JPH03292734A - Formation of si single crystal thin film - Google Patents

Formation of si single crystal thin film

Info

Publication number
JPH03292734A
JPH03292734A JP9477790A JP9477790A JPH03292734A JP H03292734 A JPH03292734 A JP H03292734A JP 9477790 A JP9477790 A JP 9477790A JP 9477790 A JP9477790 A JP 9477790A JP H03292734 A JPH03292734 A JP H03292734A
Authority
JP
Japan
Prior art keywords
wafer
seg
crystal
single crystal
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9477790A
Other languages
Japanese (ja)
Inventor
Kenji Yamagata
憲二 山方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9477790A priority Critical patent/JPH03292734A/en
Publication of JPH03292734A publication Critical patent/JPH03292734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To control idealy the setting of the orientation of a specified face of Si single crystal thin films and to form the Si single crystal thin films, which are dielectrically isolated from one another at an arbitrary portion or are continued, by a method wherein a complete signal crystal film having the oritentation of a specified face is grown on a substrate containing SiO2 as its component. CONSTITUTION:The surface of a 4-inch (100) Si wafer 11 is oxidized up to a depth of 0.5mum and an insulator layer 12 is formed. Then, a SEG crystal is provided in opening parts 13 on the wafer 11, is grown until the surface of the SEG crystal becomes the same surface as that of the layer 12 and the opening parts 13 are filled with the SEG crystal 14. Then, the surface, which becomes flat by the SEG crystal, of the wafer 11 is made to closely adhere to the flat surface of a 4-inch melted quartz wafer 10 to form an interface 15 and (after the wafer 10 is made to adhere to the wafer 11, the side of the wafer 11 to the adhering wafer 10 is polished.) Thereby, a multitude of Si single crystal thin films, which are respectively 0.5mum in thickness, 50mum in longitudinal and lateral lengths and is a SEG film 14 of the orientation of a face (100), are formed on the quartz substitute 10 in a state that they are dielectrically isolated from one another.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、特に高性能半導体素子の生産に有効な5il
l結晶薄膜の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application]
This invention relates to a method for producing an l-crystalline thin film.

[従来の技術] 従来より、S単結晶上に形成される半導体素子は、S1
結晶面の方位によってその性能が大きく左右されること
か知られている。また、31膜を異種材料上に形成する
と、材料によっては該Si膜に引っ張りまたは圧縮の2
力が作用することも知られており、これらの応力も半導
体素子の性能を変化させる原因となる。
[Prior Art] Conventionally, a semiconductor element formed on an S single crystal has an S1
It is known that the performance is greatly influenced by the orientation of the crystal plane. In addition, when a 31 film is formed on a different material, depending on the material, the Si film may be subjected to tensile or compressive forces.
It is also known that forces act, and these stresses also cause changes in the performance of semiconductor devices.

MIT(マサチューセッツエ科犬字)のB−Y。B-Y of MIT (Massachusetts Family Canine).

Tsaurらの報告には、(100)面の方位の31膜
に引っ張り応力を作用させると、膜中の電子移動度か極
めて高くなることを計算と実験により証明した旨のg2
載がある( B−Y、Tsaur、John C,CF
an、and M、W、Ge1s、^pp1.Phys
、Lett、40 (4)、15Feb、1982) 
 。
The report by Tsaur et al. states that they have demonstrated through calculations and experiments that when tensile stress is applied to a 31 film with a (100) plane orientation, the electron mobility in the film becomes extremely high.
(B-Y, Tsaur, John C, CF
an, and M, W, Gels, ^pp1. Phys.
, Lett, 40 (4), 15Feb, 1982)
.

これによると、石英(SiO2)基板によりうつ張り応
力を受けた(200)面の方位のSi膜は、応力を受け
ない(100)面の方位のSiに比べ、電子移動度が1
.5倍以上にもなるとしている。換言すれば、応力を受
けた膜上に形成される半導体素子は、Siウェハー上に
形成される半導体素子に比べ高性能化を実現させ易い。
According to this, a Si film with a (200) plane orientation that is subjected to downward stress by a quartz (SiO2) substrate has an electron mobility of 1
.. It is expected to be more than five times as large. In other words, a semiconductor element formed on a film subjected to stress can more easily achieve higher performance than a semiconductor element formed on a Si wafer.

但し、正孔の移動度に関しては、引っ張り応力は逆効果
であり、この場合は(100)面以外の方位を選択する
必要がある。
However, tensile stress has the opposite effect on hole mobility, and in this case, it is necessary to select an orientation other than the (100) plane.

一方、石英基板のようなバルクのS i 02上にSi
単結晶膜を製造する手法は、従来より色々と報告されて
いるものの、(100)面の方位に定められたSt完全
結晶薄膜を作製する手法についてはほとんど開発されて
いない。
On the other hand, Si on a bulk SiO2 such as a quartz substrate
Although various methods for manufacturing single-crystal films have been reported in the past, methods for manufacturing a St perfect crystal thin film oriented in the (100) plane have hardly been developed.

但し、例えば第4図に示すように、上述したMITのB
−Y、Tsaurらは、溶融石英基板40上にSi膜(
多結晶もしくは非晶質)41を堆積させ、これを棒状ヒ
ーター43により一旦溶融して再結晶化させ、もって(
100)配向@42を得るといういわゆる溶融再結晶化
法(以下ZMR法という)を提案している。この手法は
、SiO7表面で液相のSiが結晶化するときには、界
面のエネルギーの安定な(100)面の方位を選択し易
いという現象を利用したものである。
However, as shown in Figure 4, for example, the above-mentioned MIT B
-Y, Tsaur et al.
Polycrystalline or amorphous) 41 is deposited and once melted and recrystallized by a rod-shaped heater 43, thereby forming (
100) proposed the so-called melt recrystallization method (hereinafter referred to as ZMR method) to obtain the orientation @42. This method utilizes the phenomenon that when liquid-phase Si crystallizes on the SiO7 surface, it is easy to select the orientation of the (100) plane with stable interfacial energy.

他の手法としては、第5図に示すようないわゆる貼り合
わせ法がある。この手法は、Siウェハー51と、絶縁
物表面を有する他の支持体、例えば表面に酸化層53を
有するSiウェハー52とを互いに密着させ、H2雰囲
気等で熱処理することにより接着し、次いで、いずれか
一方の側から研磨を行い、酸化膜53とSi薄膜51″
を残すようにしたものである( La5ky、J、、B
、、5tifffer。
Another method is the so-called bonding method as shown in FIG. In this method, a Si wafer 51 and another support having an insulating material surface, for example, a Si wafer 52 having an oxide layer 53 on the surface, are brought into close contact with each other and bonded by heat treatment in an H2 atmosphere. Polishing is performed from one side to remove the oxide film 53 and the Si thin film 51''.
(La5ky, J,, B
,,5tiffer.

S、R,、White、F、R,and Aberna
they、J、R,、”5ili−con On In
5ulator(Sol ) by Bonding 
and Etch−Back″ IEEE Inter
national Electron Devices
Meeting (IEDM)Technical D
igest、pp 684−687Dec、 1985
.の他、いくつかの報告例有り)。
S, R,, White, F, R, and Aberna
They, J. R., “5ili-con On In
5ulator(Sol) by Bonding
and Etch-Back'' IEEE Inter
national electron devices
Meeting (IEDM) Technical D
igest, pp 684-687Dec, 1985
.. In addition, there are several reported examples).

[発明が解決しようとしている課題] しかしながら、上記従来技術では、以下のような問題点
が生しる。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the following problems.

まず、前記ZMR法では、前述したように5i02  
Si界面の方位が、界面エネルギーの安定化如何により
支配されるので、基板表面の傷痕や凹凸等の微細な変動
状態に結晶方位が影響を受けてしまい、そのため、車−
な面の方位を有する完全結晶薄膜を作製するのは困難で
ある。また、般的に、ZMR法により作製されたSi膜
は、ミリメートルオーダーの大粒径多結晶であることか
知られており、このことはグレイン・バウンダリー(粒
界)が存在することとなり、膜全体にわたり均一な単結
晶膜を作製し得ないといえる。
First, in the ZMR method, as mentioned above, 5i02
Since the orientation of the Si interface is controlled by how well the interfacial energy is stabilized, the crystal orientation is affected by minute fluctuations such as scratches and irregularities on the substrate surface.
It is difficult to fabricate a perfectly crystalline thin film with a uniform plane orientation. In addition, it is generally known that Si films produced by the ZMR method are polycrystalline with large grains on the order of millimeters, which means that grain boundaries exist and the film It can be said that it is not possible to produce a uniform single crystal film over the entire area.

次に、前記貼り合わせ法であるが、この手法では、ウェ
ハーサイズの完全単結晶を5in2上に一応作製可能て
はあるが、特に問題となる点は均一な膜を残すように研
磨を制御することが極めて困難であるという点である。
Next, regarding the above-mentioned bonding method, although it is possible to produce a wafer-sized perfect single crystal on a 5in2 surface, the particular problem is that the polishing must be controlled so as to leave a uniform film. This is extremely difficult.

すなわち、現に市販されているSiウェハーは、本来的
に数μm〜数十μmの反りを有するので、貼り合わせ後
のウェハーを平行に研磨したとしても、相当な膜厚ムラ
を生しさせてしまうからである。そのため、膜厚の異な
る領誠に形成される半導体素子は、膜にかかる応力の違
いや、薄膜効果の有無によフて素子性能に大きなバラツ
キを生しさせてしまう。
In other words, Si wafers currently on the market inherently have a warp of several μm to several tens of μm, so even if the wafers are polished in parallel after bonding, considerable unevenness in film thickness will occur. It is from. Therefore, semiconductor elements formed in regions with different film thicknesses will have large variations in element performance due to differences in stress applied to the films and the presence or absence of thin film effects.

本発明は、上記従来技術の課題を解決すべく、3102
基板上に、特定面の方位の定めを理想的に律することか
でき、均一な膜厚を有し、半導体素子性能にバラツキの
ない31単結晶薄膜の作製方法を提供することを目的と
する。
In order to solve the problems of the prior art described above, the present invention provides 3102
An object of the present invention is to provide a method for manufacturing a 31 single crystal thin film on a substrate, which can ideally control the orientation of a specific plane, has a uniform film thickness, and has no variation in semiconductor device performance.

[課題を解決するための手段コ 本発明は、上記目的を達成すへく、鋭意研究を重ねるこ
とで成されたものである。
[Means for Solving the Problems] The present invention has been achieved through extensive research to achieve the above objects.

本発明は、5102を成分とする基板上に、特定面の方
位を有するSi!結晶薄膜を作製する方7去において、 Siウェハー表面に、Siとの選択研磨が可能であって
、選択エピタキシャル成長のマスクとしても使用可能な
絶縁物層を形成する第1の工程と、 該絶縁物層に開口部を設けてマスクを形成し、該開口部
を介して臨まされる前記SiウェハーのSiを前記絶縁
物層表面まで選択エピタキシャル成長させる第2の工程
と、 前記選択エピタキシャル成長をさせた側の面と前記基板
の面とを当接させ、該当接部の接着を行うべく熱処理を
する第3の工程と、 前記接着された基板の前記Siウェハー側から前記マス
クをストッパーとする選択研磨を行なう第4の工程とを
含むことを特徴とする。
The present invention provides Si! having a specific plane orientation on a substrate containing 5102 as a component! In method 7 for producing a crystalline thin film, a first step of forming an insulating layer on the surface of the Si wafer that can be selectively polished with Si and can also be used as a mask for selective epitaxial growth; a second step of providing an opening in the layer to form a mask and selectively epitaxially growing Si of the Si wafer, which is viewed through the opening, up to the surface of the insulating layer; A third step of bringing the surface into contact with the surface of the substrate and performing heat treatment to bond the corresponding contact portion, and performing selective polishing from the Si wafer side of the bonded substrate using the mask as a stopper. The method is characterized by including a fourth step.

[作用コ (I)第1の工程では、Siウェハー表面に絶縁物層を
形成する。
[Operation (I) In the first step, an insulating layer is formed on the surface of the Si wafer.

前記絶縁物層は、後記マスクとして、また、選択研磨の
ストッパーとしても機能するので、両機能を発揮可能な
材料を選ぶ必要がある。その材料としては、例えば、5
i02 、Si3 N4.5iON等が挙げられる。前
記絶縁物層の材料としてSiO2を用いる場合には、前
記Siウェハーの表面を熱酸化させてもよい。その他の
材料を用いる場合はCVD等で堆積させる。
Since the insulating layer functions both as a mask described later and as a stopper for selective polishing, it is necessary to select a material that can perform both functions. For example, the material is 5
i02, Si3 N4.5iON, and the like. When SiO2 is used as the material for the insulating layer, the surface of the Si wafer may be thermally oxidized. When using other materials, they are deposited by CVD or the like.

前記絶縁物層の膜厚は、前記両機能を十分に発揮させ得
る厚さとして、0.1〜1.0μmの値に設定すること
が好ましく、より好ましくは0゜2〜0.5μmの値に
する。なお、最適な膜厚はマスクの材料や、後の研磨の
方法により異なる。
The thickness of the insulating layer is preferably set to a value of 0.1 to 1.0 μm, more preferably a value of 0.2 to 0.5 μm, as a thickness that can sufficiently exhibit both of the functions. Make it. Note that the optimum film thickness varies depending on the material of the mask and the method of subsequent polishing.

(II)第2の工程では、前記絶縁物層に開口部を形成
すべくエツチングを行い、次いで、開口部を介して臨ま
されたSi面について選択エピタキシャル成長(以下S
EGという)を行なう。
(II) In the second step, etching is performed to form an opening in the insulating layer, and then selective epitaxial growth (hereinafter referred to as S) is performed on the Si surface exposed through the opening.
(referred to as EG).

前記開口部の大きさは任意であるが、後に形成される半
導体素子の車体の面積に等しくしておくと、素子を集積
した場合に効果的である。
Although the size of the opening is arbitrary, it is effective to make it equal to the area of the vehicle body of the semiconductor element to be formed later, when the elements are integrated.

開口部から露出しているSi面についてSEGを行なっ
て得られるSEG結晶の成長は、マスクたる絶縁物層の
表面と同一面になったところで終了させる。SEGの条
件は、ガス系としては5t)(4,5i2Ha等のシラ
ン系のもの、および5iH2CA2.5iHCu3.S
iCβ4等のクロロシラン系のもの、その他を使用する
ことができ、添加ガスとしては、エツチング作用のある
HCfl等が使用できる。また、キャリアーガスとして
はH2を用いる。温度は使用ガス等に大きく依存するが
、800〜1200℃、好ましくは900〜1100℃
の範囲に設定する。圧力は数10〜200Torrの範
囲に設定し、好ましくは100Torr前後に設定する
The growth of the SEG crystal obtained by performing SEG on the Si plane exposed from the opening is terminated when the SEG crystal becomes flush with the surface of the insulating layer serving as a mask. The SEG conditions are as follows: 5t) (silane-based gas such as 4,5i2Ha, and 5iH2CA2.5iHCu3.S).
A chlorosilane type gas such as iCβ4 or others can be used, and as the additive gas, HCfl or the like having an etching effect can be used. Moreover, H2 is used as a carrier gas. The temperature largely depends on the gas used, etc., but is 800 to 1200°C, preferably 900 to 1100°C.
Set to a range of The pressure is set in the range of several tens to 200 Torr, preferably around 100 Torr.

(III )第3の工程では、前記SEGを施した基板
の表面に5in2を成分とする基板1oを当接させ、熱
処理を行なって当該当接部を十分に接着させる。
(III) In the third step, the substrate 1o made of 5in2 is brought into contact with the surface of the substrate subjected to the SEG, and heat treatment is performed to sufficiently bond the contact portion.

5i02基板としては、溶融石英、合成石英、高耐熱ガ
ラス等、5in2が主成分であって、前記熱処理温度に
耐えられるものならいずれでも適用できる。該熱処理の
温度は5iOz基板のガラス転移温度付近で行なうのか
好ましい、また、熱処理の雰囲気は水素(H2)または
水素を含むフォーミングガスが好ましい。
As the 5i02 substrate, any material can be used as long as it has 5in2 as a main component and can withstand the heat treatment temperature, such as fused quartz, synthetic quartz, and high heat-resistant glass. The temperature of the heat treatment is preferably around the glass transition temperature of the 5iOz substrate, and the atmosphere of the heat treatment is preferably hydrogen (H2) or a forming gas containing hydrogen.

(rV)第4の工程では、前記Siウェハーを選択研摩
し、該研摩は前記絶縁物層の面が露出したところで終了
する。
(rV) In the fourth step, the Si wafer is selectively polished, and the polishing ends when the surface of the insulating layer is exposed.

前記M択研磨の方法には、大きく分けて2つの種類かあ
る。1つは機械化学研磨法(メカノケミカルエツチング
)、1つは機械石升Wa?去(メカニカルニッチング)
である。前者はマスクたる絶縁物層を5i02に1足し
た場合、特殊な化学研磨液を混入してSiと5in2の
研磨速度を著しく異ならせるようにする選択研磨法であ
る(1田、連層、応用物理学会誌 第56巻、第11号
、1480頁、その他)。
There are roughly two types of M selective polishing methods. One is mechanical chemical polishing method (mechanochemical etching), and the other is mechanical stone Wa? (mechanical nitching)
It is. The former is a selective polishing method in which when the insulating layer serving as a mask is 5i02 plus 1, a special chemical polishing liquid is mixed in to make the polishing rate of Si and 5in2 significantly different (Ida, continuous layer, application). Journal of the Physical Society of Japan, Vol. 56, No. 11, p. 1480, etc.).

上記研摩は、具体的には、例えばエチレン・ジアミン・
ヒ゛ロカテコールというアルカリ系溶7夜を用いてボリ
シング布土で行う。上記化学研磨液はSiをSi(○H
)6′−として熔解するものであるが、5in2には反
応しないので、露出したSiO2面が研磨の終了位置と
なり、該露出面はストッパーとして働く。なお、該化学
反応は、Siの面の方位によってエツチングレートが異
なるので多結晶S1の研磨には適さないが、本発明のよ
うな単結晶Siの研磨に関しては問題ない。
Specifically, the above polishing is performed using, for example, ethylene diamine,
This is done using an alkaline solution called ``hyrocatechol'' on a borizing cloth. The above chemical polishing liquid
)6'-, but it does not react with 5in2, so the exposed SiO2 surface becomes the polishing end position, and the exposed surface acts as a stopper. Note that this chemical reaction is not suitable for polishing polycrystalline S1 because the etching rate differs depending on the orientation of the Si plane, but there is no problem in polishing single crystal Si as in the present invention.

一方、マスクたる絶縁物層として、Si3N4等、モー
ス硬度がSiに比べ十分に高い材料を使用するときは、
材−粗研磨法を用いることができる(特願昭63−24
7819)、該研磨法はStと同等、もしくはそれより
も硬度が高く、Si。
On the other hand, when using a material such as Si3N4, which has a Mohs hardness sufficiently higher than that of Si, as an insulating layer serving as a mask,
Material - Rough polishing method can be used (Patent application No. 63-24)
7819), this polishing method has a hardness equal to or higher than that of St, and Si.

N4よりは硬度の低い砥粒、例えばコロイダル・シリカ
等を研磨剤として使用し、機械的に研磨するものである
。前記コロイダル・シリカはSiよりも若干モース硬度
が高く、St、N4よりは硬度が低い。従pて、Si3
N4面が露出した時点で研磨速度が著しく低下し、研磨
を終了させることができる。このメカニカル研磨は、化
学反応を用いないので、多結晶Siのように多様な面方
位を含む膜の研磨に好適であり、またメカノケミカルエ
ツチングよりも研磨速度が大きくとれるという利点もあ
る。
This method uses abrasive grains with lower hardness than N4, such as colloidal silica, as an abrasive, and performs mechanical polishing. The colloidal silica has a Mohs hardness slightly higher than that of Si, but lower than St and N4. Therefore, Si3
When the N4 surface is exposed, the polishing rate decreases significantly and the polishing can be completed. Since this mechanical polishing does not involve chemical reactions, it is suitable for polishing films containing various plane orientations, such as polycrystalline Si, and also has the advantage of being able to achieve a higher polishing rate than mechanochemical etching.

かかる各工程を経ることにより、5i02基板上には、
特定面の方位が理想的に律され、且つ、均一な厚さを有
し、高性能半導体素子に適用し得るSi単結晶薄膜が作
製できる。
By going through these steps, on the 5i02 substrate,
A Si single-crystal thin film in which the orientation of a specific plane is ideally regulated and has a uniform thickness, which can be applied to high-performance semiconductor devices, can be produced.

[実施例] 以下、第1図等を参照しながらSi単結晶薄膜の作製方
法の実施例につき具体的に説明する。
[Example] Hereinafter, an example of a method for manufacturing a Si single crystal thin film will be specifically described with reference to FIG. 1 and the like.

(第1実施例) 本実施例は、石英基板上に(100)面の方位の5iR
L結晶薄膜を形成するものである。
(First Example) In this example, 5iR of (100) plane orientation was formed on a quartz substrate.
This is to form an L crystal thin film.

(a)まず、第1図(a)に示すように、4インチの(
100)Siウェハー11の表面を0.5μmの深さま
で酸化し絶縁物層12を形成した。
(a) First, as shown in Figure 1 (a), a 4-inch (
100) The surface of the Si wafer 11 was oxidized to a depth of 0.5 μm to form an insulating layer 12.

この酸化条件としては、N2 : 02 =3 : 2
の雰囲気中において、温度を1000℃にし、酸化時間
を3時間とした。
The oxidation conditions are N2:02=3:2
The temperature was set at 1000° C. and the oxidation time was set at 3 hours.

次に、第2図に示すように、通常のフォトリソグラフィ
ー技術を用いて絶縁物層である酸化膜22に50x50
μm2の領域を縦横それぞれ10μmの間隔をもって格
子状にバターニングし、HF溶液を用いてエツチングし
て開口部13(第1図(a)参照)を形成し、Siウェ
ハー面23を露出させた。
Next, as shown in FIG. 2, the oxide film 22, which is an insulating layer, is formed into a 50x50 film using ordinary photolithography technology.
A region of 2 .mu.m2 was patterned in a lattice pattern with intervals of 10 .mu.m vertically and horizontally, and etched using an HF solution to form openings 13 (see FIG. 1(a)) and expose the Si wafer surface 23.

(b)第1図(b)に示すように、上記s1ウェハー1
1上の前記開口部13についてSEGを施し、前記絶縁
物層12の表面と同一面になるまで成長させ、該開口部
13をSEG結晶14て埋設させた。
(b) As shown in FIG. 1(b), the s1 wafer 1
SEG was performed on the opening 13 on the substrate 1 to grow it until it was flush with the surface of the insulating layer 12, and the opening 13 was buried with the SEG crystal 14.

この場合のSEG条件は次のとおりである。The SEG conditions in this case are as follows.

ガス種  −S i H2Cn 2 / HCj2 /
 H2ガス流量比・・・0.53/1.6/100[f
l/minコ 温度   ・・弓030[’C] 圧力   ・−・too[rorr] 成長時間 ・・・220 [seCコ (c)第1図(C)に示すように、前記SEGにより平
坦になった表面と4インチの溶融石英ウェハー10の平
坦面とを密着させて界面15を形成し、N2  :N2
 =20 :80  (%)の7r−ミングガス雰囲気
中980’Cて30分間熱処理し、該密着部を接着させ
た。
Gas type -S i H2Cn 2 / HCj2 /
H2 gas flow rate ratio...0.53/1.6/100 [f
l/min Temperature: 030 ['C] Pressure: too [rorr] Growth time: 220 [seC] As shown in Figure 1 (C), the SEG flattened the The surface of the fused silica wafer 10 is brought into close contact with the flat surface of the 4-inch fused silica wafer 10 to form an interface 15.
A heat treatment was performed at 980'C for 30 minutes in a 7R-ming gas atmosphere of 20:80 (%) to bond the contact portion.

(d ) 第1図(d)に示すように、接着したウェハ
ーの(100)Siウェハー側を研磨した。この場合、
S1ウエハー11の厚さは木来約520μmもあるので
、50μmの粗石升磨まではアルミナ(Aj2203)
等の粗い砥粒を用い、その後前述したメカノケミカルエ
ツチングン去で石升磨し、絶縁物層12の表面か露出し
たところで研磨を終了させた。具体的には、市販のポリ
シングクロスに31単結晶部を摺動させつつpH=9.
5、温度45℃に設定したエチレンンシアミンビロカテ
コルを摺動面に注入しなから研磨を行った。
(d) As shown in FIG. 1(d), the (100) Si wafer side of the bonded wafer was polished. in this case,
Since the thickness of the S1 wafer 11 is approximately 520 μm, alumina (Aj2203) was used until the 50 μm rough stone polishing.
Using coarse abrasive grains such as the following, stone polishing was then carried out using the mechanochemical etching method described above, and the polishing was completed when the surface of the insulating layer 12 was exposed. Specifically, while sliding the 31 single crystal part on a commercially available polishing cloth, pH=9.
5. Ethylenecyamine birocatechol was injected into the sliding surface at a temperature of 45° C. before polishing.

これにより、石英基板10上;厚さが05μm、縦横長
かそれぞれ50μmである(100)面の方位の前記S
EG膜】4である多数の5ill結晶薄膜が互いに絶縁
分離された状態で形成された。なお、前記SEG膜14
である5iJL結晶薄膜領域内に1つのNMOSトラン
ジスタを形成すると、その電子移動度は800cm’/
v・seCという値を示した。
As a result, on the quartz substrate 10, the above-mentioned S
EG film] A large number of 5ill crystal thin films (4) were formed insulated and isolated from each other. Note that the SEG film 14
When one NMOS transistor is formed in the 5iJL crystal thin film region, its electron mobility is 800 cm'/
It showed a value of v·seC.

(第2実施例) 本実施例は、石英基板上に(l○0)方位のSi単結晶
薄膜を形成するものである。
(Second Example) In this example, a Si single-crystal thin film with (l○0) orientation is formed on a quartz substrate.

(a’)i1図(a)に示すように、4インチの(10
0)Siウェハー11の表面にLPCVDによりSi3
N4の絶縁物層12を0.2μmの厚みに堆積させた。
(a') i1 As shown in Figure (a), 4 inch (10
0) Si3 on the surface of the Si wafer 11 by LPCVD
An insulator layer 12 of N4 was deposited to a thickness of 0.2 μm.

この堆積条件としては、SiH2CJ22 /NH3=
20/80 (S CCm)の混合ガスを用い、温度を
800℃、真空度を0゜3丁orrにし、堆積時間を6
0分間とした。
This deposition condition is SiH2CJ22 /NH3=
Using a mixed gas of 20/80 (S CCm), the temperature was 800°C, the degree of vacuum was 0°3 orr, and the deposition time was 6.
The duration was 0 minutes.

次いで、通常のフォトリソグラフィー技術により、第3
図に示すように、5×5μm2の領域32を縦横それぞ
れ50μmの間隔をもって格子状にバターニングし、他
の部分をRIE(反応性イオンエツチング)によりエツ
チングし、開口部13を形成した。
Next, a third layer is formed using conventional photolithography techniques.
As shown in the figure, a region 32 of 5×5 μm 2 was patterned in a lattice shape with intervals of 50 μm in the vertical and horizontal directions, and the other portions were etched by RIE (reactive ion etching) to form openings 13.

(bo)次に、第1図(b)に示すように、下記条件で
SEGを行なった。
(bo) Next, as shown in FIG. 1(b), SEG was performed under the following conditions.

ガス種  ・・・S i H2Cl12/HCj!/H
2ガス流量 ・・・0.53/2.4/100[fL/
m1nl 温度   ・・弓050[℃コ 圧力   ・−80[Torrコ 成長時間 ・・・ 200 [secコ(c’)it図
(c)に示すように、上記SEGにより平坦になった表
面と4インチの溶融石英ウェハー10の平坦面を密着さ
せて界面15を形成し、H2雰囲気中1000℃下で2
0分間の熱処理を施し、該密着部を接着させた。
Gas type...S i H2Cl12/HCj! /H
2 Gas flow rate...0.53/2.4/100 [fL/
m1nl Temperature: 050 [℃] Pressure: -80 [Torr] Growth time: 200 [sec (c') As shown in figure (c), the surface flattened by the above SEG and 4 inches The flat surfaces of the fused silica wafers 10 are brought into close contact to form an interface 15, and the
A heat treatment was performed for 0 minutes to bond the adhesive portion.

(do )第1図(d)に示すように、接着したウェハ
ーの(100)Siウェハー側を研磨する。
(do) As shown in FIG. 1(d), the (100) Si wafer side of the bonded wafer is polished.

この研磨は、前述したメカニカル研磨で、コロイダルシ
リカを砥粒として行ない、Si3N4膜たる絶縁物層1
2の表面が露出したところで研′磨を終了させた。具体
的には、市販のボリシングクロスにSi車単結部を摺動
させ、中性溶液に懸濁させたコロイダルシリカを摺動部
に注入しつつ研磨を行った。ここで、溶液にはメタノ−
と水を3ニアの割合で混合したものを用い、コロイダル
シリカは粒径が100人のものを用いた。
This polishing is the mechanical polishing described above, using colloidal silica as abrasive grains, and
The polishing was finished when the surface of No. 2 was exposed. Specifically, the single bonded portion of the Si wheel was slid on a commercially available borising cloth, and polishing was performed while colloidal silica suspended in a neutral solution was injected into the sliding portion. Here, the solution contains methanol.
The colloidal silica used had a particle size of 100 mm.

こうして石英基板10上に厚さ0.2μmの連続な(1
00)面の方位のSi単結晶膜たるSWG膜14が、S
i3N4膜たる絶縁物層12の島状領域に形成された。
In this way, a continuous (1
The SWG film 14, which is a Si single crystal film with the orientation of the S
It was formed in an island-like region of the insulator layer 12, which is an i3N4 film.

(第3実施例) 本実施例は石英基板上に(111)4° offの5i
jl結晶薄膜を形成するものである。
(Third Example) In this example, 5i of (111) 4° off was placed on a quartz substrate.
jl crystal thin film is formed.

(a”)第1図(a)に示すように、4インチでHz)
に4°のオフセット角を有するSiウェハー11の表面
に、LPCVDにより5i3N41i12を0.4μm
の厚みで堆積させた。こ堆積条件は、堆積時間を120
分間とすることを除き上記第2実旅例と同様であった。
(a”) Hz at 4 inches as shown in Figure 1 (a))
5i3N41i12 was deposited to a thickness of 0.4 μm on the surface of the Si wafer 11 with an offset angle of 4° by LPCVD.
It was deposited to a thickness of . These deposition conditions are such that the deposition time is 120
The trip was the same as the second actual trip example above, except that the travel time was 1 minute.

次に、通常のフォトリソグラフィーの技術により、第2
図に示すようにバターニングし、エツチングした。エツ
チングにより形成された開口部領域は、70x70μm
2の正方形の縦横10μm間隔で隔てられた領域である
Next, a second layer is formed using normal photolithography technology.
It was buttered and etched as shown in the figure. The opening area formed by etching is 70x70μm.
These are two square areas separated by 10 μm in the vertical and horizontal directions.

(b”)次に、第1図(b)に示すように、下記条件で
SEGを行なった。
(b'') Next, as shown in FIG. 1(b), SEG was performed under the following conditions.

ガス種   S i H2Cfl 2 / HC11/
 H2ガス流量  0.60/2.2/100(ρ/m
1n) 温度    1030℃ 圧力    100Torr 成長時f   320 S e C (c”)i1図(C)に示すように、第2実施例と同様
の条件で石英基板を貼り合わせ、(d”)第1図(d)
に示すように、第2実施例と同様にメカニカル研磨によ
り、(111)に4°のオフセット角を有するS1ウエ
ハーを研磨した。
Gas type S i H2Cfl 2 / HC11/
H2 gas flow rate 0.60/2.2/100 (ρ/m
1n) Temperature: 1030°C Pressure: 100 Torr During growth f 320 S e C (c”) i1As shown in Figure (C), quartz substrates were bonded together under the same conditions as in the second embodiment, and (d”) Figure 1. (d)
As shown in the figure, an S1 wafer having an offset angle of 4° to (111) was polished by mechanical polishing in the same manner as in the second example.

このようにして石英基板上には、厚さ0.4μmで、縦
横長か夫々70μmの(111)に4゜のオフセット角
を有する多数のSi単結晶薄膜を互いに十分に絶縁分離
された状態で形成できた。
In this way, on a quartz substrate, a large number of Si single crystal thin films each having a thickness of 0.4 μm and an offset angle of 4° to (111) of 70 μm in the vertical and horizontal directions were formed with sufficient insulation and separation from each other. I was able to form it.

[発明の効果] 以上のように、本発明によれは、5102を成分とする
基板上に特定面の方位を有する完全単結晶膜を成長させ
ることにより、31単結晶ili?@の特定面の方位の
定めを理想的に律することができ、任意の位置で絶縁分
離されるか、若しくは連続の5ilL結晶薄膜を形成す
ることができ、さらにSi単結晶薄膜を任意の厚さでウ
ェハー全面に亘フて均一に形成することができる。
[Effects of the Invention] As described above, according to the present invention, by growing a perfect single crystal film having a specific plane orientation on a substrate containing 5102 as a component, 31 single crystal ili? It is possible to ideally control the orientation of a specific plane of This allows uniform formation over the entire wafer surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a、)〜(dンは本発明の実施例に係る工程図
、′s2図および第3図は、絶縁物層のバターニング例
を示す斜視図、第4図は従来のZMR法を説明する側断
面図、第5図は従来の貼り合わせ法を説明する側断面図
である。 (符号の説明) 10・・・石英基板、11・・・Stウェハー 12・
・・絶縁物層、13・・・開口部、14・・・SEG結
晶、15・・・界面。 第 図 ρ 〃 2 □33
Figures 1 (a,) to (d) are process diagrams according to embodiments of the present invention, Figures 2 and 3 are perspective views showing an example of patterning an insulator layer, and Figure 4 is a conventional ZMR Fig. 5 is a side sectional view explaining the conventional bonding method. (Explanation of symbols) 10...Quartz substrate, 11...St wafer 12.
... Insulator layer, 13... Opening, 14... SEG crystal, 15... Interface. Figure ρ 〃 2 □33

Claims (1)

【特許請求の範囲】[Claims] (1)SiO_2を成分とする基板上に、特定面の方位
を有するSi単結晶薄膜を作製する方法において、 Siウェハー表面に、Siとの選択研磨が可能であって
、選択エピタキシャル成長のマスクとしても使用可能な
絶縁物層を形成する第1の工程と、 該絶縁物層に開口部を設けてマスクを形成し、該開口部
を介して臨まされる前記SiウェハーのSiを前記絶縁
物層表面まで選択エピタキシャル成長させる第2の工程
と、 前記選択エピタキシャル成長をさせた側の面と前記基板
の面とを当接させ、該当接部の接着を行うべく熱処理を
する第3の工程と、 前記接着された基板の前記Siウェハー側から前記マス
クをストッパーとする選択研磨を行なう第4の工程とを
含むことを特徴とするSi単結晶薄膜の作製方法。
(1) In a method for producing a Si single crystal thin film with a specific plane orientation on a substrate containing SiO_2, the Si wafer surface can be selectively polished with Si, and can also be used as a mask for selective epitaxial growth. a first step of forming a usable insulating layer, forming an opening in the insulating layer to form a mask, and transferring Si of the Si wafer exposed through the opening to the surface of the insulating layer; a second step of performing selective epitaxial growth until the surface of the substrate has been selectively grown; a third step of bringing the surface on which the selective epitaxial growth has been performed into contact with the surface of the substrate and heat-treating the contact portion to bond the bonded portion; a fourth step of selectively polishing the Si wafer side of the substrate using the mask as a stopper.
JP9477790A 1990-04-10 1990-04-10 Formation of si single crystal thin film Pending JPH03292734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9477790A JPH03292734A (en) 1990-04-10 1990-04-10 Formation of si single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9477790A JPH03292734A (en) 1990-04-10 1990-04-10 Formation of si single crystal thin film

Publications (1)

Publication Number Publication Date
JPH03292734A true JPH03292734A (en) 1991-12-24

Family

ID=14119528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9477790A Pending JPH03292734A (en) 1990-04-10 1990-04-10 Formation of si single crystal thin film

Country Status (1)

Country Link
JP (1) JPH03292734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082641A (en) * 2019-11-15 2021-05-27 信越半導体株式会社 Manufacturing method for epitaxial wafer and epitaxial wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082641A (en) * 2019-11-15 2021-05-27 信越半導体株式会社 Manufacturing method for epitaxial wafer and epitaxial wafer

Similar Documents

Publication Publication Date Title
Yonehara et al. Control of Grain Boundary Location by Selective Nucleation Over Amorphous Substrates
US4997787A (en) Method for fabricating a semiconductor film which is electrically isolated from a substrate
JP2006148066A (en) Germanium-on-insulator (geoi) type wafer manufacturing method
JPH07187892A (en) Silicon and its formation
US6416578B1 (en) Silicon carbide film and method for manufacturing the same
JP3576432B2 (en) Silicon carbide film and method of manufacturing the same
CA2030484A1 (en) Semiconductor pressure sensor and method for manufacturing the same
JP2840434B2 (en) Crystal formation method
Yonehara et al. Manipulation of nucleation sites and periods over amorphous substrates
JP2699359B2 (en) Semiconductor substrate manufacturing method
US6475456B2 (en) Silicon carbide film and method for manufacturing the same
JPH03292734A (en) Formation of si single crystal thin film
JPH03292722A (en) Manufacture of silicon single crystal thin film
JPH03292723A (en) Manufacture of silicon singe crystal thin film
JPH056883A (en) Manufacture of semiconductor substrate
JPH0324719A (en) Forming method of single crystal film and crystal products
JPH0480922A (en) Formation of crystal product
JP2756320B2 (en) Crystal formation method
JPH03125458A (en) Method of forming single crystal region, and single crystal article using same
JPS6163013A (en) Manufacture of seed structure for soi
JP2592832B2 (en) Crystal formation method
JP2737152B2 (en) SOI forming method
JPH05326683A (en) Manufacutre of soi substrate
JP2532252B2 (en) Method for manufacturing SOI substrate
JPH03125459A (en) Method of forming single crystal region, and crystal article using same