
樹脂成分との反応が混練中に進行し、成形時の流動性が
著しく低下してしまう。この混練条件を実現するために
は通常、2軸スクリューの形状(2条、または3条のネ
ジか等)、構成(送りまたは練りを効かせるエレメント
の組み合わせ)、スクリュー回転数、エポキシ樹脂組成
物の時間当たりの供給速度、混練部分のジャケットの温
度の組み合わせで種々設定できるが、最も重要な点は混
練された樹脂組成物の温度で混練状態を管理することで
ある。混練物の温度については、混練され、同方向2軸
押し出し混練機から吐出されたエポキシ樹脂組成物の温
度を直接測定するのが最も適している。混練条件につい
て更に検討を続けたところ、同方向2軸押し出し混練機
の系内を減圧に保つことにより極めて大きな二つの効果
が得られた。その第一は驚くべきことに、同じ混練条件
下でも系内を減圧にすることで混練されたエポキシ樹脂
組成物の温度が常圧での混練に比較し、20〜50℃上
昇することである。この理由は推測ではあるが、一つに
は混練物中に含まれる空気が減圧により除去されるため
樹脂組成物の熱伝導率が向上し、同じ熱エネルギーが与
えられても効率的に樹脂組成物の温度が上昇すること、
また、第二に樹脂組成物中に含まれる水分や有機揮発成
分が減圧により除去されるためと考えられる。
However, in the case of kneading a composition containing a crystalline epoxy resin having a melting point of less than 90 ° C., when the resin composition temperature is less than 90 ° C., the crystalline epoxy resin is a curing agent although it melts. A sufficient kneading effect cannot be obtained in terms of the effect of the softening temperature of the phenol resin and the effect of homogenizing the kneading with the fused silica. When the temperature of the resin composition during kneading exceeds 140 ° C., the reaction between the epoxy resin and the curing agent resin component proceeds during kneading, resulting in a marked decrease in fluidity during molding. In order to realize this kneading condition, the shape of a twin screw (whether it has two threads or three threads), configuration (combination of elements that can feed or knead), screw speed, epoxy resin composition Can be variously set by the combination of the feeding rate per hour and the temperature of the jacket of the kneading part, but the most important point is to control the kneading state by the temperature of the kneaded resin composition. Regarding the temperature of the kneaded material, it is most suitable to directly measure the temperature of the epoxy resin composition which is kneaded and discharged from the same-direction biaxial extrusion kneader. When the kneading conditions were further investigated, two extremely large effects were obtained by keeping the inside of the system of the twin-screw extruder in the same direction at a reduced pressure. The first is that, surprisingly, the temperature of the kneaded epoxy resin composition rises by 20 to 50 ° C. as compared with kneading under normal pressure by reducing the pressure in the system even under the same kneading conditions. . The reason for this is speculated, but one is that the air contained in the kneaded product is removed by decompression, so that the thermal conductivity of the resin composition is improved, and even if the same thermal energy is applied, the resin composition can be efficiently used. The temperature of the object rises,
Secondly, it is considered that water and organic volatile components contained in the resin composition are removed by decompression.

【0018】この現象の最大の利点は、樹脂組成物を必
要とする温度範囲に加熱するにあたり、ジャケットを加
熱して外部から熱を加えることが必ずしも必要でないこ
とである。ジャケットからの加熱では混練機内の周辺部
分のみが熱エネルギーを受け易いため温度が不均一にな
り、かつスクリューから遠い外周部分の混練効果が低い
ためバレル外周部の混練物は内部に比べ、より熱エネル
ギーを受け易い。このため、混練物の一部に反応の進行
した、更にはゲル化した粒子が含まれることになり、成
形時の不良の原因となる。一方減圧条件下での混練では
ジャケットは、冷却ないし低温での加熱で十分であり、
樹脂組成物の熱履歴がはるかに安定し、特性が均一な混
練物を得ることができる。
The greatest advantage of this phenomenon is that it is not always necessary to heat the jacket to externally apply heat to heat the resin composition to a required temperature range. When heating from the jacket, only the peripheral part inside the kneading machine is likely to receive heat energy, resulting in uneven temperature, and the kneading effect on the outer peripheral part far from the screw is low, so the kneaded product on the outer peripheral part of the barrel is heated more than the inner part. Easy to receive energy. Therefore, a part of the kneaded material contains particles in which the reaction has proceeded and further gelled, which causes a defect during molding. On the other hand, in kneading under reduced pressure conditions, cooling or heating at a low temperature is sufficient for the jacket,
The heat history of the resin composition is much more stable, and a kneaded product having uniform properties can be obtained.

【0019】減圧下での混練の第二の効果は、樹脂組成
物の成形時に発生するボイドの大きな低減効果である。
この理由としては、一つは減圧条件により樹脂組成物中
の水分、有機揮発成分が効率的に除去できるため、成形
時にボイドの原因となる揮発成分が発生しないことによ
る。二つめの理由は多量の溶融シリカと低溶融粘度の樹
脂成分とを混練する際に生じる空気の巻き込みを防止で
きたり、または巻き込まれた気泡の除去ができることで
ある。巻き込みの空気は単に物理的に撹拌によって生ず
るのみでなく、結晶性エポキシ樹脂が溶融する際に急激
に液状物となるときの体積変化により生ずる気泡も含ま
れていると考えられる。これは減圧をしない条件下では
結晶性エポキシ樹脂を用いた樹脂組成物の方が結晶性で
ないエポキシ樹脂による組成物よりも成形時にボイドの
発生率が多いが、減圧下ではいずれの樹脂による組成物
でも成形時にボイドが発生しないことからも推定され
る。更に、混練後の樹脂組成物の内部を顕微鏡観察する
と、減圧しないで混練した場合には内部に多数の気泡や
ミクロボイドが認められるのに対し、減圧下混練した場
合は気泡、ミクロボイドが極めて緻密な状態となってい
ることが判る。混練の際の減圧度は少なくとも250m
mHg以下、好ましくは100mmHg以下が必要であ
る。250mmHgを越える減圧度では、樹脂組成物の
混練時の温度上昇が十分でなく、また成形時のボイドの
低減効果も低いため、不十分な効果しか得られていな
い。
The second effect of kneading under reduced pressure is a large effect of reducing voids generated during molding of the resin composition.
One of the reasons for this is that moisture and organic volatile components in the resin composition can be efficiently removed under reduced pressure conditions, so that volatile components that cause voids are not generated during molding. The second reason is that it is possible to prevent entrapment of air that occurs when kneading a large amount of fused silica and a resin component having a low melt viscosity, or to remove entrapped air bubbles. It is considered that the entrained air is not only generated physically by stirring, but also includes bubbles generated due to a volume change when the crystalline epoxy resin suddenly becomes a liquid substance when melted. This is because the resin composition using the crystalline epoxy resin has a higher occurrence rate of voids at the time of molding than the composition using the non-crystalline epoxy resin under the condition of not reducing the pressure. However, it is estimated that voids do not occur during molding. Further, when observing the inside of the resin composition after kneading with a microscope, a large number of bubbles and microvoids are observed inside when kneading without reducing the pressure, whereas when kneading under reduced pressure, the bubbles and microvoids are extremely dense. You can see that it is in a state. Decompression degree at the time of kneading is at least 250 m
mHg or less, preferably 100 mmHg or less is required. At a degree of reduced pressure of more than 250 mmHg, the temperature rise during kneading of the resin composition is not sufficient and the effect of reducing voids during molding is also low, so that an insufficient effect is obtained.

【0020】以下、本発明を実施例で具体的に説明す
る。 実施例1 3,3’,5,5’−テトラメチルビフェノールジグリシジルエーテル(融点 103℃、エポキシ基当量195) 4.2重量部 式(2)で示されるフェノール樹脂硬化剤(150℃の溶融粘度3.3ポイズ 、水酸基当量175) 4.3重量部
The present invention will be specifically described below with reference to examples. Example 1 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether (melting point 103 ° C., epoxy group equivalent 195) 4.2 parts by weight Phenolic resin curing agent represented by the formula (2) (melting at 150 ° C. Viscosity 3.3 poise, hydroxyl equivalent 175) 4.3 parts by weight

【0021】[0021]

【化2】 (式中、重量比でm/n=3/1)Embedded image (In the formula, the weight ratio is m / n = 3/1)

【0022】 トリフェニルホスフィン 0.2重量部 溶融シリカ粉末 86 重量部 γーグリシドキシプロピルトリメトキシシラン 0.5重量部 三酸化アンチモン 1 重量部 臭素化ビスフェノールA型エポキシ樹脂 1 重量部 カルナバワックス 0.5重量部 カーボンブラック 0.3重量部 上記の各成分をミキサーにより混合した後、同方向2軸
押し出し混練機を用いて加熱混練を行った。この混練機
はL/D=20、混練スクリューは3条ねじで、エレメ
ントの練り/送りの比は2.5/7.5、スクリュー回
転数は300rpm,ジャケットは水により冷却し、ま
た真空ポンプにより80mmHgに系内を減圧にした条
件で加熱混練を行った。混練され吐出口から押し出され
た樹脂組成物の温度を温度計により測定したところ、1
10℃であった。混練された樹脂組成物をシーティング
ロールで2mm厚のシート状にし、更に冷却後粉砕して
封止材料とした。特性を表2に示す。
Triphenylphosphine 0.2 parts by weight Fused silica powder 86 parts by weight γ-glycidoxypropyltrimethoxysilane 0.5 parts by weight Antimony trioxide 1 part by weight Brominated bisphenol A type epoxy resin 1 part by weight Carnauba wax 0 0.5 parts by weight Carbon black 0.3 parts by weight After mixing the above components with a mixer, heating and kneading were performed using a biaxial extrusion kneader in the same direction. This kneader has L / D = 20, the kneading screw has three threads, the kneading / feeding ratio of the element is 2.5 / 7.5, the screw rotation speed is 300 rpm, the jacket is cooled by water, and the vacuum pump is used. Then, the mixture was heated and kneaded under the condition that the pressure inside the system was reduced to 80 mmHg. When the temperature of the resin composition kneaded and extruded from the discharge port was measured with a thermometer, it was 1
It was 10 ° C. The kneaded resin composition was formed into a sheet having a thickness of 2 mm with a sheeting roll, further cooled and pulverized to obtain a sealing material. Table 2 shows the characteristics.

【0023】実施例2〜4、比較例1〜5 実施例1のエポキシ樹脂組成物を用いて、表2に示す混
練条件で混練を行い封止材料を得た。特性を表2に示
す。 実施例5、比較例6〜9 表1に示すエポキシ樹脂組成物を用いて、表3に示す混
練条件で混練を行い封止材料を得た。特性を表3に示
す。式(3)、式(4)のフェノール樹脂の構造を下記
に示す。
Examples 2 to 4 and Comparative Examples 1 to 5 Using the epoxy resin composition of Example 1, kneading was performed under the kneading conditions shown in Table 2 to obtain sealing materials. Table 2 shows the characteristics. Example 5 and Comparative Examples 6 to 9 Using the epoxy resin compositions shown in Table 1, kneading was performed under the kneading conditions shown in Table 3 to obtain sealing materials. Table 3 shows the characteristics. The structures of the phenolic resins of formulas (3) and (4) are shown below.

【0024】[0024]

【化3】 Embedded image

【0025】上記実施例および比較例で得られた封止材
料で以下の評価を実施した。 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力70kg/cm2、硬化時間2分で測定した。 バリ :ボイド評価に用いた成形品パッケー
ジに発生したバリの長さを測定した。 ボイド :各成形材料を用いて80pQFPパ
ッケージ(パッケージサイズは14×20mm,厚み
1.5mm,チップサイズは9×9mm)を175℃の
金型温度、75kg/cm2の圧力で2分間成形し、さ
らに175℃で8時間の後硬化を行った。この成形品パ
ッケージを超音波探傷装置を用いて観察し、0.1mm
φ以上の内部のボイドの数を(個数/パッケージ)で表
現した。 半田耐熱 :ボイド評価に用いた成形品パッケー
ジを85℃、85%RHの環境下で168時間放置し、
その後260℃の半田槽に10秒間浸漬した。顕微鏡で
パッケージを観察し、外部クラック数を半田クラック数
(クラック発生パッケージ数/全パッケージ数)で表現
した。
The following evaluations were carried out on the sealing materials obtained in the above Examples and Comparative Examples. Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C,
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. Burrs: The length of burrs generated in the molded product package used for void evaluation was measured. Void: Using each molding material, an 80 pQFP package (package size 14 × 20 mm, thickness 1.5 mm, chip size 9 × 9 mm) was molded for 2 minutes at a mold temperature of 175 ° C. and a pressure of 75 kg / cm 2 , Further, post-curing was performed at 175 ° C. for 8 hours. This molded product package was observed using an ultrasonic flaw detector and found to be 0.1 mm
The number of voids inside φ and above is expressed by (number / package). Solder heat resistance: The molded product package used for void evaluation is left for 168 hours in an environment of 85 ° C. and 85% RH.
Then, it was immersed in a solder bath at 260 ° C. for 10 seconds. The package was observed with a microscope, and the number of external cracks was expressed by the number of solder cracks (the number of cracked packages / the total number of packages).

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】本発明の製造方法により、加熱混練工程
で発生する空気の巻き込みや、混練時及び成形時に起こ
る結晶性樹脂の溶融過程で生じる気泡を樹脂組成物中か
ら効率的に取り除くことできボイド発生率を極端に低減
させ、かつ半田耐熱性に優れた半導体封止用エポキシ樹
脂組成物を得ることができる。
EFFECTS OF THE INVENTION According to the production method of the present invention, air bubbles generated in the heating and kneading step and bubbles generated in the melting process of the crystalline resin that occurs during kneading and molding can be efficiently removed from the resin composition. It is possible to obtain an epoxy resin composition for semiconductor encapsulation which has extremely low void generation rate and excellent solder heat resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 23/31

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (A)融点が50〜130℃で、かつ1
分子にエポキシ基を2個以上有する結晶性エポキシを総
エポキシ樹脂中に70重量%以上含むエポキシ樹脂、
(B)150℃での溶融粘度が5ポイズ以下のフェノー
ル樹脂硬化剤、(C)硬化促進剤、(D)総樹脂組成物
中に76〜94重量%含まれる溶融シリカ粉末、(E)
シランカップリング剤を必須成分とするエポキシ樹脂組
成物を加熱混練するに際し、混練装置として同方向2軸
混練押し出し機を用い、かつこの同方向2軸混練押し出
し機の系内を250mmHg以下の減圧条件下に保ち、
更に混練後に該同方向2軸混練押し出し機から吐出され
るエポキシ樹脂組成物の温度がエポキシ樹脂組成物中の
(A)成分の結晶性エポキシ樹脂の融点以上の温度であ
り、かつ90〜140℃であることを特徴とする半導体
エポキシ樹脂組成物の製造方法。
1. (A) The melting point is 50 to 130 ° C., and 1
An epoxy resin containing 70% by weight or more of crystalline epoxy having two or more epoxy groups in the molecule in the total epoxy resin,
(B) Phenolic resin curing agent having a melt viscosity of 5 poise or less at 150 ° C., (C) curing accelerator, (D) fused silica powder in an amount of 76 to 94% by weight in the total resin composition, (E)
When the epoxy resin composition containing the silane coupling agent as an essential component is heated and kneaded, the same-direction twin-screw kneading extruder is used as a kneading device, and the pressure reduction condition of the same-direction twin-screw kneading extruder is 250 mmHg or less. Keep it down,
Furthermore, after kneading, the temperature of the epoxy resin composition discharged from the same-direction biaxial kneading extruder is a temperature not lower than the melting point of the crystalline epoxy resin of the component (A) in the epoxy resin composition, and 90 to 140 ° C. A method for producing a semiconductor epoxy resin composition, wherein
JP7209479A 1995-08-17 1995-08-17 Method for producing epoxy resin composition for semiconductor encapsulation Expired - Lifetime JP3009027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209479A JP3009027B2 (en) 1995-08-17 1995-08-17 Method for producing epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209479A JP3009027B2 (en) 1995-08-17 1995-08-17 Method for producing epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH0952228A true JPH0952228A (en) 1997-02-25
JP3009027B2 JP3009027B2 (en) 2000-02-14

Family

ID=16573529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209479A Expired - Lifetime JP3009027B2 (en) 1995-08-17 1995-08-17 Method for producing epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3009027B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077851A1 (en) * 1999-06-15 2000-12-21 Sumitomo Bakelite Company Limited Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device
JP2001081284A (en) * 1999-09-14 2001-03-27 Nitto Denko Corp Preparation of semiconductor sealing epoxy resin composition and semiconductor sealing epoxy resin composition obtained thereby, and semiconductor device sealed therewith
JP2003039424A (en) * 2001-07-31 2003-02-13 Hitachi Chem Co Ltd Method for manufacturing epoxy resin composition for sealing semiconductor
US6733901B2 (en) 2001-05-02 2004-05-11 Sumitomo Bakelite Company Limited Process for production of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP2005048173A (en) * 2003-07-17 2005-02-24 Nitto Denko Corp Manufacturing method for tablet for sealing semiconductor, tablet for sealing semiconductor obtained thereby, and semiconductor device using the same
EP1538182A1 (en) * 2003-12-04 2005-06-08 Nitto Denko Corporation Method for producing epoxy resin composition for semiconductor encapsulation and epoxy resin composition for semiconductor encapsulation and semiconductor device obtained thereby
US7521011B2 (en) 2003-01-30 2009-04-21 Hitachi Chemical Company, Ltd. Semiconductor-sealing-purpose epoxy resin compound producing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077851A1 (en) * 1999-06-15 2000-12-21 Sumitomo Bakelite Company Limited Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device
US6495260B1 (en) 1999-06-15 2002-12-17 Sumitomo Bakelite Company Limited Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device
JP2001081284A (en) * 1999-09-14 2001-03-27 Nitto Denko Corp Preparation of semiconductor sealing epoxy resin composition and semiconductor sealing epoxy resin composition obtained thereby, and semiconductor device sealed therewith
US6733901B2 (en) 2001-05-02 2004-05-11 Sumitomo Bakelite Company Limited Process for production of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
KR100794061B1 (en) * 2001-05-02 2008-01-10 스미토모 베이클리트 컴퍼니 리미티드 Process for production of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP2003039424A (en) * 2001-07-31 2003-02-13 Hitachi Chem Co Ltd Method for manufacturing epoxy resin composition for sealing semiconductor
US7521011B2 (en) 2003-01-30 2009-04-21 Hitachi Chemical Company, Ltd. Semiconductor-sealing-purpose epoxy resin compound producing method
JP2005048173A (en) * 2003-07-17 2005-02-24 Nitto Denko Corp Manufacturing method for tablet for sealing semiconductor, tablet for sealing semiconductor obtained thereby, and semiconductor device using the same
JP4634083B2 (en) * 2003-07-17 2011-02-16 日東電工株式会社 Manufacturing method of tablets for semiconductor encapsulation
EP1538182A1 (en) * 2003-12-04 2005-06-08 Nitto Denko Corporation Method for producing epoxy resin composition for semiconductor encapsulation and epoxy resin composition for semiconductor encapsulation and semiconductor device obtained thereby
CN1330704C (en) * 2003-12-04 2007-08-08 日东电工株式会社 Epoxy resin composition and method for producing epoxy resin composition and semiconductor device obtained thereby
US7268191B2 (en) 2003-12-04 2007-09-11 Nitto Denko Corporation Method for producing epoxy resin composition for semiconductor encapsulation and epoxy resin composition for semiconductor encapsulation and semiconductor device obtained thereby

Also Published As

Publication number Publication date
JP3009027B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP3192953B2 (en) Epoxy resin molding material for semiconductor encapsulation and method for producing the same
JP3009027B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JP3565118B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3102276B2 (en) Method for producing epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP2000273277A (en) Epoxy resin composition and semiconductor device
JP2000327883A (en) Epoxy resin composition and semiconductor device
JP2002012654A (en) Epoxy resin composition for sealing semiconductor
JP4379973B2 (en) Epoxy resin composition and semiconductor device
JP4706089B2 (en) Epoxy resin composition and semiconductor device
JPH07122683A (en) Epoxy resin composition for sealing semiconductor
JP2000129139A (en) Production of granular semiconductor sealing material and granular semiconductor sealing material
JPH1045872A (en) Epoxy resin composition
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JP4586286B2 (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP3309688B2 (en) Method for producing epoxy resin composition
JP2001151994A (en) Epoxy resin compositions and semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP2000273154A (en) Epoxy resin composition and semiconductor device
JP2009298961A (en) Epoxy resin composition for sealing and method for manufacturing the same
JPH1171443A (en) Epoxy resin composition for sealing semiconductor and semiconductor device sealed therewith
JPH1171442A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 14

EXPY Cancellation because of completion of term